

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

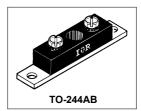
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

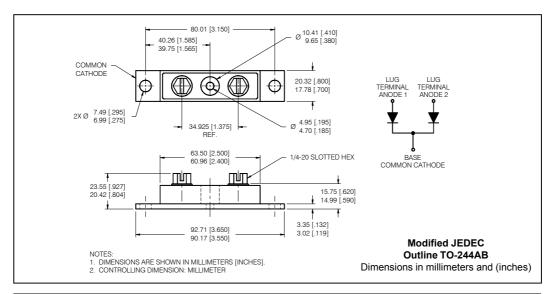


International Rectifier

400CNQ... SERIES

SCHOTTKY RECTIFIER

400 Amp


Major Ratings and Characteristics

Cha	racteristics	400CNQ	Units
I _{F(AV)}	Rectangular waveform	400	А
V _{RRM}	range	35 to 50	V
I _{FSM}	@tp = 5 µs sine	29,000	Α
V _F	@200Apk,T _J =125°C (per leg)	0.52	V
T _J	range	-55 to 150	°C

Description/ Features

The 400CNQ center tap, high current, Schottky rectifier module series has been optimized for very low forward voltage drop, with moderate leakage. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, welding, and reverse battery protection.

- $\bullet\,$ 150 °C T $_{\rm J}$ operation
- Center tap module
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

400CNQ... Series

Bulletin PD-2.264 rev. D 05/02

Voltage Ratings

Part number	400CNQ035	400CNQ040	400CNQ045	400CNQ050
V _R Max. DC Reverse Voltage (V)	35	40	45	50
V _{RWM} Max. Working Peak Reverse Voltage (V)		40	45	30

Absolute Maximum Ratings

	Parameters	400CNQ	Units	Conditions	
I _{E(AV)}	Max. Average Forward (PerLeg)	200	Α	50% duty cycle @ T _C = 114 °C, rectangular wave for	
. (,	Current *See Fig. 5 (Per Device)	400			
I _{FSM}	Max. Peak One Cycle Non-Repetitive	29,000	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with
	Surge Current (Per Leg) * See Fig. 7	3400	_ A	10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied
E _{AS}	Non-RepetitiveAvalancheEnergy (Per Leg)	180	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 40 \text{Amps}, L =$	0.22 mH
I _{AR}	Repetitive Avalanche Current (Per Leg)	40	Α	Current decaying linearly to ze Frequency limited by T _J max. \	

Electrical Specifications

Parameters		400CNQ	Units	Conditions	}
V _{FM}	Max. Forward Voltage Drop	0.57	V	@ 200A	T ₁ = 25 °C
	(Per Leg) * See Fig. 1 (1)	0.73	V	@ 400A	1, 20 0
		0.52	V	@ 200A	T - 425 °C
		0.68	٧	@ 400A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current	20	mA	T _J = 25 °C	V
	(Per Leg) * See Fig. 2 (1)	1	Α	T _J = 125 °C	$V_R = \text{rated } V_R$
V _{F(TO)}	Threshold Voltage	0.32	٧	$T_J = T_J \text{ max.}$	
r _t	Forward Slope Resistance	0.81	mΩ		
C_T	Max. Junction Capacitance (Per Leg)	10,300	pF	V _R = 5V _{DC} , (test signal range 100Khz to 1Mhz) 25°C	
L _S	-S Typical Series Inductance (Per Leg)		nΗ	From top of terminal hole to mounting plane	
dv/dt	dv/dt Max. Voltage Rate of Change		V/ µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters		400CNQ	Units	Conditions
T	Max. Junction Temperature Range		-55 to 150	°C	
T _{stg}	, Max. Storage Temperature Range		-55 to 150	°C	
R _{thJC}			0.20	°C/W	DC operation *See Fig. 4
R _{thJC}	Max. Thermal Resistance Junction to Case (Per Package)		0.10	°C/W	DC operation
R _{thCS}	Typical Thermal Resistance, Case to Heatsink		0.10	°C/W	Mounting surface, smooth and greased
wt	Approximate Weight		79(2.80)	g(oz.)	
Т	Mounting Torque Base	Min.	24 (20)		
		Max.	35 (30)		
	Mounting Torque Center Hole	Тур.	13.5(12)	(lbf-in)	
	Terminal Torque	Min.	35 (30)	(101-111)	
		Max.	46 (40)		
	Case Style Case Style		TO-244	AB	Modified JEDEC

Bulletin PD-2.264 rev. D 05/02

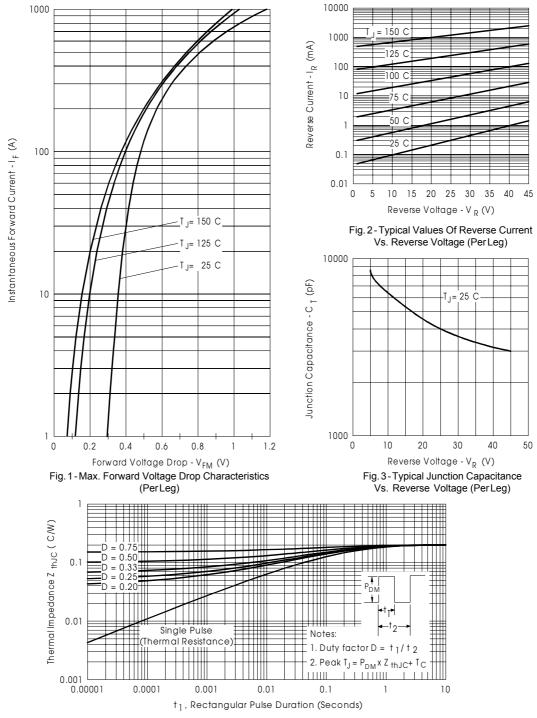
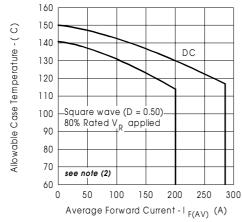



Fig. 4-Max. Thermal Impedance Z_{thJC} Characteristics (Per Leg)

Bulletin PD-2.264 rev. D 05/02

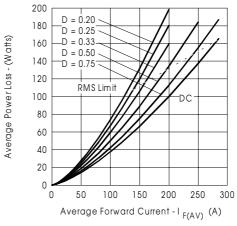


Fig. 5-Max. Allowable Case Temperature Vs. Average Forward Current (PerLeg)

Fig. 6-Forward Power Loss Characteristics (PerLeg)

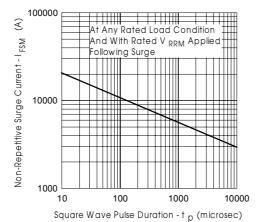
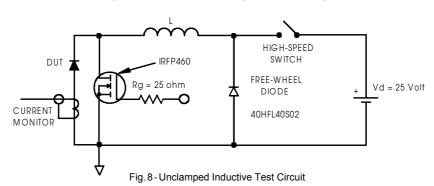



Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)

 $\begin{aligned} \textbf{(2)} \ \ &\text{Formula used: } \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} - (\textbf{Pd} + \textbf{Pd}_{\text{REV}}) \textbf{x} \textbf{R}_{\text{thJC}}; \\ &\text{Pd} = \textbf{Forward Power Loss} = \textbf{I}_{\text{F(AV)}} \textbf{x} \textbf{V}_{\text{FM}} \textcircled{0} (\textbf{I}_{\text{F(AV)}} / \textbf{D}) \ \ (\text{see Fig. 6}); \\ &\text{Pd}_{\text{REV}} = \textbf{Inverse Power Loss} = \textbf{V}_{\text{R1}} \textbf{x} \textbf{I}_{\text{R}} (\textbf{1} - \textbf{D}); \ \textbf{I}_{\text{R}} \textcircled{0} \textbf{V}_{\text{R1}} = \textbf{80} \% \ \text{rated } \textbf{V}_{\text{R}} \end{aligned}$

400CNQ... Series

Bulletin PD-2.264 rev. D 05/02

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 05/02