imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

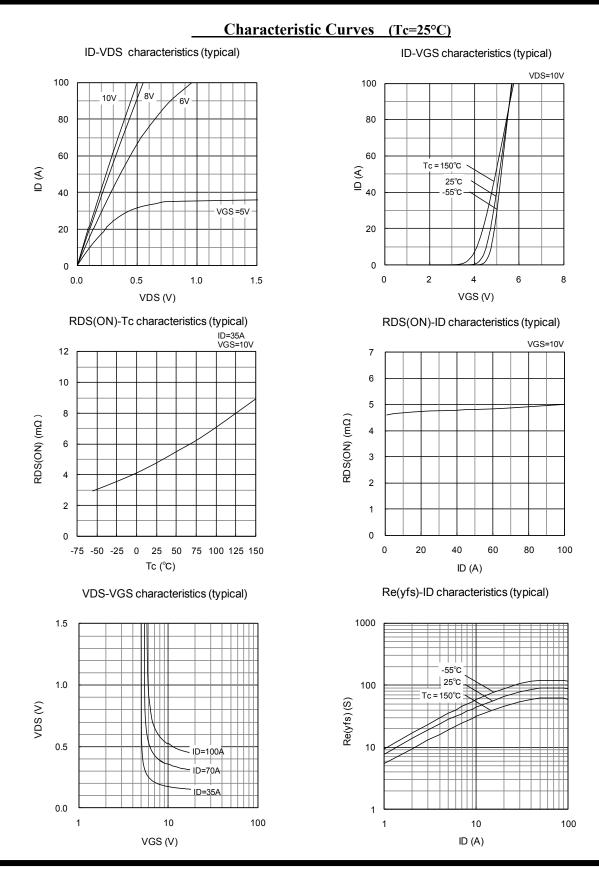
http://www.sanken-ele.co.jp

SanKen SANKEN ELECTRIC 2 S K 3 7 1 0

May. 2011

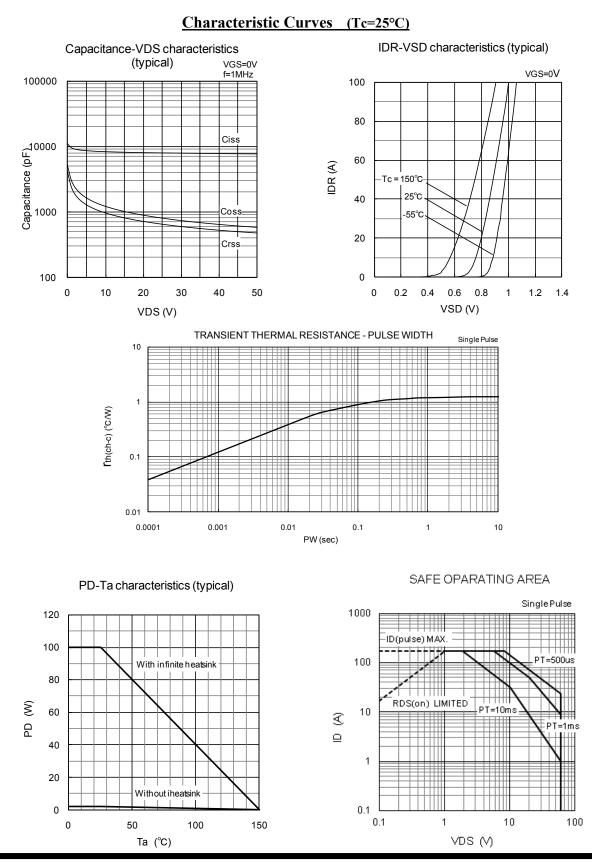
Features Package Low on-state resistance 5.0mΩ VGS=10V TO220S • Built-in gate protection diode ·SMD PKG **Applications** \cdot DC-DC converter • Mortar drive **Internal Equivalent Circuit** D(2) **Key Specifications** \cdot V(BR)DSS = 60V (ID=100uA) \cdot RDS(ON) = 5m Ω max (ID=35A / VGS=10V) G(1) S (3) Absolute maximum ratings (Ta=25°C) Characteristic Symbol Rating Unit 60 V V_{DSS} Drain to Source Voltage V_{GSS} V Gate to Source Voltage ± 20 Continuous Drain Current $I_{\rm D}$ ± 85 А I_{D(pulse)}^{*1} Pulsed Drain Current ± 170 А $100 (Tc=25^{\circ}C)$ W Maximum Power Dissipation $P_{\rm D}$ $E_{AS} \, {}^{\ast 2}$ Single Pulse Avalanche Energy 400 mJ Maximum avalanche current 25 А I_{AS} 150 °C **Channel Temperature** T_{ch} Storage Temperature T_{stg} $-55 \sim +150$ °C $dv/dt 1^{*2}$ Maximum Drain to Source dv/dt 1 0.5 V/ns $dv/dt 2^{*3}$ 3 V/ns Peak diode recovery dv/dt 2 di/dt*3 100 Peak diode recovery di/dt A/µs *1 PW \leq 100µsec. duty cycle \leq 1% *2 V_{DD} =20V, L=1mH, I_L=25A, unclamped, Rg=50 Ω , See Fig.1

*3 I_{SD} =25A, See Fig.2


The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

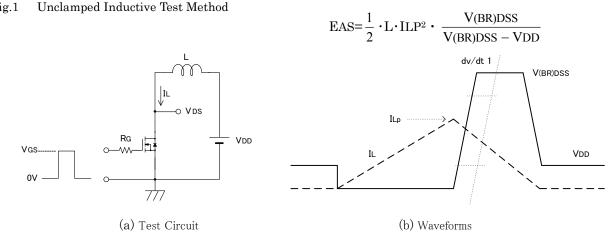
May. 2011

	Electric	al characteristics			(Ta-25°C)	
Characteristic	Symbol	Test Conditions	(Ta=25°C) Limits			
			MIN	ТҮР	MAX	Unit
Drain to Source breakdown Voltage	V _{(BR)DSS}	I _D =100μA V _{GS} =0V	60			V
Gate to Source Leakage Current	I _{GSS}	V _{GS} =±15V			± 10	μΑ
Drain to Source Leakage Current	I _{DSS}	V _{DS} =60V V _{GS} =0V			100	μΑ
Gate Threshold Voltage	V_{TH}	$V_{DS}=10V$, $I_{D}=1mA$	2.0	3.4	4.0	V
Forward Transconductance	Re(yfs)	$V_{DS}=10V$ $I_{D}=35A$	30	80		S
Static Drain to Source On-Resistance	R _{DS(ON)}	I _D =35A, V _{GS} =10V		5.0	6.0	mΩ
Input Capacitance	Ciss	$V_{DS}=10V$ $V_{GS}=0V$ f=1MHz		8400		
Output Capacitance	Coss			1200		pF
Reverse Transfer Capacitance	Crss			930		
Turn-On Delay Time	td(on)	$I_{D}=35A$ $V_{DD}=20V$ $R_{G}=22\Omega$ $R_{GS}=50\Omega$ $R_{L}=0.57\Omega$ $V_{GS}=10V$ See Fig.3		160		ns
Rise Time	tr			170		
Turn-Off Delay Time	td(off)			430		
Fall Time	tſ			185		
Source-Drain Diode Forward Voltage	V _{SD}	I _{SD} =50A V _{GS} =0V		0.9	1.5	V
Source-Drain Diode Reverse Recovery Time	trr	I _{SD} =25A di/dt=50A/µs		65		ns
Thermal Resistance Junction to Case	Rth(ch-c)				1.25	°C/W
Thermal Resistance Junction to Ambient	Rth(ch-a)				62.5	°C/W

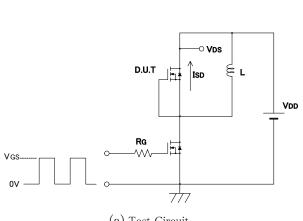

Copy Right: SANKEN ELECTRIC CO.,LTD.

May. 2011

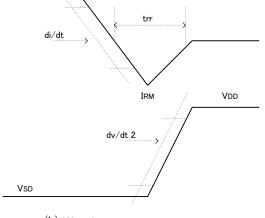
The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.


May. 2011

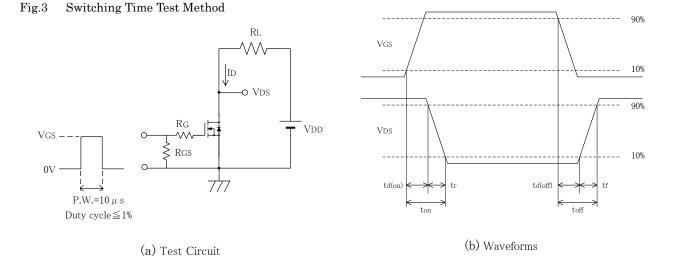
The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.


Fig.1 Unclamped Inductive Test Method

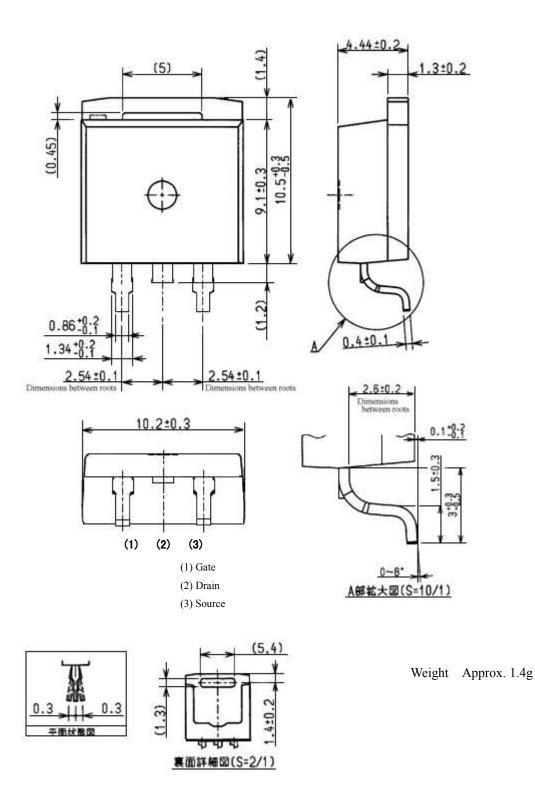
May. 2011



ISD



(a) Test Circuit



The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties that may result from its use.

May. 2011

TO220S

The information included herein is believed to be accurate and reliable. However, SANKEN ELECTRIC CO., LTD assumes no responsibility for its use ; nor for any infringements of patents or other rights of third parties that may result from its use.