
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Adafruit DS3231 Precision RTC Breakout
Created by lady ada

Last updated on 2016-09-13 04:42:12 PM UTC

2

3

7
7

7

8

9
9

10

11

14

15

15

16
18

20

20

20

20

Guide Contents

Guide Contents

Overview

Pinouts
Power Pins:

I2C Logic pins:

Other Pins:

Assembly
Prepare the header strip:

Add the breakout board:

And Solder!

Wiring & Test

Download RTCLib

First RTC Test

Load Demo
Reading the Time

Downloads

Datasheets &c

Schematic

Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 2 of 21

Overview

The datasheet for the DS3231 explains that this part is an "Extremely Accurate I²C-

Integrated RTC/TCXO/Crystal". And, hey, it does exactly what it says on the tin! This Real

Time Clock (RTC) is the most precise you can get in a small, low power package.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 3 of 21

Most RTC's use an external 32kHz timing crystal that is used to keep time with low current

draw. And that's all well and good, but those crystals have slight drift, particularly when the

temperature changes (the temperature changes the oscillation frequency very very very

slightly but it does add up!) This RTC is in a beefy package because the crystal is inside

the chip! And right next to the integrated crystal is a temperature sensor. That sensor

compensates for the frequency changes by adding or removing clock ticks so that the

timekeeping stays on schedule

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 4 of 21

This is the finest RTC you can get, and now we have it in a compact, breadboard-friendly

breakout. With a coin cell plugged into the back, you can get years of precision

timekeeping, even when main power is lost. Great for datalogging and clocks, or anything

where you need to really know the time.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 5 of 21

Comes as a fully assembled and tested breakout plus a small piece of header. You can

solder header in to plug it into a breadboard, or solder wires directly.

A coin cell is required to use the battery-backup capabilities! We don't include one by

default, to make shipping easier for those abroad, but we do stock them so pick one up or

use any CR1220 you have handy. (http://adafru.it/380)

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 6 of 21

Pinouts

Power Pins:

Vin - this is the power pin. Since the RTC can be powered from 2.3V to 5.5V power,

you do not need a regulator or level shifter for 3.3V or 5V logic/power. To power the

board, give it the same power as the logic level of your microcontroller - e.g. for a 5V

micro like Arduino, use 5V

GND - common ground for power and logic

I2C Logic pins:

SCL - I2C clock pin, connect to your microcontrollers I2C clock line. This pin has a

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 7 of 21

10K pullup resistor to Vin

SDA - I2C data pin, connect to your microcontrollers I2C data line. This pin has a 10K

pullup resistor to Vin

Other Pins:

BAT - this is the same connection as the positive pad of the battery. You can use this

if you want to power something else from the coin cell, or provide battery backup from

a different separate batery. VBat can be between 2.3V and 5.5V and the DS3231 will

switch over when main Vin power is lost

32K - 32KHz oscillator output. Open drain, you need to attach a pullup to read this

signal from a microcontroller pin

SQW - optional square wave or interrupt output. Open drain, you need to attach a

pullup to read this signal from a microcontroller pin

RST - This one is a little different than most RST pins, rather than being just an input,

it is designed to be used to reset an external device or indicate when main power is

lost. Open drain, but has an internal 50K pullup. The pullup keeps this pin voltage

high as long as Vin is present. When Vin drops and the chip switches to battery

backup, the pin goes low.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 8 of 21

Assembly

Prepare the header

strip:

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 9 of 21

Cut the strip to length if

necessary. It will be easier to

solder if you insert it into a

breadboard - long pins down

Add the breakout

board:

Place the breakout board over

the pins so that the short pins

poke through the breakout pads

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 10 of 21

And Solder!

Be sure to solder all pins for

reliable electrical contact.

(For tips on soldering, be sure to

check out our Guide to Excellent

Soldering (http://adafru.it/aTk)).

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 11 of 21

You're done! Check your solder

joints visually and continue onto

the next steps

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 12 of 21

Don't forget that the Real Time

Clock requires a battery backup.

A CR1220 size battery goes in

the back, make sure the +

symbol on the battery is visible

when you insert!

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 13 of 21

Wiring & Test

You can easily wire this breakout to any microcontroller, we'll be using an Arduino. For

another kind of microcontroller, just make sure it has I2C, then port the code - its pretty

simple stuff!

Oops i removed the Power wire from 5V to the Vin rail before taking this pic, don't forget it!

Connect Vin to the power supply, 3-5V is fine. Use the same voltage that the

microcontroller logic is based off of. For most Arduinos, that is 5V

Connect GND to common power/data ground

Connect the SCL pin to the I2C clock SCL pin on your Arduino. On an UNO & '328

based Arduino, this is also known as A5, on a Mega it is also known as digital 21 and

on a Leonardo/Micro, digital 3

Connect the SDA pin to the I2C data SDA pin on your Arduino. On an UNO & '328

based Arduino, this is also known as A4, on a Mega it is also known as digital 20 and

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 14 of 21

on a Leonardo/Micro, digital 2

The DS3231 has a default I2C address of 0x68 and cannot be changed

Download RTCLib

For the RTC library, we'll be using a fork of JeeLab's excellent RTC library RTClib

 (http://adafru.it/aX2)- a library for getting and setting time from an RTC (originally written by

JeeLab, our version is slightly different so please only use ours to make sure its

compatible!)

To begin reading data, you will need to download Adafruit's RTCLib from our github

repository (http://adafru.it/c7r). You can do that by visiting the github repo and manually

downloading or, easier, just click this button to download the zip

Download RTClib

http://adafru.it/cxm

Rename the uncompressed folder RTCLib and check that the RTCLib folder contains

RTCLib.cpp and RTCLib.h

Place the RTCLib library folder your arduinosketchfolder/libraries/ folder.

You may need to create the libraries subfolder if its your first library. Restart the IDE.

We also have a great tutorial on Arduino library installation at:

http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use (http://adafru.it/aYM)

First RTC Test

The first thing we'll demonstrate is a test sketch that will read the time from the RTC once

per second. We'll also show what happens if you remove the battery and replace it since

that causes the RTC to halt. So to start, remove the battery from the holder while the

Arduino is not powered or plugged into USB. Wait 3 seconds and then replace the battery.

This resets the RTC chip.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 15 of 21

Load Demo

Open up File->Examples->RTClib->ds3231 and upload to your Arduino wired up to the

RTC

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 16 of 21

Upload to your Arduino and check the serial console @ 9600 baud. After a few seconds,

you'll see the report that the Arduino noticed this is the first time the DS3231 has been

powered up, and will set the time based on the Arduino sketch.

Unplug your Arduino plus RTC for a few seconds (or minutes, or hours, or weeks) and plug

back in.

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 17 of 21

Next time you run it you won't get the same "RTC lost power" message, instead it will come

immediately and let you know the correct time!

From now on, you wont have to ever set the time again: the battery will last 5 or more

years.

Reading the Time

Now that the RTC is merrily ticking away, we'll want to query it for the time. Lets look at the

sketch again to see how this is done.

void loop () {

 DateTime now = rtc.now();

 Serial.print(now.year(), DEC);

 Serial.print('/');

 Serial.print(now.month(), DEC);

 Serial.print('/');

 Serial.print(now.day(), DEC);

 Serial.print(" (");

 Serial.print(daysOfTheWeek[now.dayOfTheWeek()]);

 Serial.print(") ");

 Serial.print(now.hour(), DEC);

 Serial.print(':');

 Serial.print(now.minute(), DEC);

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 18 of 21

 Serial.print(':');

 Serial.print(now.second(), DEC);

 Serial.println();

There's pretty much only one way to get the time using the RTClib, which is to call now(), a

function that returns a DateTime object that describes the year, month, day, hour, minute

and second when you called now().

There are some RTC libraries that instead have you call something like RTC.year() and

RTC.hour() to get the current year and hour. However, there's one problem where if you

happen to ask for the minute right at 3:14:59 just before the next minute rolls over, and

then the second right after the minute rolls over (so at 3:15:00) you'll see the time as

3:14:00 which is a minute off. If you did it the other way around you could get 3:15:59 - so

one minute off in the other direction.

Because this is not an especially unlikely occurrence - particularly if you're querying the

time pretty often - we take a 'snapshot' of the time from the RTC all at once and then we

can pull it apart into day() or second() as seen above. Its a tiny bit more effort but we think

its worth it to avoid mistakes!

We can also get a 'timestamp' out of the DateTime object by calling unixtime which counts

the number of seconds (not counting leapseconds) since midnight, January 1st 1970

 Serial.print(" since midnight 1/1/1970 = ");

 Serial.print(now.unixtime());

 Serial.print("s = ");

 Serial.print(now.unixtime() / 86400L);

 Serial.println("d");

Since there are 60*60*24 = 86400 seconds in a day, we can easily count days since then

as well. This might be useful when you want to keep track of how much time has passed

since the last query, making some math a lot easier (like checking if its been 5 minutes

later, just see if unixtime() has increased by 300, you dont have to worry about hour

changes).

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 19 of 21

Downloads

Datasheets &c

Maxim product page for the DS3231 (http://adafru.it/ldy)

Datasheet (http://adafru.it/ldA)

EagleCAD PCB files on GitHub (http://adafru.it/ohE)

Fritzing object available in the Adafruit Fritzing Library (http://adafru.it/aP3)

Schematic

Fabrication Print

Dims in inches

© Adafruit Industries https://learn.adafruit.com/adafruit-ds3231-precision-rtc-breakout Page 20 of 21

© Adafruit Industries Last Updated: 2016-09-13 04:42:11 PM UTC Page 21 of 21

	Contact us
	Guide Contents
	Overview
	Pinouts
	Power Pins:
	I2C Logic pins:
	Other Pins:

	Assembly
	Prepare the header strip:
	Add the breakout board:
	And Solder!

	Wiring & Test
	Download RTCLib
	First RTC Test
	Load Demo
	Reading the Time

	Downloads
	Datasheets &c
	Schematic
	Fabrication Print

