
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

    



Adafruit PN532 RFID/NFC Breakout and Shield
Created by lady ada

Last updated on 2016-10-12 06:38:31 PM UTC



2
5
6
6

11
11
12

13
15
15
15
16

18
18
18
19
19
20

21
21
21
21
23
23
24
24
26
26
27
27
27
27
28

29
29

Guide Contents

Guide Contents
Overview
Breakout Wiring

Wiring the Breakout for SPI

Shield Wiring
Solder the Headers
Using the Adafruit NFC Shield with I2C

Using with the Arduino Leonardo and Yun
Arduino Library

Which Library?
Library Installation
Testing MiFare

About NFC
NFC (Near Field Communication)
Passive Communication: ISO14443A Cards (Mifare, etc.)
Active Communication (Peer-to-Peer)
NFC Data Exchange Format (NDEF)
Reading

MiFare Cards & Tags
MiFare Classic Cards
EEPROM Memory
4 Block Sectors
16 Block Sectors
Accessing EEPROM Memory
Note on Authentication
Example of a New Mifare Classic 1K Card
MiFare Ultralight Cards
EEPROM Memory
Lock Bytes (Page 2)
OTP Bytes (Page 3)
Data Pages (Page 4-15)
Accessing Data Blocks
Read/Write Lengths

About the NDEF Format
NDEF (NFC Data Exchange Format)

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 2 of 52



29
29
30
31
31
31
31
32
32
32
32
33
33
33
34
34
34
35
35
35
36
37
38

41
41

41
41
41
42
42
43

43

44

44

45
50

NDEF Messages
NDEF Records
Record Header (Byte 0)
Type Length
Payload Length
ID Length
Record Type
Record ID
Payload
Well-Known Records (TNF Record Type 0x01)
URI Records (0x55/'U')
Test Records
Smart Poster Records
Example NDEF Records
Using Mifare Classic Cards as an NDEF Tag
Mifare Application Directory (MAD)
Mifare Application Directory 1 (MAD1)
Mifare Application Directory 2 (MAD2)
MAD Sector Access
Storing NDEF Messages in Mifare Sectors
TLV Blocks
Memory Dump of a Mifare Classic 1K Card with an NDEF Record
NDEF Records

Using with LibNFC
Using the PN532 Breakout Boards with libnfc

libnfc In Linux (Ubuntu 10.10 used in this example)
Step One: Download libnfc
Step Two: Configure libnfc for PN532 and UART
Step Three: Build and install libnfc
Step Four: Check for installed devices
Step Five: Poll for an ISO14443A (Mifare, etc.) Card

libnfc With Mac OSX Lion
Download and build libnfc and configure if for PN532 UART (making the code changes
above before running make):
If everything worked out, switch to the examples folder and see if you can find the
PN532 and wait for an appropriate tag:

FAQ
Downloads

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 3 of 52



50
50
50
51

Files
Datasheets
Breakout v1.6 schematic & print
Version 1.3 schematic

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 4 of 52



Overview

Hey! So this is not a full tutorial, its just a quickstart guide while we do more research into
RFID/NFC. There's a lot of info here but not everything is explained in detail. We hope to fill
out the tutorial but there's not a lot of good information about NFC so it's taking a bit of time!
 

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 5 of 52



Breakout Wiring

This part of the tutorial is specifically for the Breakout board. We show how to use it with
SPI. The breakout also supports TTL serial and I2C but we don't have a tutorial for using it
that way as SPI is the most cross-platform method to communicate

If you're using the shield, check the next page

Wiring the Breakout for SPI

The PN532 chip and breakout is designed to be used by 3.3V systems. To use it with a 5V
system such as an Arduino, a level shifter is required to convert the high voltages into 3.3V.
If you have a 3.3V embedded system you won't have to use the shifter of course!

To begin, we'll solder in the header to the breakout board. You'll need two small 3-pin

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 6 of 52



pieces of header and one 8-pin piece. You can break these off of a large piece.

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 7 of 52



Solder the two small pieces to the SEL0 and SEL1 pads. These are interface selectors for
the chip. Depending on how the jumpers are inserted the chip will talk in TTL serial, i2c or
SPI. Also solder a strip to the end so you can plug it into a breadboard.

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 8 of 52



Wire up the 4050 level shifter chip to the Arduino as shown. The notch in the 4050 is at the
'top' in this image.

Arduino digital pin 2 is connected to 4050 pin 9 (orange wire)
Arduino digital pin 3 is connected to 4050 pin 11(yellow wire)
Arduino digital pin 4 is connected to 4050 pin 14 (green wire)

On the breakout board

3.3Vin is connected to the Arduino 3.3V pn
SCK is connected to 4050 pin 10 (orange wire)
MISO is connected to Arduino pin 5 (blue wire)
MOSI is connected to 4050 pin 12 (yellow wire)
SSEL is connected to 4050 pin 15& (green wire)
GND connects to Arduino ground (black wire)

Also connect 4050 pin #1 to 3.3V and pin #8 to ground.

Click to see a larger image. The red power wire should be connected to the 3.3v pin on the
Arduino!

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 9 of 52



Also, we need to select SPI as the interface so on SEL1 place the jumper in the ON

position. for SEL0 place the jumper in the OFF position.

That's it! Later on you can change what Arduino pins you are using but for the beginning
test we suggest matching our wiring.
If you are using the breakout in I2C mode, you will also need to add two 1.5K pullups on the
SCL/SDA lines, since the breakout and the Arduino don't include the pullups. Simply solder
or add a 1.5K resistor between SCL and 3.3V, and SDA and 3.3V, and then connect the
breakout as you normally would.
 

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 10 of 52



Shield Wiring

Solder the Headers

The first step is to solder the headers to the shield. Cut the header strip to length and insert
the sections (long pins down) into an Arduino. Then place the shield on top and solder each
pin.

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 11 of 52



Using the Adafruit NFC Shield with I2C

The Adafruit NFC shield is designed to be used using the I2C by default. I2C only uses two
pins (Analog 4 and 5 which are fixed in hardware and cannot be changed) to communicate
and one pin as an 'interrupt' pin (Digital 2 - can be changed however). What is nice about
I2C is that it is a 'shared' bus - unlike SPI and TTL serial - so you can put as many sensors
as you'd like all on the same two pins, as long as their addresses don't collide/conflict. The
Interrupt pin is handy because instead of constantly asking the NFC shield "is there a card
in view yet? what about now?" constantly, the chip will alert us when a NFC target comes
into the antenna range.

The shield is drop-in compatible with any Classic Arduino (UNO, Duemilanove, Diecimilla,
etc using the ATmega168 or '328) as well as any Mega R3 or later. 

Mega R2 Arduinos work as well but you need to solder a wire from the
 (http://adafru.it/aUS)SDA (http://adafru.it/aUS)

and  (http://adafru.it/aUS)SCL (http://adafru.it/aUS) pin holes to the Mega's I2C pins on

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 12 of 52



Digital #20 and #21 (http://adafru.it/aUS)

Using with the Arduino Leonardo and Yun

The IRQ pin is tied to Digital pin #2 by default. However, on the Arduino Leonardo and Yun,
digital #2 is used for I2C which will not work. If using with a Leonardo or Yun, cut the trace
beween the IRQ pin and Digital #2 and solder a wire from IRQ pin to Digital #4 or higher.
Then change the example code so the the IRQ pin is declared as the new pin (say #6) not
#2
Here are some photos of setting the IRQ pin to digital 6. First, use a sharp hobby knife to
cut the trace from IRQ to 2

Solder a wire from IRQ to #6

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 13 of 52



 

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 14 of 52



Arduino Library

Which Library?

In the past there were two separate Arduino libraries for using the Adafruit NFC boards.
 One library supported the breakout over a SPI connection, and the other library supported
the breakout or shield over an I2C connection.  However both of these libraries have been
merged into a single Arduino library, Adafruit-PN532 (http://adafru.it/eHi).

The Adafruit PN532 library has the ability to read MiFare cards, including the hard-coded ID
numbers, as well as authenticate and read/write EEPROM chunks.  It can work with both
the breakout and shield using either a SPI or I2C connection.

Library Installation

Download the Adafruit PN532 library from github (http://adafru.it/aSX). Uncompress the
folder and rename the folder Adafruit_PN532. Inside the folder you should see the
Adafruit_PN532.cpp and Adafruit_PN532.h files. Install the Adafruit_PN532 library foler
by placing it in your arduinosketchfolder/libraries folder. You may have to create the
libraries subfolder if this is your first library. You can read more about installing libraries in
our tutorial (http://adafru.it/aYG).

Restart the Arduino IDE. You should now be able to select File > Examples >

Adafruit_PN532 > readMifare sketch.

If you're using the NFC breakout with a SPI connection that uses the wiring shown on
previous pages you can immediately upload the sketch to the Arduino and skip down to the
Testing MiFare (http://adafru.it/kAc) section.

If you're using the NFC shield, or are using the breakout with an I2C connection then
you must make a small change to configure the example for I2C.  Scroll down to these lines
near the top of the sketch:

// Uncomment just _one_ line below depending on how your breakout or shield
// is connected to the Arduino:

// Use this line for a breakout with a SPI connection:
Adafruit_PN532 nfc(PN532_SCK, PN532_MISO, PN532_MOSI, PN532_SS);

// Use this line for a breakout with a hardware SPI connection.  Note that

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 15 of 52



// the PN532 SCK, MOSI, and MISO pins need to be connected to the Arduino's
// hardware SPI SCK, MOSI, and MISO pins.  On an Arduino Uno these are
// SCK = 13, MOSI = 11, MISO = 12.  The SS line can be any digital IO pin.
//Adafruit_PN532 nfc(PN532_SS);

// Or use this line for a breakout or shield with an I2C connection:
//Adafruit_PN532 nfc(PN532_IRQ, PN532_RESET);

Change them so the second line is uncommented and the first line is commented.  This will
configure the sketch to make the library use I2C for communication with the NFC shield or
breakout.  The modified code should look like:

// Uncomment just _one_ line below depending on how your breakout or shield
// is connected to the Arduino:

// Use this line for a breakout with a SPI connection:
//Adafruit_PN532 nfc(PN532_SCK, PN532_MISO, PN532_MOSI, PN532_SS);

// Use this line for a breakout with a hardware SPI connection.  Note that
// the PN532 SCK, MOSI, and MISO pins need to be connected to the Arduino's
// hardware SPI SCK, MOSI, and MISO pins.  On an Arduino Uno these are
// SCK = 13, MOSI = 11, MISO = 12.  The SS line can be any digital IO pin.
//Adafruit_PN532 nfc(PN532_SS);

// Or use this line for a breakout or shield with an I2C connection:
Adafruit_PN532 nfc(PN532_IRQ, PN532_RESET);

Then upload the example to the Arduino and continue on.  Note that you need to make a

similar change to pick the interface for any other NFC example from the library.

Testing MiFare

In the serial monitor, you should see that it found the PN532 chip. Then you can place your
tag nearby and it will display the 4 byte ID code (this one is 0xAE 0x4C 0xF0 0x6C) and
then the integer version of all four bytes together. You can use this number to identify each
card. Recently NXP made so many cards that they actually ran through all 4 Bytes (2^32)
so the number is not guaranteed to be absolutely unique. However, the chances are
extremely slim you will have two cards with the same ID so as long as you aren't using
these cards for anything terribly important (like money transfer) its fine to use the number as
a unique identifier

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 16 of 52



 

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 17 of 52



About NFC

NFC (Near Field Communication)

NFC (Near Field Communication) is a set of short-range (typically up to 10cm) wireless
communication technologies designed to offer light-weight and secure communication
between two devices. While NFC was invented by NXP (Phillips at the time), Nokia and
Sony, the main body behind the NFC 'standard' today is the NFC
Forum (http://adafru.it/aSy), who are responsible for publishing and maintaining a variety of
standards relating to NFC technology.

NFC operates at 13.56MHz, and is based around an "initiator" and "target" model where the
initiator generates a small magnetic field that powers the target, meaning that the target
does not require a power source. This means of communication is referred to as Passive

Communication, and is used to read and write to small, inexpensive 13.56MHz RFID tags
based on standards like ISO14443A. Active communication (peer-to-peer) is also
possible when both devices are powered, where each device alternately creates its own
magentic field, with the secondary device as a target and vice versa in continuous rotation.

Passive Communication: ISO14443A Cards (Mifare, etc.)

While the PN53x family of transceivers from NXP are compatible with a number of
13.56MHz RFID card standards, by far the most popular standard is ISO14443A. A variety
of manufacturers produce ISO14443A compatible cards or chips, but the most common are
based around the Mifare family from NXP. Mifare Classic and Mifare Ultralight are probably
the most frequently encountered and useful for basic projects, though many tags with
improved security and encryption also exist (Mifare DESFire, etc.). All of the tags sold at
adafruit.com are Mifare Classic 1K, meaning that they contains 1K (1024 bytes) of
programmable EEPROM memory which can be read and modified in passive mode by the
initiator device (the PN532).

While all ISO14443A cards share certain common characteristics on the highest level
(defined by the four part standard), each set of Mifare chips (Classic, Ultralight, Plus,
DESFire, etc.) has it's own features and peculiarities. The two most common formats are
described below.

Mifare Classic (http://adafru.it/cl7): These cards are extremely common, and contain
1K or 4K of EEPROM, with basic security for each 64 byte (1K/4K cards) or 256 byte

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 18 of 52



(4K cards) sector.
Mifare Ultralight (http://adafru.it/cl7): Contains 512 bytes of EEPROM, including 32-
bits of OTP memory. These tags are inexpensive, often come in sticker format and
are are frequently used for transportation ticketing, concert tickets, etc.

Active Communication (Peer-to-Peer)

Active or "Peer-to-Peer" communication is still based around the Initiator/Target model
described earlier, but both devices are actively powered and switch roles from being an
Initiator or a Target during the communication. When one device is initiating a conversation
with the other, it enables it's magnetic field and the receiving device listens in (with it's own
magnetic field disabled). Afterwards, the target/recipient device may need to respond and
will in turn activate it's own magnetic field and the original device will be configured as the
target. Despite two devices being present, only one magnetic field is active at a time, with
each device constantly enabling or disabling its own magnetic field.

ToDo: Add better description of active mode, but I need to test it out a bit first myself!

NFC Data Exchange Format (NDEF)

The NFC Data Exchange Format (NDEF) is a standardised data format that can be used to
exchange information between any compatible NFC device and another NFC device or tag.
The data format consists of NDEF Messages and NDEF Records. The standard is
maintained by the NFC Forum and is freely available for consultation but requires accepting
a license agreement to download (http://adafru.it/aSA).

The NDEF format is used to store and exchange information like URIs, plain text, etc., using
a commonly understood format. NFC tags like Mifare Classic cards can be configured as
NDEF tags, and data written to them by one NFC device (NDEF Records) can be
understood and accessed by any other NDEF compatible device. NDEF messages can also
be used to exchange data between two active NFC devices in "peer-to-peer" mode. By
adhering to the NDEF data exchange format during communication, devices that would
otherwise have no meaningful knowledge of each other or common language are able to
share data in an organised, mutually understandable manner.

The NDEF standard includes numerous Record Type Definitions (RTDs) that define how
information like URIs should be stored, and each NDEF device, tag or message can
contained multiple RTDs. Standard RTD definitions are described in "NFC Record Type
Definition (RTD) Specification” maintained by the NFC Forum.

* NDEF Overview (http://adafru.it/cl7): This page offers a more detailed explanation of

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 19 of 52



NDEF, including how Mifare Classic cards can be used to store NDEF messages.

NOTE: The dedicated NDEF page is still a work in progress and some information is
currently incomplete.

Reading

For more details about NFC/RFID and this chip we suggest the following fantastic
resources:

RFID selection guide (http://adafru.it/aSC) - a lot of details about RFID in general
Nokia's Introduction to NFC  (http://adafru.it/aSD)- a lot of details about NFC in
general
NXP S50 chip datasheet (http://adafru.it/aSE) , the chip inside MiFare classic tags
NXP PN532 Short Form Datasheet (http://adafru.it/aSF)
NXP PN532 Long Form Datasheet (http://adafru.it/aSG)
NXP PN532 User Manual (http://adafru.it/aSH)
NXP PN532 App Note (http://adafru.it/aSI)
Using PN532 with libnfc (http://adafru.it/aSJ)

NFC Glossary (http://adafru.it/aSK)

 

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 20 of 52



MiFare Cards & Tags

MiFare is one of the four 13.56MHz card 'protocols' (FeliCa is another well known one) All
of the cards and tags sold at the Adafruit shop use the inexpensive and popular MiFare
Classic chipset

MiFare Classic Cards

MIFARE Classic cards come in 1K and 4K varieties. While several varieties of chips exist,
the two main chipsets used are described in the following publicly accessible documents:

MF1S503x Mifare Classic 1K data sheet (http://adafru.it/aSL)
MF1S70yyX MIFARE Classic 4K data sheet (http://adafru.it/aSM)

Mifare Classic cards typically have a 4-byte NUID that uniquely (within the numeric limits of
the value) identifies the card. It's possible to have a 7 byte IDs as well, but the 4 byte
models are far more common for Mifare Classic.

EEPROM Memory

Mifare Classic cards have either 1K or 4K of EEPROM memory. Each memory block can be
configured with different access conditions, with two seperate authentication keys present in
each block.

Mifare Classic cards are divided into section called sectors and blocks. Each "sector" has
individual access rights, and contains a fixed number of "blocks" that are controlled by these
access rights. Each block contains 16 bytes, and sectors contains either 4 blocks (1K/4K
cards) for a total of 64 bytes per sector, or 16 blocks (4K cards only) for a total of 256 bytes
per sector. The card types are organised as follows:

1K Cards - 16 sectors of 4 blocks each (sectors 0..15)
4K Cards - 32 sectors of 4 blocks each (sectors 0..31) and 8 sectors of 16 blocks
each (sectors 32..39)

4 Block Sectors

1K and 4K cards both use 16 sectors of 4 blocks each, with the bottom 1K of memory on
the 4K cards being organised identically to the 1K models for compatability reasons. These

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 21 of 52



individual 4 block sectors (containing 64 byts each) have basic security features are can
each be configured with seperate read/write access and two different 6-byte authentication
keys (the keys can be different for each sector). Due to these security features (which are
stored in the last block, called the Sector Trailer), only the bottom 3 blocks of each sector
are actually available for data storage, meaning you have 48 bytes per 64 byte sector
available for your own use.

Each 4 block sector is organised as follows, with four rows of 16 bytes each for a total of 64-
bytes per sector. The first two sectors of any card are shown:

Sector  Block   Bytes                                                           Description
  ------  -----   -----                                                           -----------
                  0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15

  1       3       [-------KEY A-------]   [Access Bits]   [-------KEY B-------]   Sector Trailer
          2       [                            Data                           ]   Data
          1       [                            Data                           ]   Data
          0       [                            Data                           ]   Data

  0       3       [-------KEY A-------]   [Access Bits]   [-------KEY B-------]   Sector Trailer
          2       [                            Data                           ]   Data
          1       [                            Data                           ]   Data
          0       [                     Manufacturer Data                     ]   Manufacturer Block

Sector Trailer (Block 3)

The sector trailer block contains the two secret keys (Key A and Key B), as well as the
access conditions for the four blocks. It has the following structure:

      Sector Trailer Bytes
      --------------------------------------------------------------
      0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15
      [       Key A       ]   [Access Bits]   [       Key B       ]

For more information in using Keys to access the clock contents, see Accessing Data
Blocks further below.

Data Blocks (Blocks 0..2)

Data blocks are 16 bytes wide and, depending on the permissions set in the access bits,
can be read from and written to. You are free to use the 16 data bytes in any way you wish.
You can easily store text input, store four 32-bit integer values, a 16 character uri, etc.

Data Blocks as "Value Blocks"

An alternative to storing random data in the 16 byte-wide blocks is to configure them as
"Value Blocks". Value blocks allow performing electronic purse functions (valid commands
are: read, write, increment, decrement, restore, transfer).

Each Value block contains a single signed 32-bit value, and this value is stored 3 times for

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 22 of 52



data integrity and security reasons. It is stored twice non-inverted, and once inverted. The
last 4 bytes are used for a 1-byte address, which is stored 4 times (twice non-inverted, and
twice inverted).

Data blocks configured as "Value Blocks" have the following structure:

      Value Block Bytes
      --------------------------------------------------------------
      0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15
      [   Value   ]   [   ~Value  ]   [   Value   ]   [A  ~A  A   ~A]

Manufacturer Block (Sector 0, Block 0)

Sector 0 is special since it contains the Manufacturer Block. This block contains the
manufacturer data, and is read-only. It should be avoided unless you know what you are
doing.

16 Block Sectors

16 block sectors are identical to 4 block sectors, but with more data blocks. The same
structure described in the 4 block sectors above applies.

  Sector  Block   Bytes                                                           Description
  ------  -----   -----                                                           ----------
                  0   1   2   3   4   5   6   7   8   9   10  11  12  13  14  15

  32      15      [-------KEY A-------]   [Access Bits]   [-------KEY B-------]   Sector Trailer 32
          14      [                            Data                           ]   Data
          13      [                            Data                           ]   Data
          ...
          2       [                            Data                           ]   Data
          1       [                            Data                           ]   Data
          0       [                            Data                           ]   Data

Accessing EEPROM Memory

To access the EEPROM on the cards, you need to perform the following steps:

1. You must retrieve the 4-byte NUID of the card (this can sometimes be 7-bytes long as
well, though rarely for Mifare Classic cards). This is required for the subsequent
authentication process.

2. You must authenticate the sector you wish to access according to the access rules
defined in the Sector Trailer block for that sector, by passing in the appropriate 6 byte
Authentication Key (ex. 0xFF 0xFF 0xFF 0xFF 0xFF 0xFF for new cards).

3. Once authenication has succeeded, and depending on the sector permissions, you
can then read/write/increment/decrement the contents of the specific block. Note that

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 23 of 52



you need to re-authenticate for each sector that you access, since each sector can
have it's own distinct access keys and rights!

Note on Authentication

Before you can do access the sector's memory, you first need to "authenticate" according to
the security settings stored in the Sector Trailer. By default, any new card will generally be
configured to allow full access to every block in the sector using Key A and a value of 0xFF
0xFF 0xFF 0xFF 0xFF 0xFF. Some other common keys that you may wish to try if this
doesn't work are:

          0XFF 0XFF 0XFF 0XFF 0XFF 0XFF
          0XD3 0XF7 0XD3 0XF7 0XD3 0XF7
          0XA0 0XA1 0XA2 0XA3 0XA4 0XA5
          0XB0 0XB1 0XB2 0XB3 0XB4 0XB5
          0X4D 0X3A 0X99 0XC3 0X51 0XDD
          0X1A 0X98 0X2C 0X7E 0X45 0X9A
          0XAA 0XBB 0XCC 0XDD 0XEE 0XFF
          0X00 0X00 0X00 0X00 0X00 0X00
          0XAB 0XCD 0XEF 0X12 0X34 0X56

Example of a New Mifare Classic 1K Card

The follow memory dump illustrates the structure of a 1K Mifare Classic Card, where the
data and Sector Trailer blocks can be clearly seen:

[--------------------------Start of Memory Dump--------------------------]
------------------------Sector 0-------------------------
Block 0  8E 02 6F 66 85 08 04 00 62 63 64 65 66 67 68 69  ?.of?...bcdefghi
Block 1  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 2  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 3  00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 1-------------------------
Block 4  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 5  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 6  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 7  00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 2-------------------------
Block 8  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 9  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 11 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 3-------------------------
Block 12 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 13 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 14 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 15 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 4-------------------------

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 24 of 52



Block 16 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 18 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 19 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 5-------------------------
Block 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 21 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 22 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 23 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 6-------------------------
Block 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 25 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 26 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 27 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 7-------------------------
Block 28 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 29 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 30 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 31 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 8-------------------------
Block 32 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 33 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 34 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 35 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 9-------------------------
Block 36 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 37 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 38 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 39 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 10-------------------------
Block 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 41 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 42 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 43 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 11-------------------------
Block 44 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 45 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 46 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 47 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 12-------------------------
Block 48 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 49 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 51 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 13-------------------------
Block 52 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 53 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 55 00 00 00 00 00 00 FF 07 80 69 FF FF FF FF FF FF  ......ÿ.?iÿÿÿÿÿÿ
------------------------Sector 14-------------------------
Block 56 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
Block 57 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

© Adafruit Industries https://learn.adafruit.com/adafruit-pn532-rfid-nfc Page 25 of 52


	Contact us
	Guide Contents
	Overview
	Breakout Wiring
	Wiring the Breakout for SPI

	Shield Wiring
	Solder the Headers
	Using the Adafruit NFC Shield with I2C

	Using with the Arduino Leonardo and Yun
	Arduino Library
	Which Library?
	Library Installation
	Testing MiFare

	About NFC
	NFC (Near Field Communication)
	Passive Communication: ISO14443A Cards (Mifare, etc.)
	Active Communication (Peer-to-Peer)
	NFC Data Exchange Format (NDEF)
	Reading

	MiFare Cards & Tags
	MiFare Classic Cards
	EEPROM Memory
	4 Block Sectors
	16 Block Sectors
	Accessing EEPROM Memory
	Note on Authentication
	Example of a New Mifare Classic 1K Card


