
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Adafruit 128x64 OLED Bonnet for Raspberry Pi
Created by lady ada

Last updated on 2017-06-09 09:15:51 PM UTC

2

3

7

7

8

9

10

11
11

11

12

12

13

14

15

16

16

16

Guide Contents

Guide Contents

Overview

Usage

Step 1. Dependencies

Step 2. Enable i2c

Step 3. Verify I2C Device

Running Scripts on Boot

Library Usage
Python library setup

Pin Setup

Display Setup

Display Initialization

Button Input & Drawing

More Demos & Examples

Speeding Up the Display

Downloads

Files

Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 2 of 17

Overview

If you'd like a compact display, with buttons and a joystick - we've got what you're looking

for. The Adafruit 128x64 OLED Bonnet for Raspberry Pi is the big sister to our mini PiOLED

add-on (http://adafru.it/wVd). This version has 128x64 pixels (instead of 128x32) and a

much larger screen besides. With the OLED display in the center, we had some space on

either side so we added a 5-way joystick and two pushbuttons. Great for when you want to

have a control interface for your project.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 3 of 17

These displays are small, only about 1.3" diagonal, but very readable due to the high

contrast of an OLED display. This screen is made of 128x64 individual white OLED pixels

and because the display makes its own light, no backlight is required. This reduces the

power required to run the OLED and is why the display has such high contrast; we really

like this miniature display for its crispness!

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 4 of 17

Please note that this display is too small to act as a primary display for the Pi (e.g. it

can't act like or display what would normally be on the HDMI screen). Instead, we

recommend using pygame for drawing or writing text.

Using the display and controls in python is very easy, we have a library ready-to-go for the

SSD1306 OLED chipset and the joystick/buttons are connected to GPIO pins on the Pi. Our

example code allows you to draw images, text, whatever you like, using the Python imaging

library. We also have example code for using the joystick/buttons/OLED together. Our tests

showed 15 FPS update rates once you bump the I2C speed to 1MHz, so you can do

animations or simple video.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 5 of 17

Comes completely pre-assembled and tested so you don't need to do anything but plug

it in and install our Python code! Works with any Raspberry Pi computer, including the

original Pi 1, B+, Pi 2, Pi 3 and Pi Zero.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 6 of 17

Usage

We'll be using Python to control the display. In theory you can use any language you like

that gives you access to the computer's I2C ports, but our library is for Python only!

This guide assumes you have your Raspberry Pi all set up with an operating system,

network connectivity and SSH!

Step 1. Dependencies

Before using the library you will need to make sure you have a few dependencies installed.

Connect to your Pi using SSH (http://adafru.it/vbC) and follow the steps below.

Install the RPi.GPIO library by running the following at the command line:

sudo apt-get update

sudo apt-get install build-essential python-dev python-pip

sudo pip install RPi.GPIO

Finally, install the Python Imaging Library (http://adafru.it/dvB) and smbus library by

executing:

sudo apt-get install python-imaging python-smbus

Now to download and install the latest Adafruit SSD1306 python library code and

examples, execute the following commands:

sudo apt-get install git

git clone

https://github.com/adafruit/Adafruit_Python_SSD1306.git (http://adafru.it/dEH)

cd Adafruit_Python_SSD1306

sudo python setup.py install

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 7 of 17

Step 2. Enable i2c

To enable i2c, you can follow our detailed guide on configuring the Pi with I2C support

here. (http://adafru.it/dEO)

After you've enabled I2C you will need to shutdown with sudo shutdown -h now

Once the Pi has halted, plug in the PiOLED. Now you can power the Pi back up, and log

back in. Run the following command from a terminal prompt to scan/detect the I2C devices

sudo i2cdetect -y 1

You should see the following, indicating that address 0x3c (the OLED display) was found

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 8 of 17

Step 3. Verify I2C Device

While in the Adafruit_Python_SSD1306 folder, you can run our buttons example, which

will let you press various buttons and see them mimicked on the OLED

Run sudo python examples/buttons.py to run the demo, you should see something like the below:

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 9 of 17

Press buttons to interact with the demo. Press the joystick + buttons at once for an Easter

egg!

Running Scripts on Boot

You can pretty easily make it so this program (or whatever program you end up writing) run

every time you boot your Pi.

The fastest/easiest way is to put it in /etc/rc.local

Run sudo nano /etc/rc.local and add the line

sudo python /home/pi/Adafruit_Python_SSD1306/examples/buttons.py &

on its own line right before exit 0

Then save and exit. Reboot to verify that the screen comes up on boot!

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 10 of 17

For more advanced usage, check out our linux system services guide (http://adafru.it/wFR)

Library Usage

Inside the examples subdirectory you'll find python scripts which demonstrate the usage of

the library. These are covered in more detail in our OLED guide here, so do check them

out. (http://adafru.it/wF9)

To help you get started, I'll walk through the buttons.py code below, that way you can use

this file as the basis of a future project.

Python library setup

import RPi.GPIO as GPIO

import time

import Adafruit_GPIO.SPI as SPI

import Adafruit_SSD1306

from PIL import Image

from PIL import ImageDraw

from PIL import ImageFont

First a few modules are imported, including the Adafruit_SSD1306 module which contains

the OLED display driver classes. You can also see some of the Python Imaging Library

modules like Image, ImageDraw, and ImageFont being imported. Those are, as you can

imagine, are for drawing images, shapes and text/fonts!

Pin Setup

Input pins:

L_pin = 27

R_pin = 23

C_pin = 4

U_pin = 17

D_pin = 22

A_pin = 5

B_pin = 6

GPIO.setmode(GPIO.BCM)

GPIO.setup(A_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Input with pull-up

GPIO.setup(B_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Input with pull-up

GPIO.setup(L_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Input with pull-up

GPIO.setup(R_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Input with pull-up

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 11 of 17

GPIO.setup(U_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Input with pull-up

GPIO.setup(D_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Input with pull-up

GPIO.setup(C_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Input with pull-up

Next up we define the pins that are used for the joystick and buttons. The Joystick has Left,

Right, Center (press in), Up and Down. There's also the A and B buttons on the right. Each

one should be set as an input with pull-up resistor.

Display Setup

Raspberry Pi pin configuration:

RST = None

128x64 display with hardware I2C:

disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST)

Below the configuration values is the display class setup. There are 4 variants of OLED

displays, with 128x32 pixels or 128x64 pixels, and with I2C or with SPI.

However since the OLED Bonnet is a 128x64 I2C display only you should only use the

128x64 display with hardware I2C:

disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST)

variant for creating the display object! The rest can remain commented out.

Note that above, we initialize RST = None because the OLED Bonnet does not require a reset

pin.

Display Initialization

Initialize library.

disp.begin()

Clear display.

disp.clear()

disp.display()

Create blank image for drawing.

Make sure to create image with mode '1' for 1-bit color.

width = disp.width

height = disp.height

image = Image.new('1', (width, height))

Get drawing object to draw on image.

draw = ImageDraw.Draw(image)

Draw a black filled box to clear the image.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 12 of 17

draw.rectangle((0,0,width,height), outline=0, fill=0)

The next bit of code will initialize the display library with begin() and clear the display with

clear()and display().

Then it will configure a PIL drawing class to prepare for drawing graphics. Notice that the

image buffer is created in 1-bit mode with the '1' parameter, this is important because the

display only supports black and white colors.

We then re-draw a large black rectangle to clear the screen. In theory we don't have to

clear the screen again, but its a good example of how to draw a shape!

Button Input & Drawing

Once the display is initialized and a drawing object is prepared, you can draw shapes, text

and graphics using PIL's drawing commands (http://adafru.it/dfH).

try:

 while 1:

 if GPIO.input(U_pin): # button is released

 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=0) #Up

 else: # button is pressed:

 draw.polygon([(20, 20), (30, 2), (40, 20)], outline=255, fill=1) #Up filled

 if GPIO.input(L_pin): # button is released

 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=0) #left

 else: # button is pressed:

 draw.polygon([(0, 30), (18, 21), (18, 41)], outline=255, fill=1) #left filled

 if GPIO.input(R_pin): # button is released

 draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=0) #right

 else: # button is pressed:

 draw.polygon([(60, 30), (42, 21), (42, 41)], outline=255, fill=1) #right filled

 if GPIO.input(D_pin): # button is released

 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=0) #down

 else: # button is pressed:

 draw.polygon([(30, 60), (40, 42), (20, 42)], outline=255, fill=1) #down filled

 if GPIO.input(C_pin): # button is released

 draw.rectangle((20, 22,40,40), outline=255, fill=0) #center

 else: # button is pressed:

 draw.rectangle((20, 22,40,40), outline=255, fill=1) #center filled

 if GPIO.input(A_pin): # button is released

 draw.ellipse((70,40,90,60), outline=255, fill=0) #A button

 else: # button is pressed:

 draw.ellipse((70,40,90,60), outline=255, fill=1) #A button filled

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 13 of 17

 if GPIO.input(B_pin): # button is released

 draw.ellipse((100,20,120,40), outline=255, fill=0) #B button

 else: # button is pressed:

 draw.ellipse((100,20,120,40), outline=255, fill=1) #B button filled

 # Display image.

 disp.image(image)

 disp.display()

 time.sleep(.01)

This is a basic polling example - we'll check each GPIO.input in order, and draw a different

shape - a directional arrow or a round circle) depending on whether the button is pressed. If

the button is pressed we have the shape filled in. If the button is not pressed, we draw an

outline only

Then we run disp.image(image) and disp.display() to actually push the updated image to the

OLED. This is required to actually make the changes appear!

A small time.sleep() delay just keeps the OLED from getting flickery and 'de-bounces' the

button inputs.

More Demos & Examples

You can check out our other examples in the example, just make sure to edit each one with

nano animate.py for example, and find the line that says:

Raspberry Pi pin configuration:

RST = 24

and change it to:

Raspberry Pi pin configuration:

RST = None # PiOLED does not require reset pin

and make sure that the configuration section where you choose which type of display,

looks like this

128x32 display with hardware I2C:

#disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST)

128x64 display with hardware I2C:

disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST)

128x32 display with hardware SPI:

disp = Adafruit_SSD1306.SSD1306_128_32(rst=RST, dc=DC, spi=SPI.SpiDev(SPI_POR$

128x64 display with hardware SPI:

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 14 of 17

disp = Adafruit_SSD1306.SSD1306_128_64(rst=RST, dc=DC, spi=SPI.SpiDev(SPI_POR$

That is, we'll be using I2C 128x64 display!

Speeding Up the Display

For the best performance, especially if you are doing fast animations, you'll want to tweak

the I2C core to run at 1MHz. By default it may be 100KHz or 400KHz

To do this edit the config with sudo nano /boot/config.txt

and add to the end of the file

dtparam=i2c_baudrate=1000000

reboot to 'set' the change.

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 15 of 17

Downloads

Files

EagleCAD PCB files on GitHub (http://adafru.it/wWC)

UG-2864HSWEG01 (http://adafru.it/aJI) Datasheet

UG-2864HSWEG01 (http://adafru.it/wWD) User Guide

SSD1306 (http://adafru.it/aJK) Datasheet

Fritzing objects available in the Adafruit Fritzing Library (http://adafru.it/aP3)

Schematic & Fabrication Print

Dimensions in mm

© Adafruit Industries https://learn.adafruit.com/adafruit-128x64-oled-bonnet-for-raspberry-pi Page 16 of 17

© Adafruit Industries Last Updated: 2017-06-09 09:15:50 PM UTC Page 17 of 17

	Contact us
	Guide Contents
	Overview
	Usage
	Step 1. Dependencies
	Step 2. Enable i2c
	Step 3. Verify I2C Device
	Running Scripts on Boot
	Library Usage
	Python library setup
	Pin Setup
	Display Setup
	Display Initialization
	Button Input & Drawing

	More Demos & Examples
	Speeding Up the Display
	Downloads
	Files
	Schematic & Fabrication Print

