

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2.5V Drive Nch MOS FET

2SK3018

Structure

Silicon N-channel **MOSFET**

Applications

Interfacing, switching (30V, 100mA)

Features

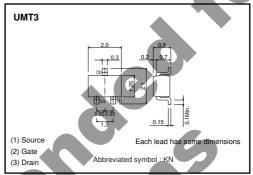
- 1) Low on-resistance.
- 2) Fast switching speed.
- 3) Low voltage drive (2.5V) makes this device ideal for portable equipment.
- 4) Drive circuits can be simple.
- 5) Parallel use is easy.

Packaging specifications

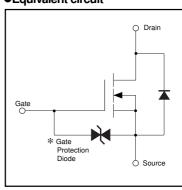
Туре	Package	Taping
	Code	T106
	Basic ordering unit (pieces)	3000
2SK301	8	0

Absolute maximum ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit	
Drain-source voltage	VDSS	30	V	
Gate-source voltage	Vgss	±20	V	
Drain current	Continuous	lo	±100	mA
Drain current	Pulsed	IDP*1	±400	mA
Total power dissipatio	P _D *2	200	mW	
Channel temperature	Tch	150	°C	
Storage temperature	Tstg	-55 to +150	°C	


- *****1 Pw≤10μs, Duty cycle≤1%
- *2 With each pin mounted on the recommended lands.

●Thermal resistance


Parameter	Symbol	Limits	Unit
Channel to ambient	Rth(ch-a) *	625	°C / W

* With each pin mounted on the recommended lands.

●External dimensions (Unit : mm)

●Equivalent circuit

*A protection diode is included between the gate and the source terminals to protect the diode against static electricity when the product is in use. Use a protection circuit when the fixed voltages are exceeded.

●Electrical characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Gate-source leakage	Igss	_	-	±1	μΑ	$V_{GS} = \pm 20V$, $V_{DS} = 0V$
Drain-source breakdown voltage	V _{(BR)DSS}	30	_	_	V	$I_D = 10\mu A$, $V_{GS} = 0V$
Zero gate voltage drain current	IDSS	_	-	1	μА	$V_{DS} = 30V$, $V_{GS} = 0V$
Gate threshold voltage	V _{GS(th)}	0.8	_	1.5	V	$V_{DS} = 3V, I_{D} = 100 \mu A$
Static drain-source on-state	RDS(on)	_	5	8	Ω	ID = 10mA, VGS = 4V
resistance	RDS(on)	_	7	13	Ω	I _D = 1mA, V _G s = 2.5V
Forward transfer admittance	Yfs	20	_	_	mS	V _{DS} = 3V, I _D = 10mA
Input capacitance	Ciss	_	13	_	pF	V _{DS} = 5V
Output capacitance	Coss	_	9	_	pF	V _G S = 0V
Reverse transfer capacitance	Crss	_	4	_	pF	f = 1MHz
Turn-on delay time	td(on)	-	15	-	ns	$I_D = 10 \text{mA}, V_{DD} = 5V$
Rise time	tr	_	35	_	ns	Vgs = 5V
Turn-off delay time	td(off)	_	80	_	ns	$R_L = 500\Omega$
Fall time	tf	_	80	_	ns	$R_G = 10\Omega$

•Electrical characteristic curves

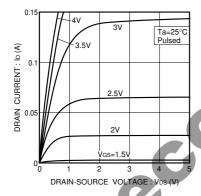


Fig.1 Typical output characteristics

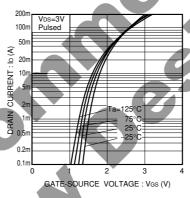


Fig.2 Typical transfer characteristics

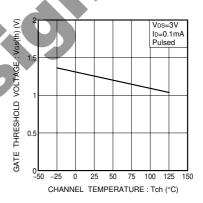


Fig.3 Gate threshold voltage vs. channel temperature

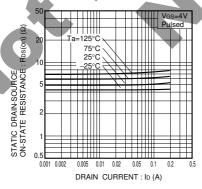


Fig.4 Static drain-source on-state resistance vs. drain current (I)

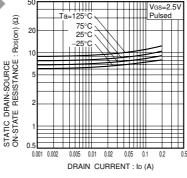


Fig.5 Static drain-source on-state resistance vs. drain current (II)

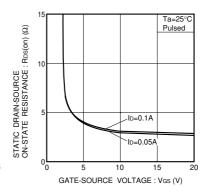


Fig.6 Static drain-source on-state resistance vs. gate-source voltage

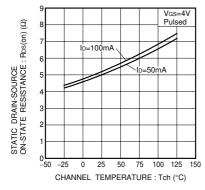


Fig.7 Static drain-source on-state resistance vs. channel temperature

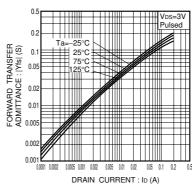


Fig.8 Forward transfer admittance vs. drain current

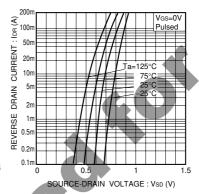


Fig.9 Reverse drain current vs. source-drain voltage (I)

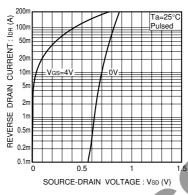


Fig.10 Reverse drain current vs. source-drain voltage (II)

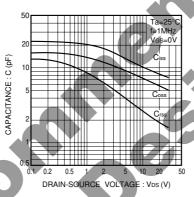


Fig.11 Typical capacitance vs. drain-source voltage

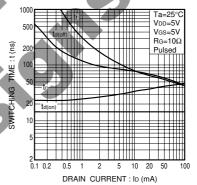


Fig.12 Switching characteristics (See Figures 13 and 14 for the measurement circuit and resultant waveforms)

Switching characteristics measurement circuit

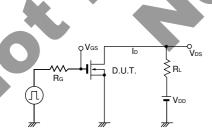


Fig.13 Switching time measurement circuit

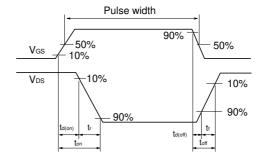


Fig.14 Switching time waveforms

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

