imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

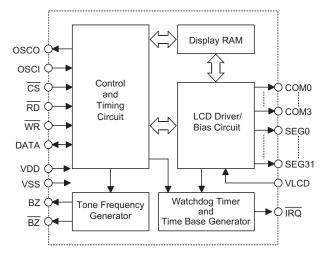
Features

- Operating voltage: 2.4V~5.2V
- Built-in 256kHz RC oscillator
- External 32.768kHz crystal or 256kHz frequency source input
- Selection of 1/2 or 1/3 bias, and selection of 1/2 or 1/3 or 1/4 duty LCD applications
- Internal time base frequency sources
- Two selectable buzzer frequencies (2kHz/4kHz)
- Power down command reduces power consumption
- Built-in time base generator and WDT
- Time base or WDT overflow output
- 8 kinds of time base/WDT clock sources
- 32×4 LCD driver

- Built-in 32×4 bit display RAM
- 3-wire serial interface
- Internal LCD driving frequency source
- Software configuration feature
- Data mode and command mode instructions
- R/W address auto increment
- Three data accessing modes
- VLCD pin for adjusting LCD operating voltage
- HT1621: 48-pin SSOP package HT1621B: 48-pin DIP/SSOP/LQFP package HT1621D: 28-pin SKDIP package HT1621G: Gold bumped chip

General Description

The HT1621 is a 128 pattern (32×4), memory mapping, and multi-function LCD driver. The S/W configuration feature of the HT1621 makes it suitable for multiple LCD applications including LCD modules and display sub-


systems. Only three or four lines are required for the interface between the host controller and the HT1621. The HT1621 contains a power down command to reduce power consumption.

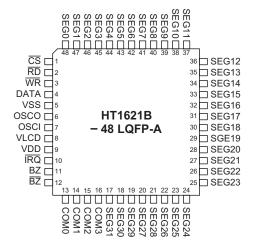
HT162X	HT1620	HT1621	HT1622	HT16220	HT1623	HT1625	HT1626
СОМ	4	4	8	8	8	8	16
SEG	32	32	32	32	48	64	48
Built-in Osc.	_	\checkmark	1		\checkmark	1	\checkmark
Crystal Osc.	√		_	\checkmark	\checkmark	1	\checkmark

Selection Table

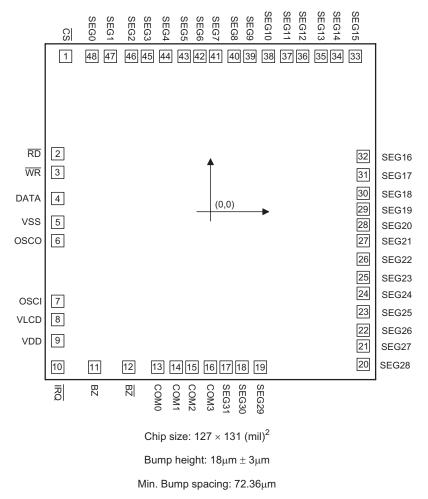
Block Diagram

Note: CS: Chip selection

BZ, $\overline{\text{BZ}}$: Tone outputs


WR, RD, DATA: Serial interface

COM0~COM3, SEG0~SEG31: LCD outputs


IRQ: Time base or WDT overflow output

Pin Assignment

SEG7 1	48 🗆 SEG8	SEG7 1	48 🗆 SEG8		
SEG6 2	47 🗆 SEG9	SEG6 2	47 🗖 SEG9		
SEG5 🗖 3	46 🗆 SEG10	SEG5 🗖 3	46 🗆 SEG10		
SEG4 🗖 4	45 🗆 SEG11	SEG4 🗖 4	45 🗆 SEG11		
SEG3 🗖 5	44 🗆 SEG12	SEG3 🗖 5	44 🗅 SEG12		
SEG2 🗖 6	43 🗆 SEG13	SEG2 🗖 6	43 🗆 SEG13		
SEG1 🗖 7	42 🗆 SEG14	SEG1 🗖 7	42 🗖 SEG14		
SEG0 🗖 8	41 🗆 SEG15	SEG0 🗖 8	41 🗖 SEG15		
CS 🗖 9	40 🗆 SEG16	CS 🗖 9	40 🗆 SEG16		
	39 🗆 SEG17		39 🗆 SEG17		7
	38 🗆 SEG18		38 🗆 SEG18	SEG5	28 🗆 SEG7
DATA 🗖 12	37 🗆 SEG19	DATA 🗖 12	37 🗆 SEG19	SEG3 🗖 2	27 🗖 SEG9
VSS 🗖 13	36 🗆 SEG20	VSS 🗖 13	36 🗆 SEG20	SEG1 🗖 3	26 🖵 SEG11
OSCO 🗖 14	35 🗆 SEG21	OSCO 🗖 14	35 🗆 SEG21	CS 🗖 4	25 🗆 SEG13
NC 🗖 15	34 🗆 SEG22	OSCI 🗖 15	34 🗆 SEG22		24 🗆 SEG15
OSCI 🗖 16	33 🗆 SEG23	VLCD C 16	33 🗆 SEG23	WR C 6	23 🗆 SEG17
	32 🗆 SEG24		32 🗆 SEG24		22 🖵 SEG19
	31 🗆 SEG25	IRQ 🗖 18	31 🗆 SEG25	VSS □ 8	21 🗆 SEG21
BZ 🗖 19	30 🗆 SEG26	BZ 🗖 19	30 🗆 SEG26		20 🖵 SEG23
BZ C 20	29 🗆 SEG27	BZ C 20	29 🗆 SEG27		19 🖵 SEG25
СОМ0 🗖 21	28 🗆 SEG28	СОМ0 🔤 21	28 🗆 SEG28		18 🗆 SEG27
COM1 22	27 🗆 SEG29		27 🗆 SEG29	BZ 🗖 12	17 🗆 SEG29
СОМ2 🗖 23	26 🗆 SEG30		26 🗆 SEG30	СОМ0 🗖 13	16 🗆 SEG31
СОМЗ 🗖 24	25 🗆 SEG31	СОМЗ 🗖 24	25 🗆 SEG31	СОМ1 🗖 14	15 🗆 сом2
HT1	621	HT16	21B	HT16	521D
- 48 SS		- 48 SSOF		-28 Sk	
40 00		40 0001		20 01	

Pad Assignment

Bump size: $96.042 \times 96.042 \mu m^2$

* The IC substrate should be connected to VDD in the PCB layout artwork.

Pad Coordinates

Pad Coordinat	es				Unit: mil
Pad No.	Х	Y	Pad No.	Х	Y
1	-55.04	59.46	25	58.14	-25.29
2	-58.52	22.18	26	58.14	-18.66
3	-58.52	15.56	27	58.14	-11.94
4	-58.52	5.36	28	58.14	-5.31
5	-58.52	-4.51	29	58.14	1.32
6	-58.52	-11.14	30	58.14	7.95
7	-58.52	-34.76	31	58.14	14.58
8	-58.52	-41.90	32	58.14	21.21
9	-58.52	-49.13	33	55.55	59.46
10	-58.52	-59.08	34	48.92	59.46
11	-44.07	-59.08	35	42.29	59.46
12	-31.58	-59.08	36	35.66	59.46
13	-20.70	-59.08	37	29.03	59.46
14	-13.98	-59.08	38	22.40	59.46
15	-7.05	-59.08	39	15.77	59.46
16	-0.34	-59.08	40	9.14	59.46
17	6.33	-59.08	41	2.42	59.46
18	12.96	-59.08	42	-4.21	59.46
19	19.59	-59.08	43	-10.84	59.46
20	58.14	-58.44	44	-17.47	59.46
21	58.14	-51.81	45	-24.10	59.46
22	58.14	-45.18	46	-30.73	59.46
23	58.14	-38.55	47	-38.17	59.46
24	58.14	-31.92	48	-45.39	59.46

Pad Description

Pad No.	Pad Name	I/O	Function
1	cs	I	Chip selection input with pull-high resistor When the \overline{CS} is logic high, the data and command read from or written to the HT1621 are disabled. The serial interface circuit is also reset. But if \overline{CS} is at logic low level and is input to the \overline{CS} pad, the data and command trans- mission between the host controller and the HT1621 are all enabled.
2	RD	I	READ clock input with pull-high resistor Data in the RAM of the HT1621 are clocked out on the falling edge of the $\overline{\text{RD}}$ signal. The clocked out data will appear on the DATA line. The host control- ler can use the next rising edge to latch the clocked out data.
3	WR	I	WRITE clock input with pull-high resistor Data on the DATA line are latched into the HT1621 on the rising edge of the WR signal.
4	DATA	I/O	Serial data input/output with pull-high resistor
5	VSS	_	Negative power supply, ground
7	OSCI	I	The OSCI and OSCO pads are connected to a 32.768kHz crystal in order to
6	osco	0	generate a system clock. If the system clock comes from an external clock source, the external clock source should be connected to the OSCI pad. But if an on-chip RC oscillator is selected instead, the OSCI and OSCO pads can be left open.
8	VLCD	Ι	LCD power input
9	VDD	_	Positive power supply
10	ĪRQ	0	Time base or WDT overflow flag, NMOS open drain output
11, 12	BZ, BZ	0	2kHz or 4kHz tone frequency output pair
13~16	COM0~COM3	0	LCD common outputs
48~17	SEG0~SEG31	0	LCD segment outputs

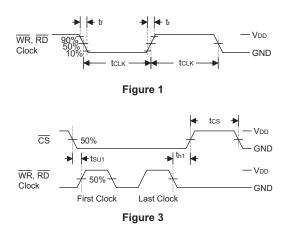
Absolute Maximum Ratings

Supply VoltageV_SS^-0.3V to V_SS^+5.5V	Storage Temperature50°C to 125°C
Input VoltageV_SS-0.3V to V_DD+0.3V	Operating Temperature25°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

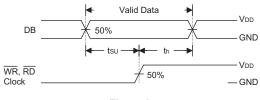
Ta=25°C

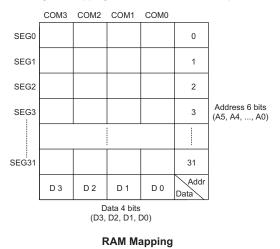

Complete L	Demonster		Test Conditions	Min	T	Mari	11 14
Symbol	Parameter	V_{DD}	Conditions	win.	тур.	Max. 5.2 300 600 120 240 200 400 5 10 0.6 1.0 3.0 5.0 —	Unit
V _{DD}	Operating Voltage		_	2.4	_	5.2	V
		3V	No load/LCD ON		150	300	μA
I _{DD1}	Operating Current	VDD Conditions Min. Typ. Max. 2.4 5.2 3V No load/LCD ON 150 300 5V On-chip RC oscillator 300 600 3V No load/LCD ON 60 120 5V Crystal oscillator 100 200 5V No load/LCD ON 100 200 5V External clock source 0.1 5 5V No load, Power down mode 0.3 10 3V DATA, WR, CS, RD 0 1.0 3V DATA, WR, CS, RD 2.4 3.0 5V VoL=0.3V 0.5 1.2 3V VoL=0.3V 0.5 1.2 3V VoL=0.5V 1.3 2.6 - 3V VoL=0.3V 80 150 - 3V VoL=0.3V 80	600	μA			
		3V	No load/LCD ON		60	120	μA
I _{DD2}	Operating Current	5V	Crystal oscillator	_	120	240	μA
1	On a resting a Command	3V	DD Conditions Min. Typ. Max - - - 5. V No load/LCD ON - 150 30 V On-chip RC oscillator - 300 60 V No load/LCD ON - 60 12 V No load/LCD ON - 100 20 V No load/LCD ON - 100 20 V No load/LCD ON - 100 20 V No load, Power down mode - 0.1 5 V No load, Power down mode - 0.3 1 V DATA, WR, CS, RD 0 - 1.3 V DATA, WR, CS, RD 0.5 1.2 - V Vol=0.3V 0.5 1.2 - V Vol=0.3V 0.5 1.2 - V Vol=0.3V 80 150 - V Vol=0.3V 80 150 -	200	μA		
I _{DD3}	Operating Current	5V			200	400	μA
		3V			0.1	5	μA
I _{STB}	Standby Current	VDD Conditions Min. Typ. Max. 2.4 5.2 3V No load/LCD ON 150 300 5V On-chip RC oscillator 300 600 3V No load/LCD ON 60 120 5V Crystal oscillator 100 200 5V No load/LCD ON 100 200 5V External clock source 0.1 5 5V No load, Power down mode 0.3 10 3V DATA, WR, CS, RD 0 1.0 3V DATA, WR, CS, RD 0.5 1.2 3V VoL=0.3V 0.5 1.2 5V VoL=0.5V 1.3 2.6 - 3V VoH=2.7V -0.4 -0.8 - 5V VoH=4.5V -0.9 -1.8 - 3V VoH=2.7V -80	10	μA			
M	Level Level Vellerer	3V		Conditions 2.4 $-$ 5.2 $-$ 150 300 $-$ 150 300 $-$ 300 600 $-$ 300 600 $-$ 300 600 $-$ 300 600 $-$ 300 600 $-$ 120 240 $-$ 120 240 $-$ 100 200 $-$ 100 200 $-$ 0.1 5 $-$ 0.3 10 $-$ 0.3 10 $-$ 0.3 10 $-$ 0.3 10 $-$ 0.3 10 $-$ 0.3 10 $-$ 0.3 10 $-$ 0.3 10 $-$ 0.4 - $-$ 0.5 1.2 $-$ 0.5 1.2 $-$ 0.5	V		
VIL	Input Low Voltage	5V	DATA, WR, CS, RD		1.0	V	
M	Level I Patrix Matter as	3V		2.4	_	3.0	
VIH	Input High Voltage	5V	DATA, WR, CS, RD	4.0	_	5.0	V
1		3V	V _{OL} =0.3V	0.5	1.2	- 0.6 - 1.0 - 3.0 - 5.0 1.2 - 2.6 - 0.8 - 1.8 -	mA
I _{OL1}	DATA, BZ, BZ, IRQ	5V	V _{OL} =0.5V	1.3	2.4 — 5.2 — 150 300 — 300 600 — 60 120 — 120 240 — 120 240 — 120 240 — 120 240 — 120 400 — 0.1 5 — 0.3 10 0 — 0.6 0 — 0.6 0 — 3.0 4.0 — 3.0 4.0 — 5.0 0.5 1.2 — 1.3 2.6 — -0.9 -1.8 — -0.9 -1.8 — -0.9 1.8 — 150 250 — -120 200 — -120 200 — -120 200 — -40 -70<	mA	
1		3V	V _{OH} =2.7V	-0.4	.4 5.2 - 150 300 - 300 600 - 60 120 - 120 240 - 120 240 - 120 240 - 100 200 - 0.1 5 - 0.1 5 - 0.3 10 0 0.6 0 0.6 0 5.0 0.0 5.0 .5 1.2 .3 2.6 0.4 -0.8 0.9 -1.8 0.9 -1.8 0.0 150 0.0 -200 0.0 120 0.0 120 0.0 -70 0.0 -70 $0.$	mA	
I _{OH1}	DATA, BZ, BZ	5V	V _{OH} =4.5V	-0.9	-1.8	_	mA
1	LOD Common Sink Common	3V	V _{OL} =0.3V	80	150	5.2 150 300 300 600 60 120 120 240 100 200 200 400 0.1 5 0.3 10 0.6 1.0 5.0 1.2 2.6 -0.8 -1.8 150 250 -120 -120 -200 120 200 -70 -100 80 150	μA
I _{OL2}	LCD Common Sink Current	5V	VDD Conditions Min. Typ. I 2.4 150 3V No load/LCD ON 300 1 3V No load/LCD ON 60 1 5V On-chip RC oscillator 100 1 5V Crystal oscillator 100 1 5V External clock source 0.1 1 5V External clock source 0.3 1 3V No load, Power down mode 0.3 1 5V DATA, WR, CS, RD 0 1 3V DATA, WR, CS, RD 0.5 1.2 1 3V V_0L=0.3V 0.5 1.2 1 3V V_0L=0.3V 0.5 1.2 1 3V V_0L=0.3V -0.9 -1.8 1 3V V_0L=0.3V 80 150 1 5V V_0L=0.5V <t< td=""><td>_</td><td>μA</td></t<>	_	μA		
1		3V	V _{OH} =2.7V	-80	-120	150 300 300 600 60 120 120 240 100 200 200 400 0.1 5 0.3 10 0.6 1.0 5.0 1.2 2.6 -0.8 -1.8 150 250 -120 200 120 120 200 120 200 120 200 120 -100 80 150	μA
IOH2	LCD Common Source Current	5V	V _{OH} =4.5V	-120	-200		μA
1	LOD Comment Sink Comment	3V	V _{OL} =0.3V	60	120	_	μA
I _{OL3}	LCD Segment Sink Current	5V			200	_	μA
1		3V	V _{OH} =2.7V	-40	-70		μA
I _{OH3}	LCD Segment Source Current	5V	V _{OH} =4.5V	-70	-100		μA
D	Dull high Desister	3V		40	80	150	kΩ
R _{PH}	Pull-high Resistor	5V	DATA, WK, CS, KD	$\begin{array}{c cccccc} 0 & & 1.0 \\ 2.4 & & 3.0 \\ 4.0 & & 5.0 \\ 0.5 & 1.2 & \\ 1.3 & 2.6 & \\ -0.4 & -0.8 & \\ -0.9 & -1.8 & \\ 80 & 150 & \\ 80 & 150 & \\ 150 & 250 & \\ 150 & 250 & \\ -120 & -200 & \\ -120 & -200 & \\ 120 & 200 & \\ 120 & 200 & \\ 120 & 200 & \\ -40 & -70 & \\ -40 & -70 & \\ 40 & 80 & 150 \end{array}$	100	kΩ	

A.C. Characteristics

Ta=25°C

Symbol	Parameter		Test Conditions	Min	Tun	Mox	Unit
Symbol	Parameter	V_{DD}	Conditions	win.	тур.	wax.	Unit
f _{SYS1}	System Clock		On-chip RC oscillator	_	256		kHz
f _{SYS2}	System Clock		Crystal oscillator	_	32.768		kHz
f _{SYS3}	System Clock	_	External clock source		256	_	kHz
		_	On-chip RC oscillator	_	f _{SYS1} /1024	_	Hz
f_{LCD}	LCD Clock	_	Crystal oscillator	_	f _{SYS2} /128	_	Hz
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hz				
t _{COM}	LCD Common Period		n: Number of COM		n/f _{LCD}	_	S
4		3V			150		kHz
f _{CLK1}	Serial Data Clock (WR pin)	5V	Min. Typ. Max. Conditions — 256 — Crystal oscillator — 32.768 — External clock source — 256 — Dn-chip RC oscillator — 256 — External clock source — 150 — Dn-chip RC oscillator — f _{SYS2} /128 — Crystal oscillator — f _{SYS2} /128 — Crystal oscillator — f _{SYS3} /1024 — Crystal oscillator — f _{SYS3} /1024 — External clock source — f _{SYS3} /1024 — Tryp. Min. Min. The provide mode — Duty cycle 50% — 150 — — Duty cycle 50% — 2.0 or 4.0 — Duty cycle 50% — 2.50 — Duty cycle 50% — 2.50 — Duty cycle 50% — 2.0 or 4.0 — Discourd	kHz			
(3V				75	kHz
f _{CLK2}	Serial Data Clock (RD pin)	5V	Duty cycle 50%			150	kHz
f TONE	Tone Frequency		On-chip RC oscillator		2.0 or 4.0		kHz
t _{CS}	Serial Interface Reset Pulse Width (Figure 3)		cs	_	250		ns
		0)/	Write mode	3.34			
1	WR, RD Input Pulse Width	3V	Read mode	6.67		_	μS
t _{CLK}	(Figure 1)		Write mode	1.67		_	
		5V	Read mode	3.34			μS
t _r , t _f	Rise/Fall Time Serial Data Clock Width (Figure 1)		_		120		ns
t _{su}	$\frac{\text{Setup Time for DATA to }\overline{\text{WR}},}{\overline{\text{RD}}\text{ Clock Width (Figure 2)}}$		_		120		ns
t _h	Hold Time for DATA to \overline{WR} , \overline{RD} Clock Width (Figure 2)		_	_	120		ns
t _{su1}	Setup Time for \overline{CS} to \overline{WR} , \overline{RD} Clock Width (Figure 3)		_	_	100	_	ns
t _{h1}	Hold Time for \overline{CS} to \overline{WR} , \overline{RD} Clock Width (Figure 3)		_	_	100	_	ns




Figure 2

Functional Description

Display Memory – RAM

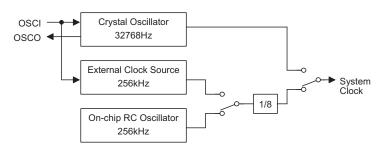
The static display memory (RAM) is organized into 32×4 bits and stores the displayed data. The contents of the RAM are directly mapped to the contents of the LCD driver. Data in the RAM can be accessed by the READ, WRITE, and READ-MODIFY-WRITE commands. The following is a mapping from the RAM to the LCD pattern:

System Oscillator

The HT1621 system clock is used to generate the time base/Watchdog Timer (WDT) clock frequency, LCD driving clock, and tone frequency. The source of the clock may be from an on-chip RC oscillator (256kHz), a crystal oscillator (32.768kHz), or an external 256kHz clock by the S/W setting. The configuration of the system oscillator is as shown. After the SYS DIS command is executed, the system clock will stop and the LCD bias generator will turn off. That command is, however, available only for the on-chip RC oscillator or for the crystal oscillator. Once the system clock stops, the LCD display will become blank, and the time base/WDT lose its function as well.

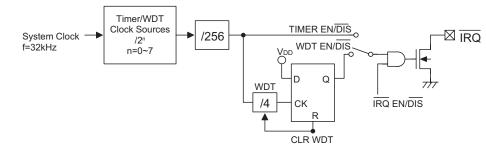
The LCD OFF command is used to turn the LCD bias generator off. After the LCD bias generator switches off by issuing the LCD OFF command, using the SYS DIS

command reduces power consumption, serving as a system power down command. But if the external clock source is chosen as the system clock, using the SYS DIS command can neither turn the oscillator off nor carry out the power down mode. The crystal oscillator option can be applied to connect an external frequency source of 32kHz to the OSCI pin. In this case, the system fails to enter the power down mode, similar to the case in the external 256kHz clock source operation. At the initial system power on, the HT1621 is at the SYS DIS state.


Time Base and Watchdog Timer (WDT)

The time base generator is comprised by an 8-stage count-up ripple counter and is designed to generate an accurate time base. The watch dog timer (WDT), on the other hand, is composed of an 8-stage time base generator along with a 2-stage count-up counter, and is designed to break the host controller or other subsystems from abnormal states such as unknown or unwanted jump, execution errors, etc. The WDT time-out flag. The outputs of the time base generator and of the WDT time-out flag can be connected to the IRQ output by a command option. There are totally eight frequency sources available for the time base generator and the WDT clock. The frequency is calculated by the following equation.

$$f_{WDT} = \frac{32kHz}{2^n}$$


where the value of n ranges from 0 to 7 by command options. The 32kHz in the above equation indicates that the source of the system frequency is derived from a crystal oscillator of 32.768kHz, an on-chip oscillator (256kHz), or an external frequency of 256kHz.

If an on-chip oscillator (256kHz) or an external 256kHz frequency is chosen as the source of the system frequency, the frequency source is by default prescaled to 32kHz by a 3-stage prescaler. Employing both the time base generator and the WDT related commands, one should be careful since the time base generator and WDT share the same 8-stage counter. For example, invoking the WDT DIS command disables the time base generator whereas executing the WDT EN command

System Oscillator Configuration

Timer and WDT Configurations

not only enables the time base generator but activates the WDT time-out flag output (connect the WDT time-out flag to the IRQ pin). After the TIMER EN command is transferred, the WDT is disconnected from the IRQ pin, and the output of the time base generator is connected to the IRQ pin. The WDT can be cleared by executing the CLR WDT command, and the contents of the time base generator is cleared by executing the CLR WDT or the CLR TIMER command. The CLR WDT or the CLR TIMER command should be executed prior to the WDT EN or the TIMER EN command respectively. Before executing the IRQ EN command the CLR WDT or CLR TIMER command should be executed first. The CLR TIMER command has to be executed before switching from the WDT mode to the time base mode. Once the WDT time-out occurs, the IRQ pin will stay at a logic low level until the CLR WDT or the IRQ DIS command is issued. After the IRQ output is disabled the IRQ pin will remain at the floating state. The IRQ output can be enabled or disabled by executing the IRQ EN or the IRQ DIS command, respectively. The IRQ EN makes the output of the time base generator or of the WDT time-out flag appear on the IRQ pin. The configuration of the time base generator along with the WDT are as shown. In the case of on-chip RC oscillator or crystal oscillator, the power down mode can reduce power consumption since the oscillator can be turned on or off by the corresponding system commands. At the power down mode the time base/WDT loses all its functions.

On the other hand, if an external clock is selected as the source of system frequency the SYS DIS command turns out invalid and the power down mode fails to be carried out. That is, after the external clock source is selected, the HT1621 will continue working until system

power fails or the external clock source is removed. After the system power on, the IRQ will be disabled.

Tone Output

A simple tone generator is implemented in the HT1621. The tone generator can output a pair of differential driving signals on the BZ and $\overline{\text{BZ}}$, which are used to generate a single tone. By executing the TONE4K and TONE2K commands there are two tone frequency outputs selectable. The TONE4K and TONE2K commands set the tone frequency to 4kHz and 2kHz, respectively. The tone output can be turned on or off by invoking the TONE ON or the TONE OFF command. The tone outputs, namely BZ and $\overline{\text{BZ}}$, are a pair of differential driving outputs used to drive a piezo buzzer. Once the system is disabled or the tone output is inhibited, the BZ and the $\overline{\text{BZ}}$ outputs will remain at low level.

LCD Driver

The HT1621 is a 128 (32×4) pattern LCD driver. It can be configured as 1/2 or 1/3 bias and 2 or 3 or 4 commons of LCD driver by the S/W configuration. This feature makes the HT1621 suitable for multiply LCD applications. The LCD driving clock is derived from the system clock. The value of the driving clock is always 256Hz even when it is at a 32.768kHz crystal oscillator frequency, an on-chip RC oscillator frequency, or an external frequency. The LCD corresponding commands are summarized in the table.

The bold form of 1 0 0, namely **1 0 0**, indicates the command mode ID. If successive commands have been issued, the command mode ID except for the first command, will be omitted. The LCD OFF command turns the LCD display off by disabling the LCD bias gen-

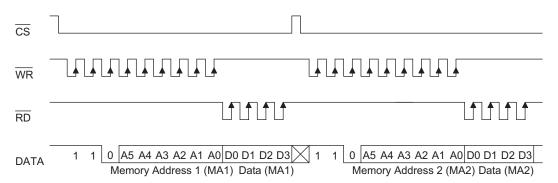
Name	Command Code	Function
LCD OFF	100 0000010X	Turn off LCD outputs
LCD ON	100 0000011X	Turn on LCD outputs
BIAS & COM	100 0010abXcX	c=0: 1/2 bias option c=1: 1/3 bias option ab=00: 2 commons option ab=01: 3 commons option ab=10: 4 commons option

erator. The LCD ON command, on the other hand, turns the LCD display on by enabling the LCD bias generator. The BIAS and COM are the LCD panel related commands. Using the LCD related commands, the HT1621 can be compatible with most types of LCD panels.

Command Format

The HT1621 can be configured by the S/W setting. There are two mode commands to configure the HT1621 resources and to transfer the LCD display data. The configuration mode of the HT1621 is called command mode, and its command mode ID is **100**. The command mode consists of a system configuration command, a system frequency selection command, a LCD configuration command, a tone frequency selection command, a timer/WDT setting command, and an operating command. The data mode, on the other hand, includes READ, WRITE, and READ-MODIFY-WRITE operations. The following are the data mode IDs and the command mode ID:

Operation	Mode	ID
Read	Data	110
Write	Data	101
Read-Modify-Write	Data	101
Command	Command	100

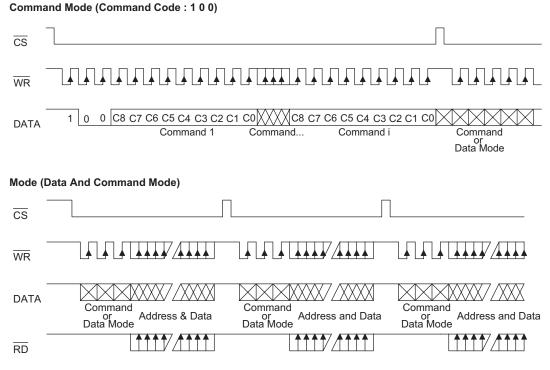

The mode command should be issued before the data or command is transferred. If successive commands have been issued, the command mode ID, namely **100**, can be omitted. While the system is operating in the non-successive command or the non-successive address data mode, the $\overline{\text{CS}}$ pin should be set to "1" and the previous operation mode will be reset also. Once the $\overline{\text{CS}}$ pin returns to "0" a new operation mode ID should be issued first.

Interfacing

Only four lines are required to interface with the HT1621. The CS line is used to initialize the serial interface circuit and to terminate the communication between the host controller and the HT1621. If the \overline{CS} pin is set to 1. the data and command issued between the host controller and the HT1621 are first disabled and then initialized. Before issuing a mode command or mode switching, a high level pulse is required to initialize the serial interface of the HT1621. The DATA line is the serial data input/output line. Data to be read or written or commands to be written have to be passed through the DATA line. The \overline{RD} line is the READ clock input. Data in the RAM are clocked out on the falling edge of the RD signal, and the clocked out data will then appear on the DATA line. It is recommended that the host controller read in correct data during the interval between the rising edge and the next falling edge of the \overline{RD} signal. The WR line is the WRITE clock input. The data, address, and command on the DATA line are all clocked into the HT1621 on the rising edge of the WR signal. There is an optional IRQ line to be used as an interface between the host controller and the HT1621. The IRQ pin can be selected as a timer output or a WDT overflow flag output by the S/W setting. The host controller can perform the time base or the WDT function by being connected with the IRQ pin of the HT1621.

Timing Diagrams

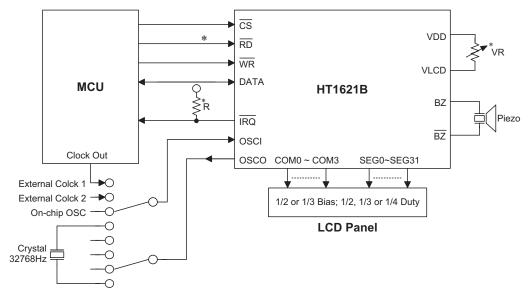
READ Mode (Command Code : 1 1 0)



READ Mode (Successive Address Reading)

CS	
\overline{WR}	
RD	
DATA	1 1 0 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 D0 Memory Address (MA) Data (MA) Data (MA+1) Data (MA+2) Data (MA+3)
WRITE	Mode (Command Code : 1 0 1)
CS	
\overline{WR}	
DATA	1 0 1 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 1 0 1 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 Memory Address 1 (MA1) Data (MA1) Memory Address 2 (MA2) Data (MA2)
WRITE	Mode (Successive Address Writing)
$\overline{\text{CS}}$	
\overline{WR}	
DATA	1 0 1 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 D0 D1
Read-N	Iodify-Write Mode (Command Code : 1 0 1)
CS	Γ
WR	
RD	

Read-Modify-Write Mode (Successive Address Accessing) CS $\mathbf{A} \mid \mathbf{A} \mid \mathbf{A} \mid \mathbf{A}$ WR Î **↑** | **↑** | Ť `|↑ RD 0 1 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 D0 1 DATA Memory Address (MA) Data (MA) Data (MA) Data (MA+1) Data (MA+1) Data (MA+2)



It is recommended that the host controller should read in the data from the DATA line between the rising edge Note: of the $\overline{\text{RD}}$ line and the falling edge of the next $\overline{\text{RD}}$ line.

Application Circuits

Host Controller with an HT1621 Display System

Note: The connection of IRQ and RD pin can be selected depending on the requirement of the MCU. The voltage applied to V_{LCD} pin must be lower than V_{DD}.
Adjust VR to fit LCD display, at V_{DD}=5V, V_{LCD}=4V, VR=15kΩ±20%.
Adjust R (external pull-high resistance) to fit user⊡s time base clock.

Name	ID	Command Code	D/C	Function	Def.
READ	110	A5A4A3A2A1A0D0D1D2D3	D	Read data from the RAM	
WRITE	101	A5A4A3A2A1A0D0D1D2D3	D	Write data to the RAM	
READ-MODIFY- WRITE	101	A5A4A3A2A1A0D0D1D2D3	D	READ and WRITE to the RAM	
SYS DIS	100	0000-0000-X	с	Turn off both system oscillator and LCD bias generator	Yes
SYS EN	100	0000-0001-X	С	Turn on system oscillator	
LCD OFF	100	0000-0010-X	С	Turn off LCD bias generator	Yes
LCD ON	100	0000-0011-X	С	Turn on LCD bias generator	
TIMER DIS	100	0000-0100-X	С	Disable time base output	
WDT DIS	100	0000-0101-X	С	Disable WDT time-out flag output	
TIMER EN	100	0000-0110-X	С	Enable time base output	
WDT EN	100	0000-0111-X	С	Enable WDT time-out flag output	
TONE OFF	100	0000-1000-X	С	Turn off tone outputs	Yes
TONE ON	100	0000-1001-X	С	Turn on tone outputs	
CLR TIMER	100	0000-11XX-X	С	Clear the contents of time base generator	
CLR WDT	100	0000-111X-X	С	Clear the contents of WDT stage	
XTAL 32K	100	0001-01XX-X	С	System clock source, crystal oscillator	

Command Summary

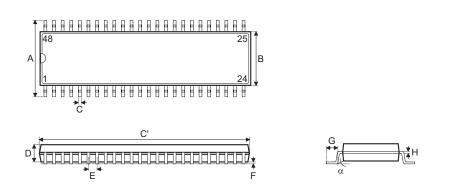
Name	ID	Command Code	D/C	Function	Def.
RC 256K	100	0001-10XX-X	С	System clock source, on-chip RC oscillator	Yes
EXT 256K	100	0001-11XX-X	С	System clock source, external clock source	
BIAS 1/2	100	0010-abX0-X	с	LCD 1/2 bias option ab=00: 2 commons option ab=01: 3 commons option ab=10: 4 commons option	
BIAS 1/3	100	0010-abX1-X	с	LCD 1/3 bias option ab=00: 2 commons option ab=01: 3 commons option ab=10: 4 commons option	
TONE 4K	100	010X-XXXX-X	С	Tone frequency, 4kHz	
TONE 2K	100	011X-XXXX-X	С	Tone frequency, 2kHz	
IRQ DIS	100	100X-0XXX-X	С	Disable IRQ output	Yes
IRQ EN	100	100X-1XXX-X	С	Enable IRQ output	
F1	100	101X-X000-X	С	Time base/WDT clock output:1Hz The WDT time-out flag after: 4s	
F2	100	101X-X001-X	С	Time base/WDT clock output:2Hz The WDT time-out flag after: 2s	
F4	100	101X-X010-X	С	Time base/WDT clock output:4Hz The WDT time-out flag after: 1s	
F8	100	101X-X011-X	С	Time base/WDT clock output:8Hz The WDT time-out flag after: 1/2s	
F16	100	101X-X100-X	С	Time base/WDT clock output:16Hz The WDT time-out flag after: 1/4s	
F32	100	101X-X101-X	С	Time base/WDT clock output:32Hz The WDT time-out flag after: 1/8s	
F64	100	101X-X110-X	С	Time base/WDT clock output:64Hz The WDT time-out flag after: 1/16s	
F128	100	101X-X111-X	С	Time base/WDT clock output:128Hz The WDT time-out flag after: 1/32s	Yes
TEST	100	1110-0000-X	С	Test mode, user don't use.	
NORMAL	100	1110-0011-X	С	Normal mode	Yes

Note: X : Don't care

A5~A0 : RAM addresses

D3~D0 : RAM data

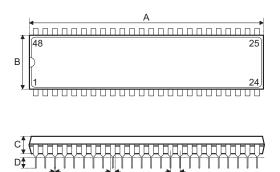
D/C : Data/command mode

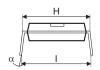

Def. : Power on reset default

All the bold forms, namely **110**, **101**, and **100**, are mode commands. Of these, **100** indicates the command mode ID. If successive commands have been issued, the command mode ID except for the first command will be omitted. The source of the tone frequency and of the time base/WDT clock frequency can be derived from an on-chip 256kHz RC oscillator, a 32.768kHz crystal oscillator, or an external 256kHz clock. Calculation of the frequency is based on the system frequency sources as stated above. It is recommended that the host controller should initialize the HT1621 after power on reset, for power on reset may fail, which in turn leads to the malfunctioning of the HT1621.

Package Information

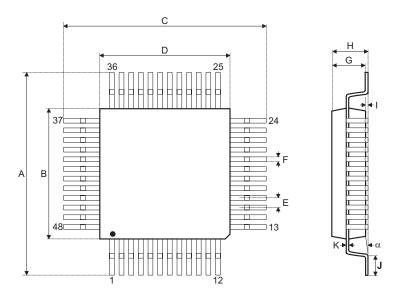
48-pin SSOP (300mil) Outline Dimensions




Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	395	_	420
В	291	_	299
С	8	_	12
C'	613		637
D	85	_	99
E	_	25	_
F	4	_	10
G	25	_	35
н	4	_	12
α	0°	_	8°

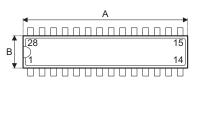
48-pin DIP (600mil) Outline Dimensions

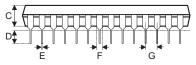
E



Symbol	Dimensions in mil		
	Min.	Nom.	Max.
А	2435	_	2445
В	535	_	555
С	145	_	155
D	125	_	145
E	16	_	20
F	50	_	70
G	_	100	
Н	595	_	615
I	635		670
α	0°	_	15°

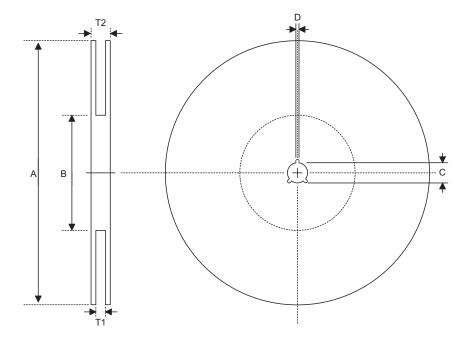
G


48-pin LQFP (7×7) Outline Dimensions



Symbol	Dimensions in mm		
	Min.	Nom.	Max.
А	8.90		9.10
В	6.90		7.10
С	8.90		9.10
D	6.90		7.10
E	_	0.50	_
F	_	0.20	_
G	1.35		1.45
н	_		1.60
1	_	0.10	_
J	0.45		0.75
K	0.10		0.20
α	0°		7°

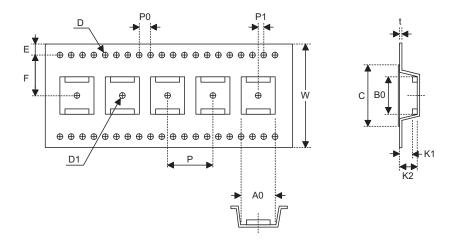
28-pin SKDIP (300mil) Outline Dimensions



Symbol	Dimensions in mil		
	Min.	Nom.	Max.
A	1375		1395
В	278	_	298
С	125		135
D	125	_	145
E	16	_	20
F	50		70
G	_	100	_
Н	295		315
I	330		375
α	0°		15°

Product Tape and Reel Specifications

Reel Dimensions



SSOP 48W

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	100±0.1
с	Spindle Hole Diameter	13.0+0.5 _0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	32.2+0.3 0.2
T2	Reel Thickness	38.2±0.2

Carrier Tape Dimensions

SSOP 48W

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	32.0±0.3
Р	Cavity Pitch	16.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	14.2±0.1
D	Perforation Diameter	2.0 Min.
D1	Cavity Hole Diameter	1.5+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	12.0±0.1
B0	Cavity Width	16.20±0.1
K1	Cavity Depth	2.4±0.1
K2	Cavity Depth	3.2±0.1
t	Carrier Tape Thickness	0.35±0.05
С	Cover Tape Width	25.5

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor (Shanghai) Inc. 7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor (Hong Kong) Ltd.

Block A, 3/F, Tin On Industrial Building, 777-779 Cheung Sha Wan Rd., Kowloon, Hong Kong Tel: 852-2-745-8288 Fax: 852-2-742-8657

Holmate Semiconductor, Inc. 46712 Fremont Blvd., Fremont, CA 94538 Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com

Copyright © 2003 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.