
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

PROGRAMMING AND

CUSTOMIZING THE

MULTICORE PROPELLERTM

MICROCONTROLLER

189

5
WIRELESSLY NETWORKING

PROPELLER CHIPS

Martin Hebel

Introduction

This chapter looks at how your Propeller can be part of a wireless sensor network

(WSN) to share data through wireless communications. WSNs are not intended for large

data transfers, such as fi les, but small amounts of data back and forth. The Propeller is

an amazing controller, and its ability to perform parallel processing makes data com-

munications fast and simple for use in a WSN. While the main task is being carried out,

other cogs can be sending or receiving data on the network.

With a lot to discuss and learn along the way, the fi nal completed project of this

chapter, depicted in Fig. 5-1, will be a three-node network that has:

■ A tilt-controller node transmitting drive and control data.

■ A robot (bot) node that receives the data; has a compass and ultrasonic range fi nder;

and is transmitting data on drive, range, and direction. It also has the ability to “map”

what is in front of it for remote display.

■ A node that accepts data from the bot and displays the information graphically on

the TV.

This chapter highlights communications to, from, and between Propeller chips using

XBee® transceivers from Digi International. Topics covered in this chapter include:

■ Networking and XBee overview

■ PC-to-XBee communications

■ Confi guring the XBee manually and with the Propeller

■ PC-to-Propeller and Propeller-to-Propeller communications with the XBee

■ Transparent and API data modes of the XBee

■ Forming a multi-node Propeller network for robot control and monitoring

This chapter will work through several examples of communications, but really, the

intent and focus is on how to perform the communications with the Propeller. It is left to

you, the reader, to take the principles discussed, combine them with your imagination or

needs, and develop a Propeller network of your own. Many other projects and informa-

tion from this text can be combined with this chapter for truly amazing projects!

 Figure 5-1 Three-node network for monitoring and control.

190 WIRELESSLY NETWORKING PROPELLER CHIPS

Resources: Demo code and other resources for this chapter are available

for free download from ftp.propeller-chip.com/PCMProp/Chapter_05.

Overview of Networking
and XBee Transceivers

The ability to communicate wirelessly has had such a signifi cant impact on personal

and data communications that many today cannot envision life without the use of cell

phones, Wi-Fi networks and Bluetooth® features in personal devices. The ability of

these devices to communicate on their respective networks (even your Bluetooth headset

forms a network with the player) relies on key features:

■ The use of addressing to send data to specifi c destination devices and to identify the

source of the data

■ The use of framing and packets to encompass the data itself in a “package” with

necessary information (such as the destination address)

■ The use of error checking to ensure the data arrives at the destination without

errors

■ The use of acknowledgements back to the source so that the sender knows the data

arrived correctly at its destination

Simple two-device (or two-node) systems may not need all these features. It’s really

dependent on the needs of the network, but if ensuring data arrives correctly to an

intended destination is vital, then these features are a must.

The XBee uses a fully implemented protocol and communicates on a low-rate wireless

personal area network (LR-WPAN), sometimes referred to as a wireless sensor network

(WSN) with RF data rates of 250 kbps between nodes. For the seasoned network readers,

LR-PANs operate using IEEE 802.15.4, a standardized protocol similar to Wi-Fi (IEEE

802.11) and Bluetooth (IEEE 802.15.1). The XBee is currently available in the XBee

802.15.4 series and the XBee ZigBee/Mesh series. The 802.15.4 series (often referred

to as Series 1) is the simplest and allows point-to-point communications on a network.

The ZigBee/Mesh series (Series 2) uses the ZigBee® communications standard on top

of 802.15.4 for WSNs to provide self-healing mesh networks with routing. This chapter

will focus exclusively on the XBee 802.15.4 and its higher-power sibling the XBee-Pro

802.15.4. These will be referred to as simply the XBee.

Key benefi ts of using the XBee include the ability to perform addressing of individual

nodes on the network, data is fully error-checked and delivery acknowledged, and data can

be sent and received transparently—simply send and receive data as if the link between

devices were directly wired. XBees operate in the 2.4 GHz frequency spectrum.

An image and a drawing of an XBee are shown in Fig. 5-2. The XBee is a 20-pin

module with 2.0 mm pin spacing. This can cause some aggravation when working with

breadboards and protoboards, which have 2.54 mm (0.1 in) pin spacing, but solutions

to this will be addressed.

OVERVIEW OF NETWORKING AND XBee TRANSCEIVERS 191

192 WIRELESSLY NETWORKING PROPELLER CHIPS

Don’t get scared! The XBee has a large number of pins, but for most of this chapter,

we will use only four:

■ Vcc, Pin 1: 2.8 V to 3.4 V (Propeller Vdd voltage)

■ GND, Pin 10 (Propeller Vss)

■ DOUT, Pin 2: Data out of the XBee (data received by Propeller)

■ DIN, Pin 3: Data into the XBee (data to be transmitted by Propeller)

Other pins include a sleep pin (Sleep_RQ) for low power consumption, fl ow control

pins (RTS/CTS), analog-to-digital (ADC) inputs, digital inputs and outputs (DIO),

among others. This chapter will discuss some of these other pin functions, but the focus

is on simply sending and receiving data between the Propeller and XBees using the

DOUT and DIN pins.

Note: Please see the XBee manuals on Digi’s web site for in-depth discussion

and information: www.digi.com and included in the distribution fi les.

The XBee has a current draw of around 50 mA and a power output of 1 mW with a

range of about 100 m (300 ft) outdoors. The XBee-Pro has a current draw of 55 mA

when idle or receiving data and 250 mA when transmitting. With a power output

of 100 mW, it has a range outdoors of 1600 m (1 mi) line sight. They both have sleep

 Figure 5-2 XBee module and pins.

modes, with current draws of less than 10 µA, but can’t send or receive data while

sleeping. There are different antenna styles as well, though the whip antenna is prob-

ably the most popular.

Tip: Don’t get too excited about the distances. Line-of-sight communications

rely on height as well as distance. Due to ground reflections and deconstructive

interference (Fresnel losses), the heights of the antennas need to be taken

into account. For good communications at 100 m, a height of 1.4 m (4.6 ft)

is recommended.

Information: For more insight on distance, height issues, and calculations,

search the web for “Fresnel clearance calculation.”

Though the XBee is ready to go right out of the box, it is feature-rich and can be

confi gured for specifi c applications.

Hardware Used in This Chapter

The following is a list of hardware used in this chapter and their sources, but as you read

through, you’ll fi nd it’s not written in stone. We recommend you read through the chapter

to understand how the hardware is used before making an expensive investment.

■ 2—Propeller Demo Boards (Parallax)

■ 1—Propeller Proto Board (Parallax)

■ 1—Prop Plug (Parallax)

■ 3—XBee 802.15.4 (Series 1) modem/transceivers (www.digikey.com)

■ 3—AppBee-SIP-LV XBee carrier boards (www.selmaware.com or other styles avail-

able on www.sparkfun.com)

■ 1—PING))) ultrasonic sensor (Parallax)

■ 1—HM55B compass module (Parallax)

■ 1—Memsic 2125 accelerometer/inclinometer (Parallax)

■ 1—Boe-Bot chassis (Parallax)

■ 1—Ping Servo Mounting Bracket Kit (Parallax)

■ 2—Additional Boe-Bot battery holders or other portable battery source

■ Miscellaneous resistors

Testing and Confi guring the XBee

An important step in constructing a complex project is to make sure the individual devices

work properly and their use is understood. In this section, the XBees will be tested, con-

fi guration settings explored, and means of confi guring these devices discussed.

TESTING AND CONFIGURING THE XBee 193

194 WIRELESSLY NETWORKING PROPELLER CHIPS

Figure 5-3 shows the diagram for this test. A PC will communicate directly to an

XBee, and a remote XBee is set up with a loop-back jumper. In the loop-back, the

DOUT line of the XBee is tied to its DIN so that any RF data it receives is looped back

into the device to send it out again via RF.

The following is a list of the hardware and software used for this test, but there are

many ways to achieve the same results. Essentially, a means is needed to communicate

to an XBee serially from the PC and means to supply power to the base and remote

XBees.

Equipment and other software:

■ 2—Propeller Demo Boards (Parallax)

■ 2—XBees (www.digikey.com)

■ 1—Prop Plug (Parallax)

■ 1—AppBee-SIP-LV from Selmaware Solutions (www.selmaware.com)

■ X-CTU software from Digi International (www.digi.com)

The AppBee-SIP-LV is simply a carrier board for the XBee providing 3.3 V power

from the Demo Board and access to I/O in a breadboard-compatible header. Figure 5-4

shows the AppBee-SIP-LV and a drawing of the physical connections to the XBee.

 Figure 5-3 Confi guration and testing diagram.

Tip: Another good source of carrier boards and other XBee accessories is

www.sparkfun.com. Search their web site for XBee.

ESTABLISHING PC-TO-XBee COMMUNICATIONS

The fi rst task is to communicate with the XBee directly from the PC for confi guration

changes and monitoring. Figure 5-5 shows two ways of establishing communications:

using the Propeller as a serial pass-through device or communicating directly with the

XBee using the Prop Plug as a serial interface. Either method allows the serial connec-

tion between the PC and the transceiver.

If you are using the Propeller to pass serial communications, the program Serial_

Pass_Through.spin should be downloaded using F11. If the serial communications

port is closed in the software, the Propeller may be cycled when the DTR is toggled,

reloading the Propeller from EEPROM. Using F11 ensures a cycling of the Propeller

will reload the correct program.

The program itself is simple but highlights the power of Propeller. Microcontrollers

that provide multiserial communications are diffi cult to fi nd. Two instances of the

TESTING AND CONFIGURING THE XBee 195

 Figure 5-4 AppBee-SIP-LV carrier board and drawing with physical connections.

196 WIRELESSLY NETWORKING PROPELLER CHIPS

FullDuplexSerial object establish the transparent link. Data from the PC is sent to the

XBee, and data from the XBee is sent to the PC; with each method in separate cogs, it

allows transfer speeds tested up to 115,200 bps. But for now we need to stick to 9600 bps

since that is the default confi guration on the XBee.

OBJ

 PC : "FullDuplexSerial"

 XB : "FullDuplexSerial"

Pub Start

 PC.start(PC_Rx, PC_Tx, 0, PC_Baud) ' Initialize comms for PC

 XB.start(XB_Rx, XB_Tx, 0, XB_Baud) ' Initialize comms for XBee

 cognew(PC_Comms,@stack) ' Start cog for XBee--> PC comms

 Figure 5-5 Two methods of PC communications

with XBee.

 PC.rxFlush ' Empty buffer for data from PC

 repeat

 XB.tx(PC.rx) ' Accept data from PC and send to XBee

Pub PC_Comms

 XB.rxFlush ' Empty buffer for data from XB

 repeat

 PC.tx(XB.rx) ' Accept data from XBee and send to PC

Caution: Watch the I/O numbers! If another confi guration is used, modify the

pin numbers in the CON section of the code.

If you are using the Propeller for passing serial data:

✓ Connect the hardware as shown in Fig. 5-5a.

✓ Download the Serial_Pass_Through.spin program to the Propeller using F11.

If you are using the Prop Plug to communicate directly, connect it as shown in Fig. 5-5b.

✓ If you haven’t yet, download and install the X-CTU software available in the distrib-

uted fi les or from Digi’s web site. There is no need to check for updates—this can

take a long time and the basic installation has all that is needed for now.

✓ Open the X-CTU software. It should look similar to Fig. 5-6. Select the COM port

that your Propeller is communicating through.

✓ At this point, use the Test/Query pushbutton to test communications with the

XBee.

Caution: As always, only one software package can access the same COM

port at any time. You’ll get used to slapping your head when you can’t communicate

as you go between the Propeller tool software and X-CTU!

Tip: If communications fail, recheck your hardware and pin numbers, reload the

Propeller program, and verify no other software is using the COM port. If you

continue to have problems and it is not a brand-new XBee, the serial baud rate

may have been changed or the XBee may be in API mode—test various baud

rates and check the API box to test.

If all went well, you may have seen the RX and TX lights blink on the board and

received a message informing you communications were okay, along with the fi rmware

version on the XBee.

✓ Select the Modem Confi guration tab on the X-CTU software.

✓ If your XBee was reconfi gured, this would be a good time to click the Restore button

to return it to the default confi guration.

✓ Click the Read button.

TESTING AND CONFIGURING THE XBee 197

198 WIRELESSLY NETWORKING PROPELLER CHIPS

The screen should have loaded with the confi guration setting of the XBee as shown

in Fig. 5-7. Many of them will be explained shortly—we’re only going to use a handful

of the settings available. But for now, let’s test out some wireless communications.

TALKING XBee TO XBee USING LOOP-BACK

With a second XBee, supply power and connect a jumper between DOUT and DIN (or RX

and TX on the carrier board), as illustrated in Fig. 5-8, using the AppBee-SIP-LV car-

rier board (or similar). Do not connect to any Propeller I/O at this time—we are simply

using the board for power. We used a second Demo Board for this test.

✓ Power up the remote XBee with loop-back jumper in place.

✓ Click the X-CTU Terminal tab.

✓ Type “Hello World!”

 Figure 5-6 X-CTU software showing COM port selection.

You should see the TX and RX lights fl ashing on both units (if using the AppBee carrier)

and text in your Terminal window. You should see two of each character—what you

typed in blue and what was echoed back and received in red—as shown in Fig. 5-9.

Tip: Having problems? If you don’t see any data returning, be sure the remote

XBee is connected properly. If it is not a new XBee, if may have been confi gured

differently. Turn off both units and swap the XBees. After powering up, “Restore”,

the XBee to default confi guration using the X-CTU button, read the second XBee

using the X-CTU software, and test again.

TESTING AND CONFIGURING THE XBee 199

 Figure 5-7 X-CTU software showing XBee confi guration settings.

200 WIRELESSLY NETWORKING PROPELLER CHIPS

 Figure 5-8 Remote XBee connections for loop-back.

 Figure 5-9 X-CTU Terminal window.

Tip: Beyond testing purposes, the X-CTU software is not essential, and any

terminal program or other serial software package may be used, such as the PST

Debug-LITE software used in previous chapters. Just ensure baud rates match

between the software and the devices.

As noted, each character is transmitted as it is typed. The XBee can actually send a string

of characters at once (up to 100), but it only waits so long before assembling a packet to be

transmitted. We type too slowly to get multiple characters quickly enough with the default

confi guration, but we can assemble a packet of characters that will be kept together:

✓ On the X-CTU Terminal window, click Clear screen, and then click Assemble Packet.

✓ Type “Hello World!” in the packet box, and click Send Data.

You’ll notice your text is returned as a single packet.

One last test is the range test. This allows you to monitor the signal strength from

−40 dBm to the XBee’s sensitivity limit of around −100 dBm by having the software

repeatedly send out a packet to be echoed.

✓ Check the check box below the vertical RSSI (receiver signal strength indication).

✓ Click Start.

✓ Monitor the number of good packets received and signal strength.

✓ Block the area between the XBees or move the remote XBee to another room, and

test the effect on RSSI level.

Note: In theory, you should never see a bad packet (malformed data) in the

received data from the XBee, such as in the Terminal window. All data is error-

checked and retried if there is no response or if the error check fails. You should

receive either good data or no data at all. The serial-link issue with the XBee is a

more probable cause than an RF issue with bad data.

Now that we have an RF link going, it’s time to discuss and test some XBee

confi gurations.

XBee CONFIGURATION SETTINGS

As seen, the XBee has numerous settings that can be confi gured. This confi guration

can be performed through the Confi guration window, through the Terminal window,

or through strings sent out from the Propeller. Let’s fi rst take a look at some of the

more important settings shown in Table 5-1 for this chapter (we will use only a few)

and others of interest should you delve deeper with your experiments. Click the

Modem Confi guration tab of the X-CTU software to view the settings. Clicking any

setting will give a brief description and range of values at the bottom of the window.

OK, let’s test out a few things:

✓ Test and verify your loop-back setup by sending a string.

✓ Under Modem Confi guration, change DL to 1.

✓ Click Write.

✓ The XBee should be updated. Click Read and verify.

✓ Go to the Terminal window and type once again. You should get no response, and

the remote RX light on the AppBee should not blink.

TESTING AND CONFIGURING THE XBee 201

202 WIRELESSLY NETWORKING PROPELLER CHIPS

TABLE 5-1 SUMMARY OF PERTINENT XBee SETTINGS

COMMAND

CODE MEANING & USE

Networking & Security

CH Channel: Sets the operating frequency channel within the 2.4 GHz band. This

may be modifi ed to fi nd to a clearer channel or to separate XBee networks.

ID PAN ID: Essentially, the network ID. Different groups of XBee networks can be

separated by setting up different PANs (personal area networks).

DL Destination Low Address: The destination address where the transmitted

packet is to be sent. We will use this often to defi ne which node receives data.

A hexadecimal value of FFFF performs a broadcast and sends data to all

nodes on the PAN. The default value is 0.

MY Source Address: Sets the address of the node itself. This will be used often in

all our confi gurations. The default value is 0.

Sleep Modes

SM Sleep Mode: Allows the sleep mode to be selected for low power consumption

(<10 µA). While we won’t use it, a good choice is 1—Pin Hibernate. This would

allow an output of the Propeller to put the XBee to sleep (using the Sleep

Request pin) when it is not sending or expecting data.

Serial Interfacing

BD Interface Data Rate: Sets baud rate of the serial data into and out of the XBee.

AP API Enable: Switches the XBee from transparent mode (AT) to a framed data version

where the data must be manually framed with other information, such as address

and checksum. This is a powerful mode and will be explored in this chapter.

RO Packetization Timeout: In building a packet to be transmitted, the XBee waits

a set length of time for another character. If not received in the set time, the

packet is sent. This is why as we typed characters, each was sent and echoed

back. This can be important to change if you have multiple units sending data

to one node to ensure that all data sent is received as a single transmission

from one unit; otherwise, you may get data from various nodes intermixed.

I/O Settings

D0 – D8 Sets the function of the I/O pins on the XBee, such as digital output, input,

ADC, RTS, CTS, and others.

IR Sample Rate: The XBee can be confi gured to automatically send data from

digital I/O or ADCs. It requires the receiving node to be in API mode and the

data parsed for the I/O values.

Diagnostics

DB Received Signal Strength: The XBee can be polled to send back the RSSI level

of the last packet received.

EC CCA Failures: The protocol performs clear channel assessment (CCA)—that

is, it listens to the RF levels before it transmits. If it cannot get an opening, the

packet will fail and the CCA counter will be incremented.

By changing DL to 1, data is intended for an XBee at address 1. The default settings

on XBees are a DL of 0 and an MY of 0. Previously, we were sending data to a node

at address 0 from a node at address 0 and vice versa. Be aware, the XBee actually does

receive data, sees it is not the intended node, and then dumps it instead of passing it to

the DOUT pin (to which the RX LED is connected).

Let’s now try confi guring using the Terminal window. Due to timeouts, you may have

to type a little fast, so you may need a few attempts. Enter the following lines—do not

type what is in parentheses. Press enter after each line except for +++.

✓ (Wait three seconds since you typed anything last—this is guard time.)

✓ +++ (Do not press ENTER.)

✓ (Wait a few more seconds and you should see that it is now in command mode.)

✓ ATDL (Requests the current DL value; it should return 1)

✓ ATDL 0 (Sets the DL address to 0)

✓ ATDL (Again requests the DL address, which should be 0)

✓ ATCN (Exits AT command mode)

✓ Hello World?

If all went well, you should once again be getting echoes after changing the destina-

tion address back to 0. The waiting before and after the +++ is called the guard time,

and it ensures that if a string containing +++ is sent, the unit won’t fl ip into command

mode inadvertently.

Tip: Permanent changes? Using the Modem Confi guration feature of the X-CTU

software, all changes are saved to nonvolatile memory and will still be in place

after cycling power. Using the AT commands, the settings will revert to original

values after cycling power, unless the ATWR (write) command is sent to write to

nonvolatile memory.

The important aspect here is that just as we sent data strings to the Xbee for con-

fi guration changes, so can your Propeller confi gure the XBee through code. Multiple

commands can be used in one line by separating them with commas. For example, the

following sets DL to 0 and exits command mode: ATDL 0, CN.

TESTING AND CONFIGURING THE XBee 203

EA ACK Failures: If a packet is transmitted but receives no acknowledgement

that data reached the destination, EA is incremented. The XBee performs two

retries before failure. Additional retries can be added by using the RR setting.

AT Command Options

CT AT Command Timeout: Once in command mode, this sets how long of a delay

before returning to normal operation.

GT Guard Time: When switching into AT command mode, this defi nes how long

the guard times should be (absence of data before the command line) so that

accidental mode change is not performed.

204 WIRELESSLY NETWORKING PROPELLER CHIPS

TRY THESE!

✓ Try changing your MY address to 1 and sending data. You should see the remote

unit receive and transmit, but you get nothing back. Why?

✓ Change your DL to FFFF. This is the broadcast address—any nodes on your

network would receive it. Be sure to set MY back to 0 for the loop-back to

work!

✓ Use the command ATND (Network Discovery). After a few seconds, you

should see a list of other nodes in the network, including their MY address,

two lines of the physical address (like a MAC address), and the RSSI level

in hexadecimal.

✓ Use the command ATED (Energy Detect). You should see a list of about

11 hexadecimal values. This is the energy level seen on the various channels.

Higher values are less noisy—a value such as 5A (hexadecimal), for example,

converts to a level of −90 dBm.

✓ Use the Confi guration tab to restore the XBee to its default values when done testing,

or use the AT command ATRE, followed by ATWR, to save to memory.

UPDATING THE XBee VERSIONS

Just a note about the version of the XBees: In the Modem Confi guration tab, you

can see the version of fi rmware on your XBee, such as 1083, 10A5, or 10CD. Later

versions are more capable. The majority of this chapter requires at least 1083.

The fi rmware on the XBee can be updated by selecting a new version, checking

Always update fi rmware, and clicking Write, but this requires more data lines than

we have available with our confi gurations. A board such as the XBIB-U from Digi

International or the WRL-08687, the XBee Explorer, from www.sparkfun.com

(which can also double as a carrier board) is recommended. These boards can be

used for direct USB access to the XBee as well as changing the fi rmware, and they

supply power to the XBee.

Now that we can send and receive data and confi gure the XBee, we are ready to start

using Spin and the Propeller to communicate via the XBee.

Sending Data from the
Propeller to the PC

In this section we will equip a remote Propeller/XBee system with a couple of sensors

and then transmit the data from the sensors back to the base XBee to send the data to

the PC for monitoring. The base can be the Propeller using serial pass-through, using

the Prop Plug to the XBee, or using a dedicated XBee-to-PC board, as previously

mentioned. The sensors used for testing are Parallax’s HM55B compass module and

the PING))) ultrasonic range fi nder. These devices will eventually assist in our robot

project, but you are free to modify the code to use any of the sensors previously explored

in this text.

Additional equipment:

■ HM55B Compass Module

■ PING))) Ultrasonic Range Finder

■ Or other sensors as desired, with appropriate code

Figure 5-10 is an image of the nodes. Even though we don’t need to just yet, we will

use this opportunity to set the DL address of the remote unit to 0 to ensure it is sending

data to the base unit.

✓ Connect the PING))) sensor and HM55B compass on the remote unit as shown

in Fig. 5-11. If a different I/O pin is used, update the pin numbers accordingly

in the CON section of the code. Connect the LEDs as well; we will use them

shortly.

✓ For the base unit XBee, open and clear the X-CTU Terminal window. Open the

COM port if closed. Having that port in use will help ensure the correct Propeller is

programmed.

✓ Download Simple_PC Monitoring_from_Remote.spin to the remote unit.

✓ Monitor the remote unit’s LEDs—they should blink rapidly a few times after several

seconds as the XBee is confi gured.

✓ Monitor the base unit’s Terminal window. A “ready” message should be displayed,

then the readings of the sensors should be reported every half-second.

✓ Test the compass bearing. It should read 0 to 8191 (roughly) as you rotate it, with 0

being approximately magnetic north.

✓ Test the range finder by placing an object in front and moving it in and out.

The PING))) sensor will report distances from roughly 30 to 3000 mm (3 cm

to 3 m).

✓ If either sensor fails to respond properly, check your connections and code.

Tip: The range fi nder has a fairly large angle of emission and detection. Test this

by putting an object to the side of range fi nder and going in and out to determine

how wide the angle is at different distances.

After initializing the XBee and compass, there is a three-second delay, +++ is sent

followed by another three-second delay and the string of “ATDL 0, CN.” Finally, a

byte of 13 representing a CR or ENTER key is sent. The destination address is set to

0 and command mode is exited (CN) in exactly the same fashion as you did in the

Terminal window.

SENDING DATA FROM THE PROPELLER TO THE PC 205

206 WIRELESSLY NETWORKING PROPELLER CHIPS

 Figure 5-10 Base and remote nodes.

 delay(3000) ' Guard time for AT mode

 XB.str(string("+++")) ' Send AT command request

 delay(3000) ' Guard time

 XB.str(string("ATDL 0,CN")) ' Send code to set DL = 0

 XB.tx(13) ' Send carriage return

The command codes from the Propeller are passed to the XBee using the FullDuplexSerial

object duplicating your serial terminal. Through this method any number of commands may

be sent to the XBee for confi guration changes on initialization or during operation. Those

3-second guard times can cause lag during operation, but we’ll deal with that soon.

In the SendData method, you can see that the range and direction (theta) are read

from the devices. Using a combination of text strings and XB.dec (decimal) methods,

the data is sent to the base XBee, where it is passed through to the PC for monitoring

in the Terminal window. Figure 5-12 is a sample output of received data.

 repeat

 range := Ping.Millimeters(PING_Pin) ' Get range in mm

 theta := HM55B.theta ' Get bearing (0-8191)

 XB.str(string(13,13,"Ping Range(mm): "))' Send string to base

 XB.dec(range) ' Send range as decimal

 XB.str(string(13,"Direction(0-8192): "))' Send string to base

 XB.dec(theta) ' Send bearing as decimal

 delay(500) ' Short delay before repeat

SENDING DATA FROM THE PROPELLER TO THE PC 207

 Figure 5-11 Remote unit with PING))) and compass.

208 WIRELESSLY NETWORKING PROPELLER CHIPS

TRY IT!

✓ Try adding a simple device, such as a pushbutton, and reporting its state back

to the PC. If you are out of I/O, you may remove the LEDs.

Polling Remote Nodes

In an LR-PAN, nodes typically come in one of three fl avors:

■ Coordinators help manage the network, from controlling communications to assign-

ing information to devices.

■ End devices are used to read and control devices on the network.

■ Routers are used to pass data between nodes at distances too far to reach directly.

There is nothing prohibiting end devices from talking to one another, and once a

network is established, the coordinator’s job may come to an end. In this chapter we

will refer to the base unit, the one at the PC, as a coordinator because it will help con-

trol communications and be a common collection point. Our remote nodes will be end

devices that we will monitor and control.

Multinode communications can be tricky. Aspects to be dealt with include: Which node

can send data when? When data arrives, who is it from? Do nodes need permission to talk

or can they do so at any time? We need to ensure that nodes don’t talk over one another

 Figure 5-12 Sample output in Terminal window of range and bearing.

(causing collisions on the network) and that the receiving units know who the data is from

in order to respond appropriately or take some other action. XBee, using IEEE 802.15.4,

works similar to Wi-Fi. A node listens before it transmits to help ensure that no other

node is transmitting at the time (this is Clear Channel Assessment, or CCA). Delivery of

data is verifi ed through acknowledgements. If the sender does not get a response, it tries

again. This method is known as CSMA/CA or Carrier Sense, Multiple Access/Collision

Avoidance. Unlike Ethernet, which uses collision detection (CSMA/CD), a node cannot

listen once it starts transmitting so it cannot detect collisions.

So the data link layer of communications helps ensure data gets passed properly, but

it still doesn’t assist in higher-level functions controlling the who and when of commu-

nications. In the next section we will look at a method of using a Propeller acting as a

coordinator to poll end devices for their data. USB works in much the same way—each

device is polled one at a time to see if they need access or have data to send.

 COORDINATOR MANUALLY POLLING REMOTE END DEVICES

A hardware confi guration similar to the one from the previous section will be used,

but this time, the Propeller needs to be in the communications chain at the base instead

of simply using a Prop Plug for XBee communications. Also, to demonstrate control

action, the two LEDs on the remote end device provide control action. You are welcome

to have as many end points as you desire (well, up to 65,000), or just use one and change

the end point’s address to test. Figure 5-13 is a diagram of our network and hardware.

POLLING REMOTE NODES 209

 Figure 5-13 Hardware for coordinator polling.

210 WIRELESSLY NETWORKING PROPELLER CHIPS

In this example, the coordinator cycles through a range of end-point addresses by

changing the DL value of the coordinator’s XBee. It sends out codes and values to

request data from each end point and to control the LEDs on each. Before allowing the

coordinator to have control, we are going to manually test the control and responses.

✓ Add the LEDs to the remote end device.

✓ Open Acquisition_with_Control_End.spin.

✓ For each end device, number the constant MY_Addr in the CON section of the code

sequentially from 1 up, skipping a few numbers to test “unresponsive nodes.”

✓ Download Acquisition_with_Control_End.spin to each remote end device.

✓ Use the Propeller for serial pass-through or another PC-to-XBee confi guration at the PC.

✓ Change the DL of the coordinator/base XBee to 1.

✓ In the Terminal window, type some p’s and c’s. If your end point at address 1 is

awake, you should get values back for compass bearing and range fi nder distance.

✓ For this next test, use the “Assemble Packet” window. Type and send the following:

Type i3 and then hit Enter.

Type 1 and then hit Enter.

Click Send.

✓ Change the 1 to a 0 and send again.

✓ Test again by using 4 instead of 3.

✓ What you should see is LEDs on P3 and P4 turning on with 1 and off with 0.

Figure 5-14 is an image of our communications test.

 Figure 5-14 End-device responses to requests.

Looking at the end-device’s code, data communications with the XBee is now through

the XBee_Object. This is an object I wrote for easing some data communication and

confi guration issues. It uses FullDuplexSerial but greatly extends it.

Tip: The “XBee_Object” can be downloaded from Parallax’s Object Exchange

(http://obex.parallax.com). If you have previously downloaded it, be sure it is

version 2 or higher. It is also included in the book’s distributed fi les.

XB.AT_Init initialized the XBee to AT mode, allowing for short guard times (using

ATGT), so instead of six seconds to modify a confi guration, it can be done quickly in

code. XB.AT_ConfigVal allows passing an AT command and a value to set confi gura-

tions, such as the DL and MY addresses. The underlying code switches the XBee to com-

mand mode, sends data, and exits using the short guard times.

 " Enable XBee for fast configuration changes

 XB.AT_Init

 " Set MY and DL (destination) address.

 XB.AT_ConfigVal(string("ATMY"), MY_Addr)

 XB.AT_ConfigVal(string("ATDL"), DL_Addr)

In the ProcessData method, XB.rx is used to tell the Propeller to wait for one charac-

ter or byte of data. It then tests this character to determine what set of actions to take:

 dataIn = XB.rx

 Case dataIn

 "p": ' p = PING distance

 range := Ping.Millimeters(PING_Pin) ' Read PING in mm

 XB.dec(range) ' Send range as ASCII decimal value

 XB.cr ' End decimal string with CR

 "c": ' c = Compass

 theta := HM55B.theta ' Read Compass

 XB.dec(theta) ' Send theta of bearing as decimal

 XB.cr ' End with carriage return

 "i": ' i = I/O control

 IO := XB.rxDecTime(timeout) ' Accept IO number w/timeout

 state := XB.rxDecTime(timeout) ' Accept state (1/0) w/timeout

 if state <> -1

 dira[IO]~~ ' Set direction of pin

 outa[IO] := state ' Set state of pin

 XB.dec(outa[IO]) ' Send state back for verification

 XB.cr ' End decimal string with CR

If p, send back the decimal value of the range fi nder.

If c, send back the decimal value of the compass bearing.

POLLING REMOTE NODES 211

	Contact us
	Chapter 5 Wirelessly Networking Propeller Chips
	Introduction
	Overview of Networking and XBee Transceivers
	Hardware Used in This Chapter
	Testing and Configuring the XBee
	Sending Data from the Propeller to the PC
	Polling Remote Nodes

