

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

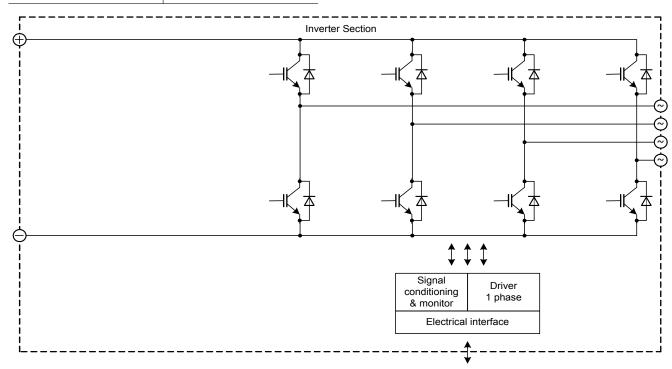
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PrimeSTACK™

2PS18012E44G38553


Preliminary data


General information

IGBT Stack for typical voltages of up to 400 V_{RMS} Rated output current 770 A_{RMS}

- · Solar power · Motor drives
- · High power converter
- $\begin{array}{l} \cdot \ 62mm \ power \ module \\ \cdot \ Trenchstop^{\text{TM}} \ IGBT4 \end{array}$

Topology	1/2 B2I
Application	Inverter
Load type	Resistive, inductive
Semiconductor (Inverter Section)	4x FF450R12KE4
DC Link	1.6 mF
Heatsink	Forced air cooled (fan not included)
Implemented sensors	Current, temperature
Driver signals IGBT	Electrical
Approvals	UL 508C
Sales - name	2PS18012E4FG38553
SP - No.	SP001062698

prepared by: OW	date of publication: 2014-11-18
approved by: YZ	revision: 2.0

PrimeSTACK™

2PS18012E44G38553

Preliminary data

Absolute maximum rated values

Collector-emitter voltage	IGBT; T _{vj} = 25°C	V _{CES}	1200	V
Repetitive peak reverse voltage	Diode; T _{vj} = 25°C	V_{RRM}	1200	V
DC link voltage		V_{DC}	1000	V
Insulation management	according to installation height of 2000 m	V _{line}	500	V _{RMS}
Insulation test voltage	according to EN 50178, f = 50 Hz, t = 1 s	V _{ISOL}	2.5	kV _{RMS}
Repetitive peak collector current inverter section (IGBT)	$t_p = 1 \text{ ms}$	I _{CRM2}	2560	Α
Repetitive peak forward current inverter section (Diode)	$t_p = 1 \text{ ms}$	I _{FRM2}	2440	А
Continuous current inverter section		I _{AC2}	820	A _{RMS}
Junction temperature	under switching conditions	T_{vjop}	150	°C
Switching frequency inverter section	limited due to snubber caps	f _{sw2}	3	kHz

Notes

Further maximum ratings are specified in the following dedicated sections

Characteristic values

DC Link			min.	typ.	max.	
Rated voltage		V _{DC}		650	1000	V
Capacitor	1 s, 4 p, rated tol. 10 %	C _{DC}		1.6		mF
Maximum ripple current	per device, T _{amb} = 55 °C	I _{ripple}			49	A _{RMS}

Notes

Activ clamping diodes not implemented, max. DC link voltage for short circuit protection 500V Max. DC link voltage under switching conditions 1000V up to 300A. (T junction > 25°C)

Inverter Section			min.	typ.	max.	
Rated continuous current	$ \begin{vmatrix} V_{DC} = 650 \text{ V}, \ V_{AC} = 400 \ V_{RMS}, \ cos(\phi) = 0.85, \\ f_{AC \text{ sine}} = 50 \ Hz, \ f_{sw} = 3000 \ Hz, \ T_{inlet} = 50 ^{\circ}C, \ T_{j} \leq 125 \ ^{\circ}C \ \ \label{eq:VDC} $	I _{AC}		770		A _{RMS}
Rated continuous current for 150% overload capability	$I_{AC~150\%}$ = 820 A _{RMS} , $t_{on~over}$ = 60 s, $T_{j} \le$ 125 °C	I _{AC} over1			550	A _{RMS}
Rated continuous current for 150% overload capability	$I_{AC~150\%}$ = 820 A _{RMS} , $t_{on~over}$ = 3 s, $T_{j} \le$ 125 °C	I _{AC over2}			630	Arms
Over current shutdown	within 15 μs	I _{AC OC}		1280		A _{peak}
Power losses	I_{AC} = 400 A, V_{DC} = 650 V, $cos(φ)$ = 0.85, $f_{AC sine}$ = 50 Hz, f_{sw} = 3000 Hz, T_{inlet} = 50 °C, T_{j} ≤ 125 °C	P _{loss}		5600		W

Notes

Maximum junction temperature limited to 125°C under all operating conditions

prepared by: OW	date of publication: 2014-11-18
approved by: YZ	revision: 2.0

PrimeSTACK™

2PS18012E44G38553

Preliminary data

19

kg

Controller interface

Driver and interface board	er and interface board ref. to separate Application Note			DR240		
			min.	typ.	max.	
Auxiliary voltage		V _{aux}	18	24	30	V
Auxiliary power requirement	V _{aux} = 24 V	Paux			40	W
Digital input level	resistor to GND 10 kΩ, capacitor to GND 1 nF	V _{in low}	0		4	V
		V _{in high}	11		15	V
Digital output level	open collector, logic low = no fault, max. 15 mA	V _{out low}	0		1.5	V
		V _{out high}		15		V
Analog current sensor output inverter section	load max 5 mA, @ 770 A _{RMS}	VIU ana2 VIV ana2 VIW ana2	6	6.1	6.2	V
Over temperature shutdown inverter section	load max 5 mA, @T _{NTC} = 86 °C	V _{Error OT2}	10.8	11	11.2	V

System data min. typ. max. according to IEC 61800-3 at named power V_{Burst} kV 2 **EMC** robustness interfaces control V_{Burst} 1 kV V_{surge} aux (24V) 1 kV $^{\circ}\text{C}$ Storage temperature T_{stor} -40 80 Operational ambient PCB, DC link capacitor, bus bar, excluding cooling °C -25 60 $T_{op\; amb}$ temperature Cooling air velocity PCB, DC link capacitor, bus bar, standard atmosphere $V_{\text{air}} \\$ 2 m/s Humidity no condensation Rel. F 0 85 % Vibration according to IEC 60721 m/s² according to IEC 60721 Shock m/s² Protection degree IP00 2 Pollution degree Dimensions 284 472 287 width x depth x height mm

Weight Notes

System data valid for continuous operation

Heatsink air cooled			min.	typ.	max.	
Air flow	T _{air} = 20 °C, P _{air} = 1013 hPa, dry and dust free, measured at the side of the heat sink according to DIN 41882	ΔV/Δt	500			m³/h
Air pressure drop	at min. air flow	Δр		200		Pa
Air inlet temperature		T _{inlet}	-30		55	°C

Notes

Conditions are standard Infineon characterization for heatsinks.

prepared by: OW	date of publication: 2014-11-18
approved by: YZ	revision: 2.0

PrimeSTACK™

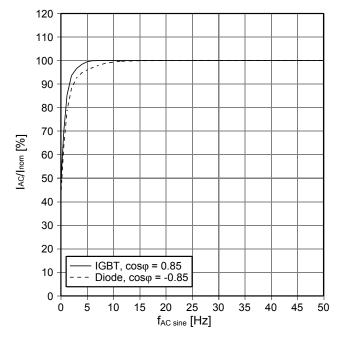
2PS18012E44G38553

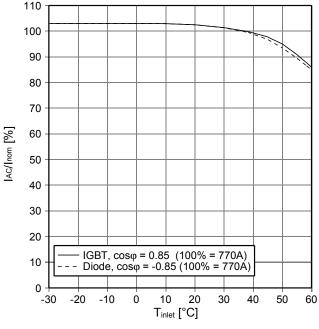
Preliminary data

Overview of optional components	Unit 1	Inverter Section	Unit 3
Parallel interface board			
Optical interface board			
Voltage sensor			
Current sensor		×	
Temperature sensor		×	
Temperature simulation			
DC link capacitors		×	
Data cable for control signals			
Fan			
Collector-emitter Active Clamping			
Snubber capcitors		×	

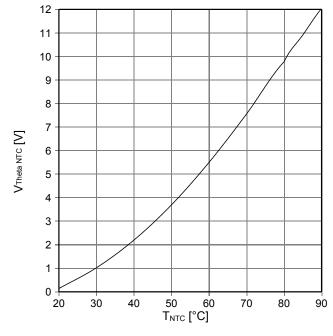
prepared by: OW	date of publication: 2014-11-18
approved by: YZ	revision: 2.0

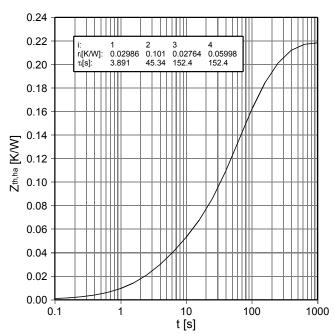
PrimeSTACK™


2PS18012E44G38553


Preliminary data

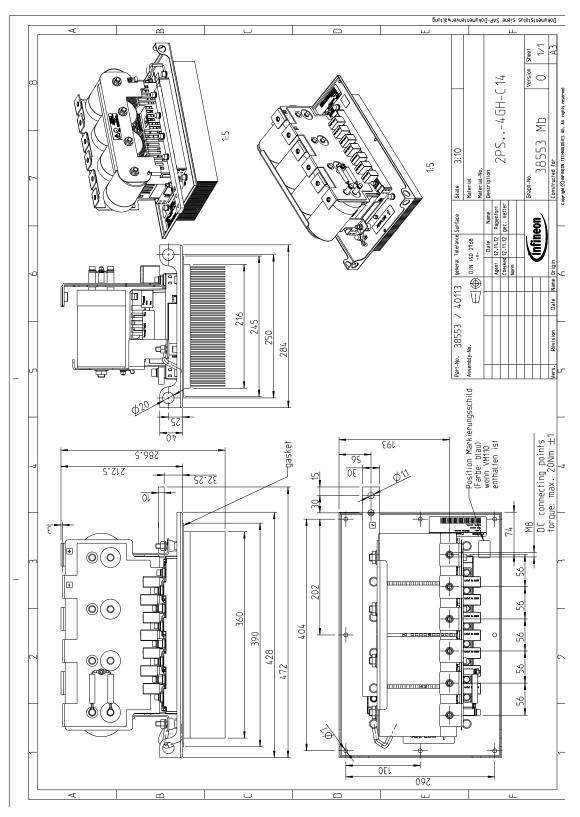
 $f_{AC~sine}$ - derating curve IGBT (motor), Diode (generator) V_{DC} = 650 V, V_{AC} = 400 $V_{RMS},\,f_{sw}$ = 3 kHz, $cos\phi$ = $\pm0.85,\,$ T_{inlet} = 50 °C and nom. cooling conditions


$$\begin{split} &T_{\text{inlet}} \text{ - derating curve IGBT (motor), Diode (generator)} \\ &V_{\text{DC}} = 650 \text{ V, V}_{\text{AC}} = 400 \text{ V}_{\text{RMS}}, f_{\text{AC sine}} = 50 \text{ Hz, cos}\phi = \pm 0.85, \\ &T_{\text{inlet}} = 50 \text{ °C and nom. cooling conditions} \end{split}$$


Analog temperature sensor output $V_{\text{Theta NTC}}$ Sensing NTC of heatsink

 $Z_{\text{th,ha}}$ - thermal impedance heatsink to ambient per switch nom. cooling conditions

prepared by: OW date of publication: 2014-11-18 approved by: YZ revision: 2.0

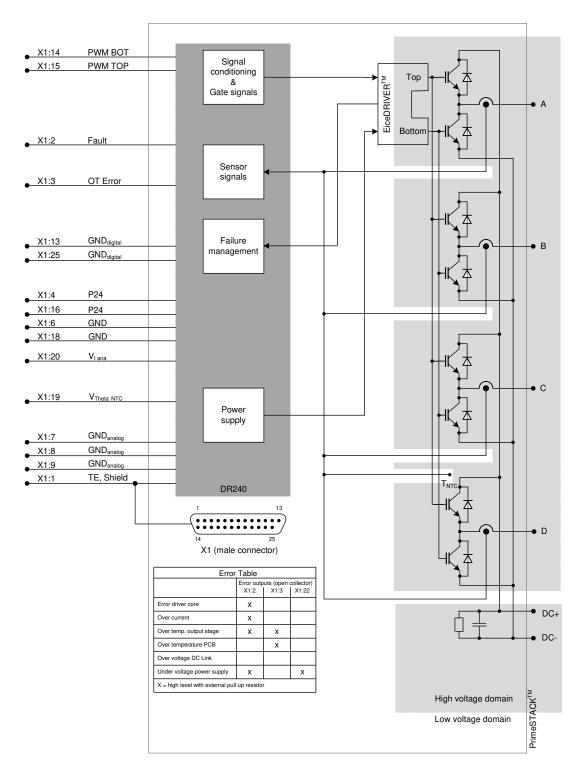

 $\mathsf{PrimeSTACK}^{\intercal}$

2PS18012E44G38553

Preliminary data

Mechanical drawing

prepared by: OW	date of publication: 2014-11-18
approved by: YZ	revision: 2.0


 $\mathsf{PrimeSTACK}^{\intercal_{\mathsf{M}}}$

2PS18012E44G38553

Preliminary data

Circuit diagram

prepared by: OW	date of publication: 2014-11-18
approved by: YZ	revision: 2.0

PrimeSTACK™

2PS18012E44G38553

Preliminary data

Terms & Conditions of usage

The data contained in this product data sheet is exclusively intended for technically trained staff. You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.infineon.com, sales&contact). For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify. Please note, that for any such applications we urgently recommend

- to perform joint Risk and Quality Assessments;
- the conclusion of Quality Agreements;
- to establish joint measures of an ongoing product survey, and that we may make delivery depended on the realization of any such measures.

If and to the extent necessary, please forward equivalent notices to your customers.

Changes of this product data sheet are reserved.

Safety Instructions

Prior to installation and operation, all safety notices and warnings and all warning signs attached to the equipment have to be carefully read. Make sure that all warning signs remain in a legible condition and that missing or damaged signs are replaced. To installation and operation, all safety notices and warnings and all warning signs attached to the equipment have to be carefully read. Make sure that all warning signs remain in a legible condition and that missing or damaged signs are replaced.

prepared by: OW	date of publication: 2014-11-18
approved by: YZ	revision: 2.0