imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

1300 Henley Court Pullman, WA 99163 509.334.6306 www.store. digilent.com

Pmod CMPS2[™] Reference Manual

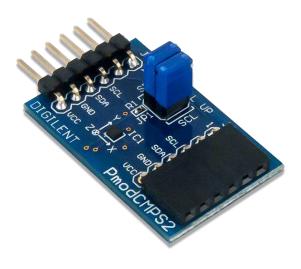

Revised July 19, 2017 This manual applies to the Pmod CMPS2 rev. A

Table of Contents

Т	Table of Contents 1					
0	vervie	w	2			
1	Spe	ecific	ations2			
	1.1	Pine	out Table Diagram			
	1.2	Phy	sical Dimensions			
2	Fui	nctio	nal Description3			
	2.1	Seri	ial Communication			
	2.2	Reg	ister Details			
	2.2	.1	Data Registers			
	2.2	.2	Status Register 4			
	2.2	.3	Internal Control Registers 4			
	2.2	.4	Continuous Measurement Mode5			
	2.2	.5	Output Resolution Measurement Time5			
	2.3	Qui	ck Start5			
	2.4	Арр	plications Information7			
	2.4	.1	Calibration7			
	2.4	.2	Data Conversion			
	2.5	Tim	ing Diagrams			

Overview

The Digilent Pmod CMPS2 is a 3 axis anisotropic magneto-resistive sensor. With Memsic's MMC34160PJ, the local magnetic field strength in a ± 16 Gauss range with a heading accuracy of 1° and up to 0.5 mG of resolution.

Features include:

- Low noise 3-axis Digital Compass
- 0.5 mG Field Resolution in ±16 Gauss fields
- I²C Slave, FAST (≤400 kHz) mode
- Optional pull-up resistors for SCL and SDA pins
- ±1° heading accuracy
- Small PCB size for flexible designs 0.8" × 1.25" (2.0 cm × 3.2 cm)
- 6-pin Pmod connector with I²C serial interface
- Pass-through Pmod host port for daisy chaining
- Follows Digilent <u>Pmod Interface Specification 1.1.0</u>
- Library and example code in the Pmod CMPS2 <u>Resource Center</u>

The Pmod CMPS2.

1 Specifications

Parameter	Min	Typical		Max		Units
Power Supply Voltage	1.62	1.8		3.6		V
Output Resolution	12	14		16		bits
Alignment Error	-3	±1		+3		Degrees
Parameter	Condition		Value	е		Units
Total RMS Noise	16 bits at 7.92	2 ms/S	1.5			mG
Total RMS Noise	Total RMS Noise16 bits at 4.08 ms/S		2.0			mG
Total RMS Noise	al RMS Noise 14 bits at 2.16 ms/S		4.0			mG
Total RMS Noise	12 bits at 1.20 ms/S		6.0			mG
Max Output Data Rate 16 bits at 7.92 ms/s		2 ms/S	125			Hz
Max Output Data Rate	16 bits at 4.08	8/S 250		250		Hz
Max Output Data Rate	14 bits at 2.16 ms/S		450			Hz
Max Output Data Rate 12 bits at 1.20 m) ms/S	800			Hz
Parameter		Value	Value		Uni	its
Field Range for Each Axis	±16			G		

1.1 Pinout Table Diagram

Header J1			Head	Header J2			Jumper JP1		
Pin	Signal	Description	Pin	Signal	Description	Pin	Status	Description	
1	N/C	Not Connected	1	N/C	Not Connected	SCL	Loaded	4.7 kΩ Pullup to Vcc	
2	N/C	Not Connected	2	N/C	Not Connected	SCL	Unloaded	No Pullup to Vcc	
3	SCL	Serial Clock	3	SCL	Serial Clock	SDA	Loaded	4.7 kΩ Pullup to Vcc	
4	SDA	Serial Data	4	SDA	Serial Data	SDA	Unloaded	No Pullup to Vcc	
5	GND	Power Supply Ground	5	GND	Power Supply Ground				
6	VCC	Power Supply (3.3V)	6	VCC	Power Supply (3.3V)				

1.2 Physical Dimensions

The pins on the pin header are spaced 100 mil apart. The PCB is 1.25 inches long on the sides parallel to the pins on the pin header and 0.8 inches long on the sides perpendicular to the pin header.

2 Functional Description

The Pmod CMPS2 utilizes the MMC34160PJ to collect magnetic field data. While communicating with the host board via the $l^{2}C$ protocol using an $l^{2}C$ address of 0x0110000/ users can measure the ±16 G field surrounding the device.

2.1 Serial Communication

The Pmod CMPS2 communicates with the host board via the I²C protocol. By first sending the 7-bit I²C device address of 0110000 and then a read/write bit (high/low logic level, respectively), followed by the register address of interest at a maximum clock frequency of 400 kHz users can both configure and read from the Pmod CMPS2. An additional set of pins on header J2 is provided so that users may daisy chain the Pmod CMPS2 with other I²C devices.

2.2 Register Details

2.2.1 Data Registers

Each Cartesian axis has two registers to store the high and low data bytes for each measurement. The data registers are arranged in a low byte, high byte arrangement.

Data Registers addresses 0x00 to 0x05					
Address	Register Name				
0x00	X out LSB				
0x01	X out MSB				

Data Registers addresses 0x00 to 0x05					
Address	Register Name				
0x02	Y out LSB				
0x03	Y out MSB				
0x04	Z out LSB				
0x05	Z out MSB				

2.2.2 Status Register

Bit Name	Bit Number	Bit Description	Bit Values	Functional Description
RSV	[7]	Reserved	0 ¹	Reserved Bit
RSV	[6]	Reserved	0 ¹	Reserved Bit
RSV	[5]	Reserved	0 ¹	Reserved Bit
RSV	[4]	Reserved	0 ¹	Reserved Bit
ST_XYZ_OK	[3]	ST_XYZ_OK	0 ¹	Indicates that the selftest was OK when this bit is a "1"
Rd_Done	[2]	Rd_Done	0 ¹	Indicates that chip was successfully able to read its memory.
Pump On	[1]	Pump On	0 ¹	This bit indicates the status of the charge pump.
RSV	[0]	Meas Done	0 ¹	Indicates that a measurement event is completed.

2.2.3 Internal Control Registers

	Internal Control 0								
Bit Name	Bit Number	Bit Description	Bit Values	Functional Description					
Refill Cap	[7]	Refill Cap	01	Setting this bit will recharge the capacitor at the CAP pin, it is requested to be issued before the SET/RESET command					
RST	[6]	Reset Sensor	0 ¹	Setting this bit will reset the sensor					
SET	[5]	Set Sensor	0 ¹	Setting this bit will set the sensor					
No Boost	[4]	No boost	0 ¹	Disable the charge pump					
CM Freq1 ²	[3]	Continuous Measurement bit 1	01	Controls the continuous measurement rate of the chip					
CM Freq0 ²	[2]	Continuous Measurement bit 0	0 ¹	Controls the continuous measurement rate of the chip					
Cont Mode On	[1]	Continuous Measurement Mode	0 ¹	Setting this bit enables Continuous Measurement Mode					
TM	[0]	Take Measurement	0 ¹	Setting this bit will initiate a reading					

	Internal Control 1							
Bit Name	Bit Number	Bit Description	Bit Values	Functional Description				
RST	[7]	Software reset bit	0 ¹	Normal Operation, this bit self clears				
TEMP-tst	[6]	Temp test	0 ¹	Factory-use register				
ST_XYZ	[5]	Selftest check	0 ¹	Set this bit an execute TM command, the result can be read as bit ST-XYZ_OK				
Z-inhibit	[4]	Z-inhibit	0 ¹	Factory-use register				
Y-inhibit	[3]	Y-inhibit	0 ¹	Factory-use register				
X-inhibit	[2]	X-inhibit	0 ¹	Factory-use register				
BW1 ³	[1]	Bandwidth bit	0 ¹	Controls the output resolution and measurement time				
BW0 ³	[0]	Bandwidth bit	0 ¹	Controls the output resolution and measurement time				

Notes:

- ¹ This is the value on power-up and reset
- ² For more details see the Continuous Measurement Mode section
- ³ For more details see the Output Resolution and Measurement Time section

2.2.4 Continuous Measurement Mode

Continuous Measurement Mode Settings						
CM Freq1 CM Freq0 Frequency						
0	0	1.5 Hz				
0	1	13 Hz				
1	0	25 Hz				
1	1	50 Hz				

2.2.5 Output Resolution Measurement Time

Bandwidth Output Resolution and Measurement Time								
BW1 BW0 Output Resolution Measurement Time								
0	0	16 bits	7.92 mS					
0	1	16 bits	4.08 mS					
1	0	14 bits	2.16 mS					
1	1	12 bits	1.20 mS					

2.3 Quick Start

Here is the series of commands to acquire a set of magnetometer data from the Pmod CMPS2 via pseudo I²C code.

- 1. Power on the Pmod CMPS2 and wait for 10 mS before further operation.
- 2. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 3. Wait to receive an ACK from the Pmod CMPS2.
- 4. Send the Internal Control Register 0 (address 0x07) as the register to communicate with

I2CWrite(0x07); //address 0x07 corresponds to Control Register 0

- 5. Wait to receive an ACK from the Pmod CMPS2.
- 6. Write the command to take a measurement by setting bit 0 high followed by a STOP bit.

I2CWrite(0x01); //0x01 initiates a data acquisition

- 7. Delay at least 7.92 mS by default to allow the Pmod CMPS2 to finish collecting data.
- 8. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 9. Wait to receive an ACK from the Pmod CMPS2.
- 10. Send the Status Register (0x03) as the register to read

I2CWrite(0x03); //indicate you wish to interact with address 0x03

11. Provide a START condition and call the device ID with a read bit

I2CBegin(0xA1); //device ID 0x30 with a read (1) bit

- 12. Wait to receive an ACK from the Pmod CMPS2.
- 13. Cycle the SCL line to receive the Status Register data on the SDA line. Keep reading the Status Register by repeating steps 8 through 13 until bit 0 is set to '1', indicating that the data on all 3 axes as available to be read.
- 14. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 15. Wait to receive an ACK from the Pmod CMPS2.
- 16. Send the first register address corresponding to Xout LSB (0x00) as the register to be read.

I2CWrite(0x00); //address 0x00 as the first register to be read

17. Provide a START condition and call the device ID with a read bit

I2CBegin(0xA1); //device ID 0x30 with a read (1) bit

- 18. Wait to receive an ACK from the Pmod CMPS2.
- 19. Cycle the SCL line to receive the data bits from the X, Y, and Z registers in the SDA line, providing an ACK between each data byte. The Pmod CMPS2 address pointer automatically moves to each consecutive byte. End the communication by sending a NACK followed by a STOP command.

I2CReadMultiple(6); //read six bytes, sending an ACK to the slave device betwe en each byte received and a NACK after the last byte

- 20. Convert the readings into usable data. More details are available in the Data Conversion section.
- 21. Wait 1/3 of the acquisition time (by default 2.64 ms) before performing another measurement.

2.4 Applications Information

The Pmod CMPS2 is an ideal Pmod to use as a compass. Like all compasses, it is recommended that the Pmod CMPS2 is calibrated before using the module.

2.4.1 Calibration

To calibrate the magnetometer, the offset associated with the magnetic sensors and the environment needs to be calculated and removed from future measurements.

The internal offset can be calculated and accounted for through the following method:

- 1. Power on the Pmod CMPS2 and wait for 10 mS before further operation.
- 2. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 3. Wait to receive an ACK from the Pmod CMPS2.
- 4. Send the Internal Control Register 0 (address 0x07) as the register to communicate with

I2CWrite(0x07); //address 0x07 corresponds to Control Register 0

- 5. Wait to receive an ACK from the Pmod CMPS2.
- 6. Write the command to recharge the capacitor to prepare for the SET action.

I2CWrite(0x80); //0x80 refills the capacitor

- 7. Wait to receive an ACK from the Pmod CMPS2.
- 8. Delay at least 50 mS to allow the Pmod CMPS2 to finish preparing.
- 9. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 10. Wait to receive an ACK from the Pmod CMPS2.
- 11. Send the Internal Control Register 0 (address 0x07) as the register to communicate with

I2CWrite(0x07); //address 0x07 corresponds to Control Register 0

- 12. Wait to receive an ACK from the Pmod CMPS2.
- 13. Write the command to start a SET action.

I2CWrite(0x20); //0x20 starts the SET action

- 14. Wait to receive an ACK from the Pmod CMPS2.
- 15. Delay at least 1 mS to allow the Pmod CMPS2 to finish the SET action.
- 16. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 17. Wait to receive an ACK from the Pmod CMPS2.
- 18. Send the Internal Control Register 0 (address 0x07) as the register to communicate with

I2CWrite(0x07); //address 0x07 corresponds to Control Register 0

19. Wait to receive an ACK from the Pmod CMPS2.

20. Write the command to take a measurement by setting bit 0 high followed by a STOP bit.

I2CWrite(0x01); //0x01 initiates a data acquisition

- 21. Delay at least 7.92 mS by default to allow the Pmod CMPS2 to finish collecting data.
- 22. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 23. Wait to receive an ACK from the Pmod CMPS2.
- 24. Send the Status Register (0x03) as the register to read

I2CWrite(0x03); //indicate you wish to interact with address 0x03

25. Provide a START condition and call the device ID with a read bit

I2CBegin(0xA1); //device ID 0x30 with a read (1) bit

- 26. Wait to receive an ACK from the Pmod CMPS2.
- 27. Cycle the SCL line to receive the Status Register data on the SDA line. Keep reading the Status Register by repeating steps 8 through 13 until bit 0 is set to '1', indicating that the data on all 3 axes as available to be read.
- 28. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 29. Wait to receive an ACK from the Pmod CMPS2.
- 30. Send the first register address corresponding to Xout LSB (0x00) as the register to be read.

I2CWrite(0x00); //address 0x00 as the first register to be read

31. Provide a START condition and call the device ID with a read bit

I2CBegin(0xA1); //device ID 0x30 with a read (1) bit

- 32. Wait to receive an ACK from the Pmod CMPS2.
- 33. Cycle the SCL line to receive the data bits from the X, Y, and Z registers in the SDA line, providing an ACK between each data byte. The Pmod CMPS2 address pointer automatically moves to each consecutive byte. End the communication by sending a NACK followed by a STOP command.

I2CReadMultiple(6); //read six bytes, sending an ACK to the slave device betwe en each byte received and a NACK after the last byte

34. Each of the readings will contain the external magnetic field *H* in addition to offset associated with the current put through the coil by the SET action.

$$Dutput1 = +H + Offset$$

- 35. Now a RESET action will be performed to reverse the magnetization for the sensing resistors to get the inverse offset value.
- 36. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 37. Wait to receive an ACK from the Pmod CMPS2.
- 38. Send the Internal Control Register 0 (address 0x07) as the register to communicate with

I2CWrite(0x07); //address 0x07 corresponds to Control Register 0

- 39. Wait to receive an ACK from the Pmod CMPS2.
- 40. Write the command to recharge the capacitor to prepare for the RESET action.

I2CWrite(0x80); //0x80 refills the capacitor

- 41. Wait to receive an ACK from the Pmod CMPS2.
- 42. Delay at least 50 mS to allow the Pmod CMPS2 to finish preparing.
- 43. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 44. Wait to receive an ACK from the Pmod CMPS2.
- 45. Send the Internal Control Register 0 (address 0x07) as the register to communicate with

I2CWrite(0x07); //address 0x07 corresponds to Control Register 0

- 46. Wait to receive an ACK from the Pmod CMPS2.
- 47. Write the command to start a RESET action.

I2CWrite(0x40); //0x40 starts the RESET action

- 48. Wait to receive an ACK from the Pmod CMPS2.
- 49. Delay at least 1 mS to allow the Pmod CMPS2 to finish the SET action.

50. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 51. Wait to receive an ACK from the Pmod CMPS2.
- 52. Send the Internal Control Register 0 (address 0x07) as the register to communicate with

I2CWrite(0x07); //address 0x07 corresponds to Control Register 0

- 53. Wait to receive an ACK from the Pmod CMPS2.
- 54. Write the command to take a measurement by setting bit 0 high followed by a STOP bit.

I2CWrite(0x01); //0x01 initiates a data acquisition

- 55. Delay at least 7.92 mS by default to allow the Pmod CMPS2 to finish collecting data.
- 56. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 57. Wait to receive an ACK from the Pmod CMPS2.
- 58. Send the Status Register (0x03) as the register to read

I2CWrite(0x03); //indicate you wish to interact with address 0x03

59. Provide a START condition and call the device ID with a read bit

I2CBegin(0xA1); //device ID 0x30 with a read (1) bit

- 60. Wait to receive an ACK from the Pmod CMPS2.
- 61. Cycle the SCL line to receive the Status Register data on the SDA line. Keep reading the Status Register by repeating steps 8 through 13 until bit 0 is set to '1', indicating that the data on all 3 axes as available to be read.
- 62. Provide a START condition and call the device ID with a write bit

I2CBegin(0xA0); //device ID 0x30 with a write (0) bit

- 63. Wait to receive an ACK from the Pmod CMPS2.
- 64. Send the first register address corresponding to Xout LSB (0x00) as the register to be read.

I2CWrite(0x00); //address 0x00 as the first register to be read

65. Provide a START condition and call the device ID with a read bit

I2CBegin(0xA1); //device ID 0x30 with a read (1) bit

66. Wait to receive an ACK from the Pmod CMPS2.

67. Cycle the SCL line to receive the data bits from the X, Y, and Z registers in the SDA line, providing an ACK between each data byte. The Pmod CMPS2 address pointer automatically moves to each consecutive byte. End the communication by sending a NACK followed by a STOP command.

I2CReadMultiple(6); //read six bytes, sending an ACK to the slave device betwe en each byte received and a NACK after the last byte

68. Each of the readings will contain the external magnetic field *H* in addition to offset associated with the current put through the coil by the RESET action.

$$Output2 = -H + Offset$$

69. The offset associated with the device can be calculated and then subtracted from future measurements to obtain the actual magnetic field.

$$Offset = Output1 + \frac{Output2}{2}$$

The other method of calibration is to remove the hard iron bias introduced to the magnetometer by the surrounding environment by measuring (either continually or for a set time) all of the possible magnetometer readings in a Cartesian sphere and keep track of the highest and lowest readings for each axis. The offset can then be calculated in the same fashion as described above with the SET and RESET actions. The advantage of this method is when the Pmod CMPS2 is continually changing locations or when other external magnetic fields may be introduced into the test environment.

2.4.2 Data Conversion

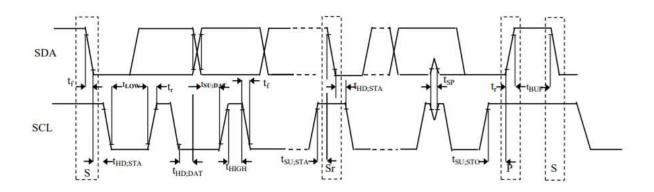
The Memsic MMC34160PJ provides data for each axis in units of Gauss, but the information is generally more legible when presented as a compass heading. The method for converting Gauss units to a compass heading is provided below.

1. Calculate the real Gauss value for the X and Y axes from the amount of LSBs returned where the LSB value by default is 0.48828125 mG, resulting in 2048 LSBs per Gauss.

xGaussData = xDataLSB * 0.48828125mG

xGaussData = yDataLSB * 0.48828125mG

- Calculate the direction D by first checking to see if the X Gauss data is equal to 0 to prevent divide by 0 zero errors in the future calculations. If the X Gauss data is 0, check to see if the Y Gauss data is less than 0. If Y is less than 0 Gauss, the direction D is 90 degrees; if Y is greater than or equal to 0 Gauss, the direction D is 0 degrees.
- 3. If the X Gauss data is not zero, calculate the arctangent of the Y Gauss and X Gauss data and convert from polar coordinates to degrees.


$$D = \arctan\left(\frac{yGaussData}{xGaussData}\right) * \frac{180}{\pi}$$

- 4. If the direction D is greater than 360 degrees, subtract 360 degrees from that value.
- 5. If the direction D is less than 0 degrees, add 360 degrees to that value.
- 6. The compass heading can then be determined by the direction value D:
 - If D is greater than 337.25 degrees or less than 22.5 degrees North
 - If D is between 292.5 degrees and 337.25 degrees North-West
 - If D is between 247.5 degrees and 292.5 degrees West
 - If D is between 202.5 degrees and 247.5 degrees South-West
 - If D is between 157.5 degrees and 202.5 degrees South

- If D is between 112.5 degrees and 157.5 degrees South-East
- If D is between 67.5 degrees and 112.5 degrees East
- If D is between 0 degrees and 67.5 degrees North-East

2.5 Timing Diagrams

An example timing diagram for reading and writing to the Pmod CMPS2 taken from the Memsic datasheet is provided below:

When using an external power supply to run the Pmod, be sure to stay within the parameters provided in Specifications.