# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





# Adafruit I2S Stereo Decoder - UDA1334A

Created by lady ada



Last updated on 2018-07-20 04:34:40 PM UTC

| Guide Contents                        | 2  |
|---------------------------------------|----|
| Overview                              | 3  |
| Pinouts                               | 6  |
| Power Pins                            | 6  |
| I2S Pins                              | 6  |
| Audio Outputs                         | 7  |
| Optional Control Pins                 | 7  |
| Assembly                              | 9  |
| Installing Standard Headers           | 9  |
| Raspberry Pi Wiring                   | 13 |
| Raspberry Pi Setup                    | 14 |
| Fast Install                          | 14 |
| Detailed Install                      | 15 |
| Update /etc/modprobe.d (if it exists) | 15 |
| Disable headphone audio (if it's set) | 17 |
| Create asound.conf file               | 18 |
| Add Device Tree Overlay               | 20 |
| Spocker Testal                        | 22 |
| Simple white poise speaker test       | 22 |
| Simple WAV speaker test               | 22 |
| Simple MP3 speaker test               | 22 |
| Volume adjustment                     | 22 |
| Pi I2S Tweaks                         | 24 |
| Reducing popping                      | 24 |
| Step 1                                | 24 |
| Add software volume control           | 26 |
| Play Audio with PyGame                | 29 |
| Install PyGame                        | 29 |
| Run Demo                              | 29 |
| Arduino Wiring & Test                 | 32 |
| CircuitPython Wiring & Test           | 34 |
| Wiring                                | 34 |
| Code Examples                         | 36 |
| Vave File                             | 30 |
| Where's my I2S?                       | 38 |
| Downloads                             | 41 |
| Files                                 | 41 |
| Schematic & Fabrication Print         | 41 |
|                                       |    |

#### Overview



This fully-featured UDA1334A I2S Stereo DAC breakout is a perfect match for any I2S-output audio interface. It's affordable but sounds great! The NXP UDA1334A is a jack-of-all-I2S-trades: you can use 3.3V - 5V logic levels (a rarity), and can process multiple different formats by setting two pins to high or low. The DAC will process data immediately, and give you a clear, analog, stereo line level output. It's even cool with MCLK-less I2S interfaces such as the Raspberry Pi (which it's ideal for) - a built in PLL will generate the proper clock from the incoming signal.



For inputs, you can use classic I2S (the default) or 16-bit, 20-bit or 24-bit left justified data. You can set it up to take an input system/master clock but we default-set it to just generate it for you, so you only need to connect Data In, Word Select (Left/Right Clock) and Bit Clock lines. If you want, there's a mute pin and a de-emphasis filter you can turn on.



We put in plenty of ferrite beads, a low-dropout regulator, and the recommended band-pass filter so you get a very nice clean output. With a sine-wave generator we swept through 20-20KHz and saw no attenuation or distortion. Plug into either the 3.5mm stereo headphone jack or the breadboard-friendly pads. We think you'll be pleased with this DAC!



Each order comes with one I2S Stereo DAC breakout and some header you can solder on.

### Pinouts



The UDA1334A is an **I2S** amplifier - it does not use analog inputs, it only has digital audio input support! Don't confuse I2S with I2C, I2S is a sound protocol whereas I2C is for small amounts of data.

#### **Power Pins**



The UDA1334A requires 3.3V power but can take 3-5V level logic on nearly all pins.

You can provide 3-5V power on the **VIN** pin and **GND** and the built in regulator will generate a nice clean 3.3V supplier on **3VO**ut.

Use the quietest power supply for Vin, we do filter the power supply, but the quieter the better!

# **I2S** Pins



Three pins are used for stereo I2S data in. These pins are required!

These can be 3.3-5V logic

- WSEL (Word Select or Left/Right Clock) this is the pin that tells the DAC when the data is for the left channel and when its for the right channel
- DIN (Data In) This is the pin that has the actual data coming in, both left and right data are sent on this pin, the WSEL pin indicates when left or right is being transmitted
- BCLK (Bit Clock) This is the pin that tells the amplifier when to read data on the data pin.

MCLK is not required to use this DAC, if you have an MCLK pin on your audio source, leave it disconnected.

# Audio Outputs



The exciting part! This is where your line level audio comes out. We put big 47uF blocking capacitors on the output so you can connect this to any stereo system. **AGND** is a clean analog ground signal that we recommend using as your analog reference, you'll get a cleaner signal.

Note that this DAC was intended for use with a separate amplifier and is rated for a 3 K $\Omega$  load. However, we've found you *can* plug in 32 $\Omega$  headphones and the output is current-limited so it won't damage the DAC but you will get distortions. (Powered headphones won't have this issue)

# **Optional Control Pins**

There are some extra configuration pins if you want to use them. They are not required for 99% of usage with an Arduino or Teensy or Raspberry Pi. But you never know! So they are there for you. **PLL** and **SFO** are 3.3V logic only, the other pins are 3-5V safe.

Most of the pins have to do with changing the setup from audio mode to video mode. If you happen to want videomode, for synchronizing with NTSC/PAL, check the datasheet - we haven't used it for that purpose.



- SCLK (Sys Clock) Optional 27 MHz 'video mode' ssytem clock input - by default we generate the sysclock from the WS clock in 'audio mode' But the UDA can also take a oscillator input on this pin
- Mute Setting this pin High will mute the output
- **De-Em**phasis In audio mode (which is the default), can be used to add a de-emphasis filter. In video mode, where the system clock is generated from an oscillator, this is the clock output.
- PLL sets the PLL mode, by default pulled low for Audio. Can be pulled high or set to ~1.6V to set PAL or NTSC video frequency



**SFO** and **SF1** are used to set the input data format. By default both are pulled Low for I2S but you can change them around for alternate formats.

See the back of the PCB for a quick reference

# Assembly



# Installing Standard Headers

The shield comes with 0.1" standard header.



Break apart the 0.1" header into 6 and 9-pin long pieces and slip the short ends into the holes in the board



Make sure that all of the short parts of the header are sticking through the two sets of pads on either side of the board



Solder each one of the pins into the board to make a secure connection









That's it! Move on to next page for wiring information

# Raspberry Pi Wiring

if you have a Raspberry Pi and you want higher quality audio than the headphone jack can provide, I2S is a good option! You only use 3 pins, and since its a pure-digital output, there can be less noise and interference.

This board works very well with boards that *don't* have audio like the Pi Zero and is the easiest way to get quality audio out

This technique will work with any Raspberry Pi with the 2x20 connector. Older Pi 1's with a 2x13 connector do not bring out the I2S pins as easily

Connect:

- Amp Vin to Raspbery Pi 3V or 5V
- Amp GND to Raspbery Pi GND
- Amp DIN to Raspbery Pi #21
- Amp BCLK to Raspbery Pi #18
- Amp LRCLK to Raspbery Pi #19



https://adafru.it/A9T

https://adafru.it/A9T

# Raspberry Pi Setup

At this time, Raspbery Pi linux kernel does not support mono audio out of the I2S interface, you can only play stereo, so any mono audio files may need conversion to stereo!

2017-11-2 Raspbian PIXEL ('full') has broken something in volume control. I2S works, but there's no software volume setup, if you need this, try Raspbian Lite - will try to fix as soon as we figure out why :)

#### Fast Install

Luckily its quite easy to install support for I2S DACs on Raspbian Jessie.

These instructions are totally cribbed from the PhatDAC instructions at the lovely folks at Pimoroni! (https://adafru.it/nFy)

Run the following from your Raspberry Pi with Internet connectivity:

curl -sS https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/master/i2samp.sh | bash



You will need to reboot once installed.



#### You must reboot to enable the speaker hardware!

After rebooting, log back in and re-run the script again...It will ask you if you want to test the speaker. Say **y**es and listen for audio to come out of your speakers...



In order to have volume control appear in Raspbian desktop or Retropie you must reboot a second time after doing the speaker test, with **sudo reboot** 

You can then go to the next page on testing and optimizing your setup. Skip the rest of this page on **Detailed Installation** if the script worked for you!

#### Detailed Install

If, for some reason, you can't just run the script and you want to go through the install by hand - here's all the steps!

#### Update /etc/modprobe.d (if it exists)

Log into your Pi and get into a serial console (either via a console cable, the TV console, RXVT, or what have you)

Edit the raspi blacklist with

sudo nano /etc/modprobe.d/raspi-blacklist.conf



If the file is empty, just skip this step

However, if you see the following lines:

blacklist i2c-bcm2708 blacklist snd-soc-pcm512x blacklist snd-soc-wm8804



Update the lines by putting a # before each line



Save by typing Control-X Y <return>

#### Disable headphone audio (if it's set)

Edit the raspi modules list with

sudo nano /etc/modules

If the file is empty, just skip this step

However, if you see the following line:

#### snd\_bcm2835



Put a # in front of it

| Pi@raspberrypi: ~                                          |                                   |
|------------------------------------------------------------|-----------------------------------|
| GNU nano 2.2.6 File: /etc/m                                | nodules Modified A                |
| <pre># /etc/modules: kernel modules to load at<br/>#</pre> | ; boot time.                      |
| # This file contains the names of kernel                   | modules that should be loaded     |
| # at boot time, one per line. Lines begin                  | ning with "#" are ignored.        |
| # <mark>B</mark> nd_bcm2835                                |                                   |
|                                                            | E                                 |
| AG Get Help AG WriteOut AR Read File A                     | Prev Page ^K Cut Text ^C Cur Pos  |
| A BAIL O DUSCHLY W WHELE IS                                | Next Fage o oncut fext 1 10 Spell |

and save with Control-X Y <return>

#### Create asound.conf file

Edit the raspi modules list with

sudo nano /etc/asound.conf

This file ought to be blank!



Copy and paste the following text into the file

```
pcm.speakerbonnet {
   type hw card 0
}
pcm.dmixer {
  type dmix
  ipc key 1024
  ipc_perm 0666
  slave {
    pcm "speakerbonnet"
    period time 0
    period_size 1024
    buffer_size 8192
    rate 44100
    channels 2
  }
}
ctl.dmixer {
   type hw card 0
}
pcm.softvol {
   type softvol
   slave.pcm "dmixer"
   control.name "PCM"
   control.card 0
}
ctl.softvol {
   type hw card 0
}
pcm.!default {
   type
                   plug
   slave.pcm
                 "softvol"
}
```



Save the file as usual

Add Device Tree Overlay

Edit your Pi configuration file with

sudo nano /boot/config.txt

And scroll down to the bottom. If you see a line that says: dtparam=audio=on



Disable it by putting a # in front.

Then add: dtoverlay=hifiberry-dac dtoverlay=i2s-mmap

on the next line. Save the file.

![](_page_21_Picture_2.jpeg)

Reboot your Pi with sudo reboot

# Raspberry Pi Test Speaker Tests!

OK you can use whatever software you like to play audio but if you'd like to test the speaker output, here's some quick commands that will let you verify your amp and speaker are working as they should!

#### Simple white noise speaker test

Run speaker-test -c2 to generate white noise out of the speaker, alternating left and right. Since the I2S amp merges left and right channels, you'll hear continuous white noise

#### Simple WAV speaker test

Once you've got something coming out, try to play an audio file with speaker-test (for WAV files, not MP3)

speaker-test -c2 --test=wav -w /usr/share/sounds/alsa/Front\_Center.wav

You'll hear audio coming from left and right alternating speakers

#### Simple MP3 speaker test

If you want to play a stream of music, you can try

sudo apt-get install -y mpg123 mpg123 http://ice1.somafm.com/u80s-128-mp3

If you want to play MP3's on command, check out this tutorial which covers how to set that up (https://adafru.it/aTD)

At this time, Jessie Raspbery Pi kernel **does not support mono audio** out of the I2S interface, **you can only play stereo**, so any mono audio files may need conversion to stereo!

#### Volume adjustment

Many programs like PyGame and Sonic Pi have volume control within the application. For other programs you can set the volume using the command line tool called **alsamixer**. Just type alsamixer in and then use the up/down arrows to set the volume. Press Escape once its set

![](_page_23_Picture_0.jpeg)

In Raspbian PIXEL you can set the volume using the menu item control. If it has an X through it, try restarting the Pi (you have to restart twice after install to get PIXEL to recognize the volume control

![](_page_23_Picture_2.jpeg)

# Pi I2S Tweaks

This page is deprecated, our installer already performs these steps for you, but we'll keep them here for archival use!

#### Reducing popping

For people who followed our original installation instructions with the simple also config, they may find that the I2S audio pops when playing new audio.

The workaround is to use a software mixer to output a fixed sample rate to the I2S device so the bit clock does not change. I use ALSA so I configured **dmixer** and I no longer have any pops or clicks. Note that the RaspPi I2S driver does not support **dmixer** by default and you must follow these instructions provided (https://adafru.it/sHF) to add it. Continue on for step-by-step on how to enable it!

#### Step 1

Start by modify /boot/config.txt to add dtoverlay=i2s-mmap

Run sudo nano /boot/config.txt and add the text to the bottom like so:

![](_page_24_Picture_8.jpeg)

Save and exit.

Then change /etc/asound.conf to:

```
pcm.speakerbonnet {
   type hw card 0
}
pcm.!default {
   type plug
   slave.pcm "dmixer"
}
pcm.dmixer {
   type dmix
   ipc key 1024
   ipc_perm 0666
   slave {
    pcm "speakerbonnet"
     period time 0
     period size 1024
     buffer size 8192
     rate 44100
     channels 2
   }
}
ctl.dmixer {
 type hw card 0
}
```

#### By running sudo nano /etc/asound.conf

This creates a PCM device called speakerbonnet which is connected to the hardware I2S device. Then we make a new 'dmix' device (type dmix) called pcm.dmixer. We give it a unique Inter Process Communication key (ipc\_key 1024) and permissions that are world-read-writeable (ipc\_perm 0666). The mixer will control the hardware pcm device speakerbonnet (pcm "speakerbonnet") and has a buffer set up so its nice and fast. The communication buffer is set up so there's no delays (period\_time 0, period\_size 1024) and buffer\_size 8192 work well). The default mixed rate is 44.1khz stereo (rate 44100 channels 2)

Finally we set up a control interface but it ended up working best to just put in the hardware device here - ctl.dmixer { type hw card 0 }