

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International Rectifier

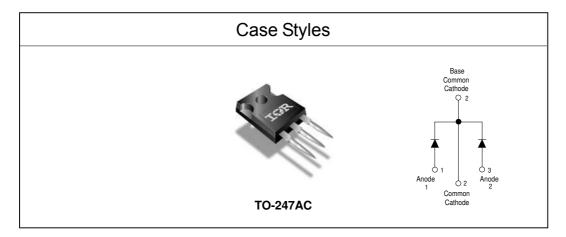
40L15CWPbF

SCHOTTKY RECTIFIER

2 x 20 Amps

$$I_{F(AV)} = 40Amp$$

 $V_R = 15V$


Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	40	А
V _{RRM}	15	V
I _{FSM} @tp=5 µs sine	700	Α
V _F @19 Apk, T _J =125°C (per leg, Typical)	0.25	V
T _J	- 55 to 125	°C

Description/ Features

The 40L15CWPbF center tap Schottky rectifier module has been optimized for ultra low forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to 125 °C junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

- 125°C T_J operation (V_R < 5V)
- Center tap module
- Optimized for OR-ing applications
- Ultra low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Lead-Free ("PbF" suffix)

International IOR Rectifier

Voltage Ratings

	Part number		40L15CWPbF
V	Max. DC Reverse Voltage (V)	@ T _J = 100 °C	45
V	RWM Max. Working Peak Reverse Voltag	15	

Absolute Maximum Ratings

	Parameters	40L15CW	Units	Conditions	
I _{E(AV)}	Max. Average Forward (Per Leg)	20	Α	50% duty cycle @ T _C = 86°C, rectangular wave form	
,	Current *See Fig. 5 (Per Device)	40			
I _{FSM}	Max. Peak One Cycle Non-Repetitive	700	Α	5μs Sine or 3μs Rect. pulse Following any rate load condition and	d
	Surge Current (Per Leg) * See Fig. 7	330		10ms Sine or 6ms Rect. pulse rated V _{RRM} applied	i wiui
E _{AS}	Non-Repetitive Avalanche Energy	10	mJ	T _J = 25 °C, I _{AS} = 2 Amps, L = 5 mH	
	(Per Leg)				
I _{AR}	Repetitive Avalanche Current	2	Α	Current decaying linearly to zero in 1 µsec	
	(Per Leg)			Frequency limited by T_J max. $V_A = 1.5 \times V_R$ typica	ıl

Electrical Specifications

	·					
	Parameters	40L1	5CW	Units		Conditions
		Тур.	Max.			
V_{FM}	Forward Voltage Drop	-	0.41	٧	@ 19A	T ₁ = 25 °C
	(Per Leg) * See Fig. 1 (1)	-	0.52	٧	@ 40A	1, 20 0
		0.25	0.33	٧	@ 19A	T ₁ = 125 °C
		0.37	0.50	٧	@ 40A	1 _J = 123 0
I _{RM}	Reverse Leakage Current	-	10	mA	T _J = 25 °C	V _P = rated V _P
	(Per Leg) * See Fig. 2 (1)	-	600	mA	T _J = 100 °C	V _R - rated V _R
V _{F(TO)}	Threshold Voltage	0.1	82	V	$T_J = T_J \text{ max.}$	
r,	Forward Slope Resistance	7.6		mΩ		
C _T	Max. Junction Capacitance (Per Leg)	- 2000		pF	$V_R = 5V_{DC}$ (to	est signal range 100Khz to 1Mhz) 25°C
L _s	Typical Series Inductance (Per Leg)	8	-	nΗ	Measured le	ad to lead 5mm from package body
dv/dt	Max. Voltage Rate of Change	10000		V/ µs	(Rated V _R)	

Thermal-Mechanical Specifications

(1) Pulse Width < 300µs, Duty Cycle <2%

	Parameters		40L15CW	Units	Conditions
T _J	Max. Junction Temperature Range		-55 to 125	°C	
T _{stg}	Max. Storage Temperature Range		-55 to 150	°C	
R _{thJC}			1.4	°C/W	DC operation *See Fig. 4
R _{thJC}	Max. Thermal Resistance Junction to Case (Per Package)		0.7	°C/W	DC operation
R _{thCS}	Typical Thermal Resistance, Case to Heatsink		0.24	°C/W	Mounting surface, smooth and greased
wt	Approximate Weight		6 (0.21)	g (oz.)	
Т	Mounting Torque	Min.	6(5)	Kg-cm	Non-lubricated threads
		Max.	12 (10)	(lbf-in)	
	Case Style		TO-247AC	(TO-3P)	JEDEC
	Marking Device		40L15CW		

Document Number: 94218

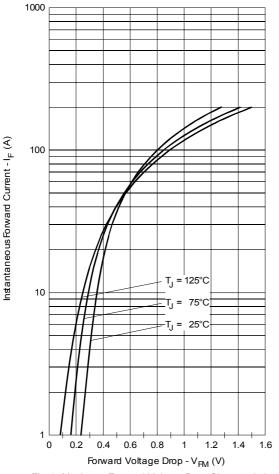


Fig. 1 - Maximum Forward Voltage Drop Characteristics

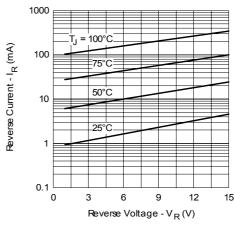


Fig. 2-Typical Values of Reverse Current Vs. Reverse Voltage

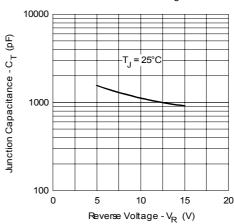


Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

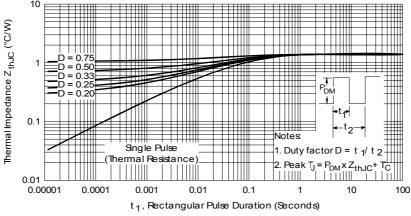


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

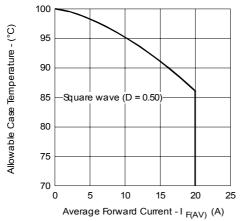


Fig. 5 - Maximum Allowable Case Temperature Vs. Average Forward Current

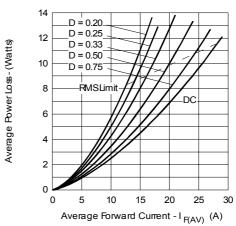
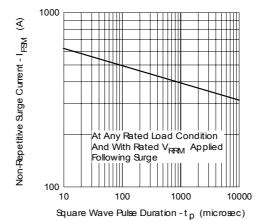
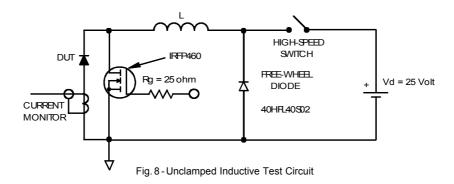
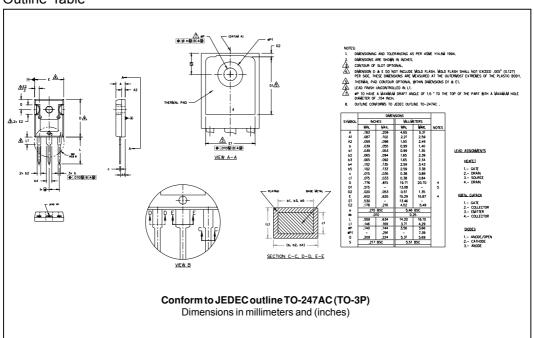
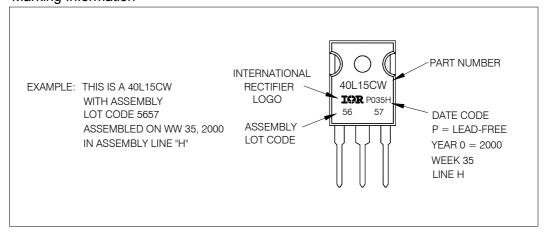
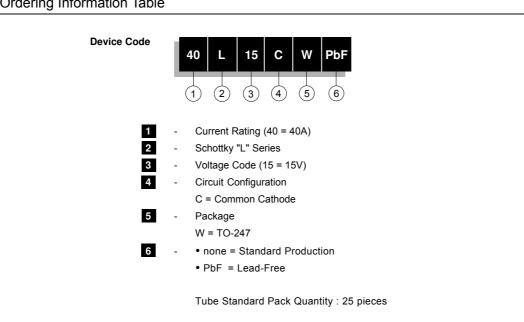


Fig. 6 - Forward Power Loss Characteristics


Fig. 7 - Maximum Non-Repetitive Surge Current

Outline Table



Marking Information

Document Number: 94218 www.vishay.com

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
11/06

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1