

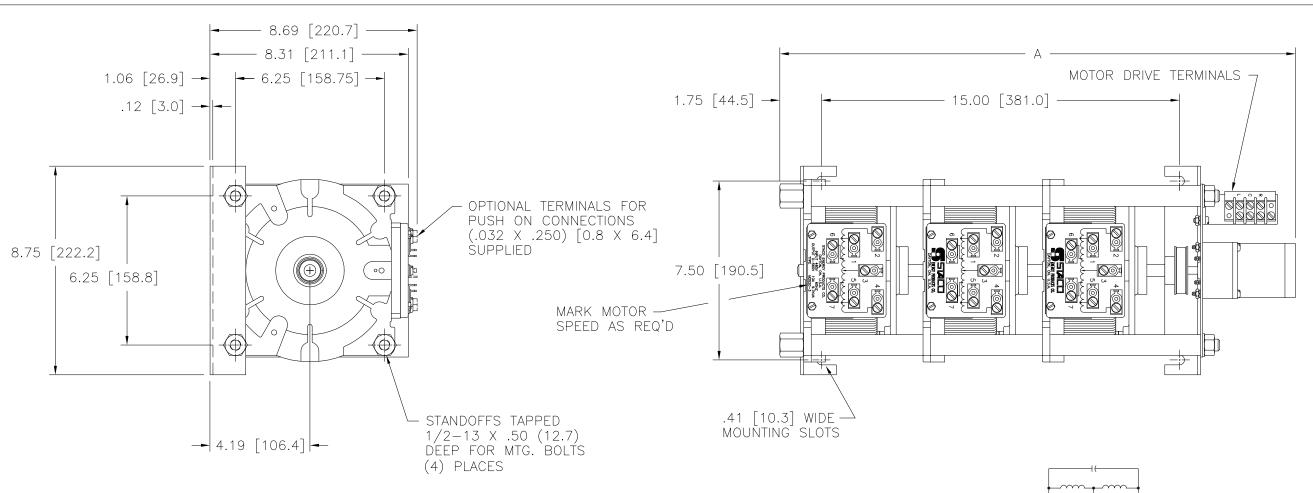
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832


Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

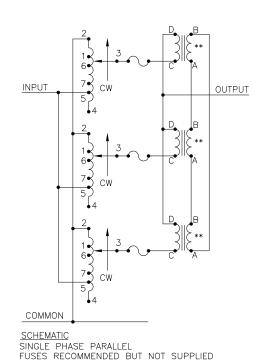
RAISE LOWER LIMIT OF SWITCH SWITCH BLU RED BRN R *CW *CCW

MOTOR CIRCUIT
120V, 50/60 HZ
* ROTATION AS VIEWED
FROM MOTOR END
MOTOR SPEED: SEE CHART

(SECONDS)	NUMBER	"A"
5	5M2520-3	21.23 [539.2]
15	15M2520-3	21.23 [539.2]
30	30M2520-3	21.62 [549.1]
60	60M2520-3	21.62 [549.1]

CODE IDENT. NO. 83008

SCALE .5=1 SHEET 1 OF 1


DAYTON, OHIO U.S.A.

D | 031-5665

E.C.N. DATE APVD.

23899 12/21/98 UPDATED DIMENSIONS

SCHEMATIC
THREE PHASE WYE
FUSES RECOMMENDED BUT NOT SUPPLIED

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
##

FIGURE A

MAXIMUM OUTPUT CURRENT OF ANY
DUAL INPUT VOLTAGE OR VOLTAGE DOUBLER
UNIT OPERATED AT LOWER INPUT VOLTAGE.

- # MAXIMUM OUTPUT CURRENT IN OUTPUT VOLTAGE RANGE FROM 0 TO 25% ABOVE LINE VOLTAGE. AT HIGHER OUTPUT VOLTAGES, THE OUTPUT CURRENT MUST BE REDUCED ACCORDING TO THE DERATING CURVE FIGURE A.
- § MAXIMUM KVA AT MAXIMUM OUTPUT VOLTAGE AND CORRESPONDING DERATED OUTPUT CURRENT. MAXIMUM KVA FOR LOWER VOLTAGES MAY BE CALCULATED FROM DERATING CURVE FIGURE A.
- ++ LINE TO LINE VOLTAGE.
- ** REQUIRES THREE 52LAC PARALLELING CHOKE (NOT SUPPLIED).
- 7T IF GANGED UNITS ARE USED IN A SYSTEM THAT ORDINARILY HAS A COMMON NEUTRAL OR GROUND BETWEEN SOURCE AND LOAD, THE NEUTRAL OR GROUND MUST BE CONNECTED TO THE COMMON TERMINALS OF THE VARIABLE TRANSFORMER ASSEMBLY. IF THE SYSTEM HAS NO NEUTRAL, THE LOAD MUST BE BALANCED OR THE TRANSFORMER WILL BE DAMAGED.
- JUMPER PROVIDED IN STANDARD COMMON POSITION AND SHOULD BE MOVED OR REMOVED AS REQUIRED.
- + MOTOR DRIVEN UNITS USE TERMINAL CONNECTIONS FOR CCW INCREASING VOLTAGE, AS VIEWED FROM THE BASE END.

							60	60M	2520-3	21.62	549.1]
					SPECIF	ICATION	S				
	INPUT			OUTPUT			SHAFT	TERMINAL CONNECTIONS +			
WIRING	VOLTS	S HERTZ	VOLTS	CONSTANT CURRENT LOAD		CONS IMPED LO	ANCE	ROTATION TO INCREASE	AS VIEWED		
				MAX. AMPS	MAX. KVA	MAX. AMPS	MAX. KVA	VOLTAGE	INPUT	JUMPER	
		50/60	0-240	30	7.20	39	9.30	CW	2-2-2, 4-4-	4	4-D
CINIOLE	0.40							CCW	2-2-2, 4-4-	4	2-D
SINGLE PHASE	240		0-280	30	8.40			CW	1-1-1, 4-4-	1	4-D
PARALLEL								CCW	5-5-5, 2-2-	2	2-D
**	120	50/60	0-280	30#	3.60 §			CW	7-7-7, 4-4-	4	4-D
	120							CCW	6-6-6, 2-2-	2	2-D
	480 ++	50/60	0-480	10	8.30	13	10.81	CW	2-2-2	4-4-4	3-3-3
								CCW	4-4-4	2-2-2	3-3-3
THREE		60	0-560	10	9.70			CW	1-1-1	4-4-4	3-3-3
PHASE WYE								CCW	5-5-5	2-2-2	3-3-3
π	240 60	60	0-560	10#	4.20 §			CW	7-7-7	4-4-4	3-3-3
	++							CCW	6-6-6	2-2-2	3-3-3
UNLESS OTHERW DECIMALS .XX 1010 .06 .XXX .005 MATERIAL :	UNITS IN [mm	D]		D. CC RIZED		DL DRA RIABLE	XFMR.	ENERGY PRO			

TYPE: M2520-3

WEIGHT APPROX. 78 LBS.

8/6/97

TIM RAU