

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2SA2186

ON Semiconductor®

http://onsemi.com

Bipolar Transistor -50V, -2A, Low VCE(sat), PNP Single NMP

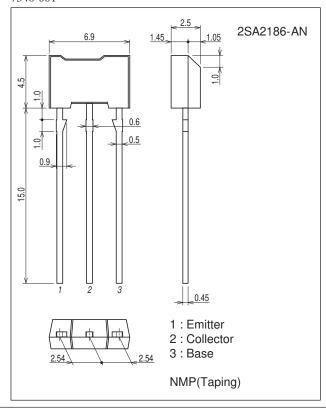
Applicaitons

· Voltage regulators, relay drivers, lamp drivers, electrical equipment

Features

- Adoption of MBIT processes
- · Low collector-to-emitter saturation voltage
- · Large current capacity
- · High-speed switching

Specifications

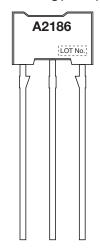

Absolute Maximum Ratings at Ta=25°C

Parameter	Symbol	Conditions	Ratings	Unit
Collector-to-Base Voltage	VCBO		-50	V
Collector-to-Emitter Voltage	VCEO		-50	V
Emitter-to-Base Voltage	VEBO		-6	V
Collector Current	IC		-2	Α
Collector Current (Pulse)	ICP		-4	Α
Base Current	IB		-400	mA
Collector Dissipation	PC		0.9	W
Junction Temperature	Tj		150	°C
Storage Temperature	Tstg		-55 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Package Dimensions

unit : mm (typ) 7540-001

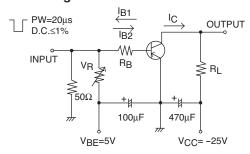


Product & Package Information

Package : NMP(Taping)JEITA, JEDEC : SC-71

• Minimum Packing Quantity: 2,500 pcs./box

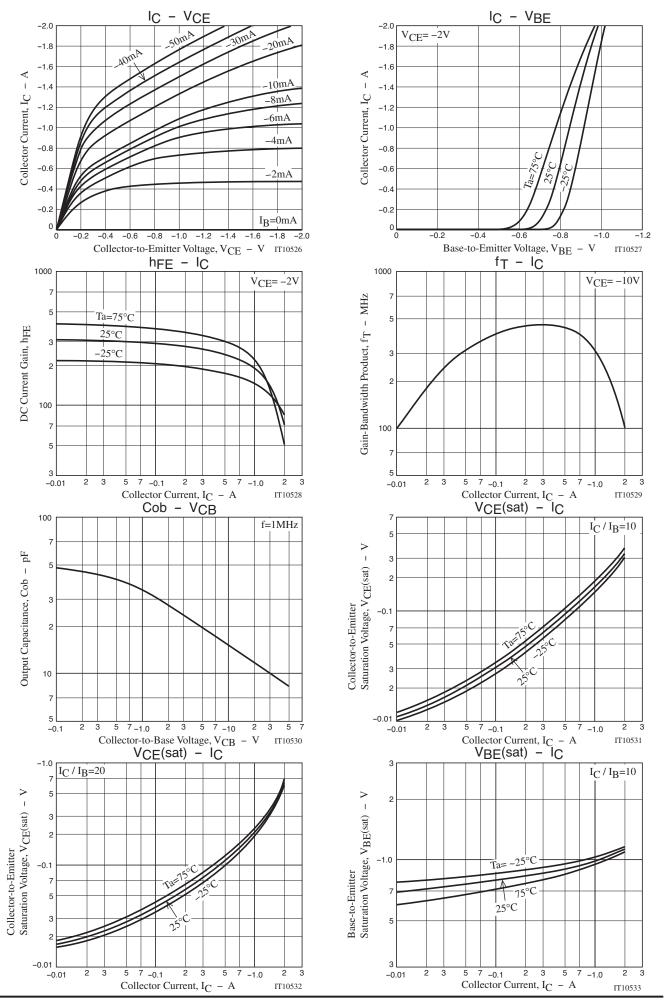
Marking(NMP(Taping)) Electrical Connection

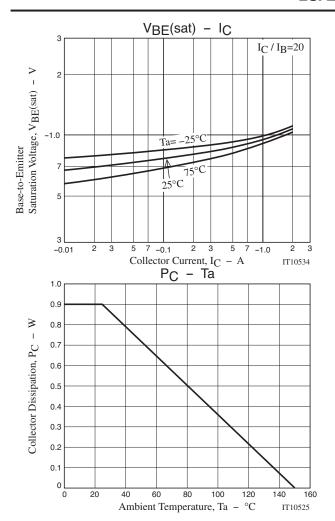

Semiconductor Components Industries, LLC, 2013

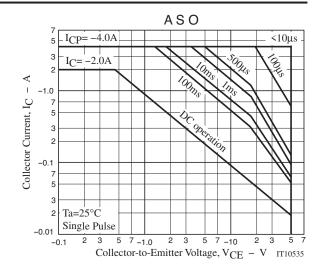
September, 2013

Electrical Characteristics at Ta=25°C

Parameter	Cumbal	Conditions	Ratings			Unit
Parameter	Symbol	Conditions	min	typ	max	Unit
Collector Cutoff Current	ICBO	V _{CB} =-40V, I _E =0A			-1	μΑ
Emitter Cutoff Current	IEBO	V _{EB} =-4V, I _C =0A			-1	μΑ
DC Current Gain	hFE1	V _{CE} =-2V, I _C =-100mA	200		560	
	hFE2	V _{CE} =-2V, I _C =-1.5A	40			
Gain-Bandwidth Product	fŢ	V _C E=-10V, I _C =-300mA		420		MHz
Output Capacitance	Cob	V _{CB} =-10V, f=1MHz		16		pF
Collector-to-Emitter Saturation Voltage	V _{CE} (sat)	I _C =-1A, I _B =-50mA		-0.22	-0.43	V
Base-to-Emitter Saturation Voltage	V _{BE} (sat)	I _C =-1A, I _B =-50mA		-0.9	-1.2	V
Collector-to-Base Breakdown Voltage	V(BR)CBO	IC=-10μA, IE=0A	-50			V
Collector-to-Emitter Breakdown Voltage	V(BR)CEO	IC=-1mA, RBE=∞	-50			V
Emitter-to-Base Breakdown Voltage	V(BR)EBO	I _E =-10μA, I _C =0A	-6			V
Turn-ON Time	ton			35		ns
Storage Time	tstg	See specified Test Circuit.		200		ns
Fall Time	tf			24		ns

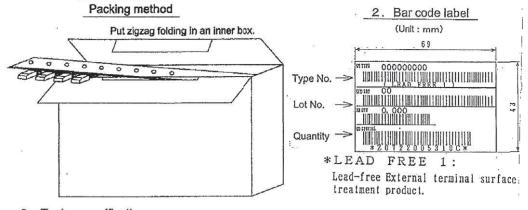

Switching Time Test Circuit



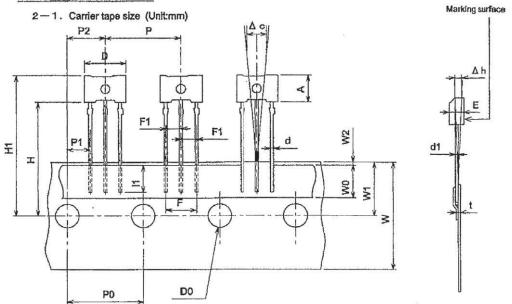

 $I_{C}=10I_{B1}=-10I_{B2}=-0.7A$

Ordering Information

Device Package		Shipping	memo
2SA2186-AN NMP(Taping)		2,500pcs./box	Pb Free

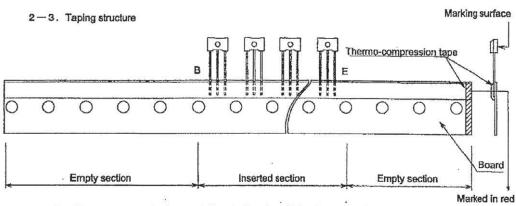

Bag Packing Specification

2SA2186-AN


NMP (Zigzag folding)

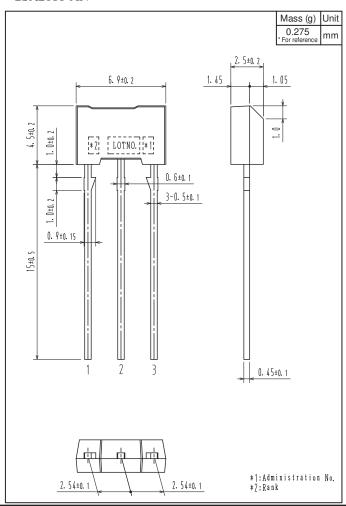
Storage package Package		Maximum Number of devices contained (pcs.)		Packing format		
Outline name type	Inner box No.	Storage quantity	Outer box (C-6)	Outer box (C-8)		
NMP	AN/AZ	C-3 Inner box Dimensions :mm(external) 3 3 0 × 4 5 × 1 2 5	2,500	8 inner boxes contained(20,000pcs.) Outer box Dimensions:mm(external) 5 8 5 × 3 4 5 × 1 9 5	4 inner boxes contained (10,000pcs.) Outer box Dimensions mm (external 3 4 5 × 3 0 0 × 1 9 5	

1. Packing format


2. Taping specifications

Item	Symbol	Standard	Tolerance
	D	6.9	±0.2
Work plece outside diameter	E	2.5	±0.2
Work piece height	Α	4.5	±0.2
Lead wire diameter	d	0.5	±0.1
Lead wire thickness	d1	0.45	±0.1
Bonded lead wire	11	3.0MIN	
Pitch between products	Р	12.7	±0.5
Pitch between perforations	P0	12.7	±0.2
Total pitch for 21 perforations	P0×20	254.0	±1.0
Distance between lead wire	F	5,0	+0.8
Lead wire pitch distance	F1	2.54	+0.4
Displacement of perferations	P1	3.81	±0.3
Displacement of perforations	P2	6.35	±0.3
Displacement of tape	W2	0~0. 5	

Unit:mm


Ontain				
Symbol	Standard	Tolerance		
W	18.0	±0.5		
Wo	6.0	±0.5		
W1	9.0	±0.5		
н	19.0	+1.0		
H1	23.5	±1.0		
D0	φ4.0	±0.2		
t	0.6	±0.2		
Δс	0	±0.7		
Δh	0	±1.0		
	W W0 W1 H H1 D0 t A c	Symbol Standard W 18.0 W0 6.0 W1 9.0 H 19.0 H1 23.5 D0 \$\phi 4.0 t 0.6 \$\Delta \cdot \c		

- · Provide an empty section for about three to five pieces in leading and end portions of the tape.
- · Provide an empty section in the fold-back portion.
- Provide marking in red to the E-side end of the board.

Outline Drawing

2SA2186-AN

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa