

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

Series/Type: B32754 ... B32758

Date: June 2018

© EPCOS AG 2018. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

MKP AC filtering

Typical applications

 Output AC filtering for power converters, UPS, motor drives

Climatic

- Max. operating temperature: 105 °C
- Climatic category (IEC 60068-1:2013): 40/85/56

Construction

- Dielectric: Polypropylene (PP)
- Plastic case (UL 94 V-0)
- Epoxy resin sealing (UL 94 V-0)

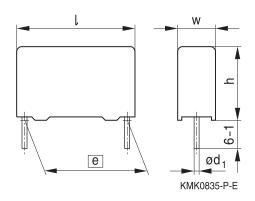
Features

- Optimized AC voltage performance
- High ripple current/frequency handling capability
- For PCB mounting
- AEC-Q200D compliant

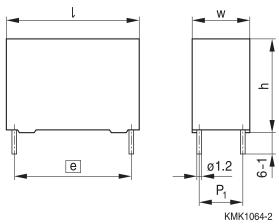
Terminals

- Parallel wire leads, lead-free tinned
- 2-pin and 4-pin versions
- Standard lead lengths: 6 -1 mm
- Special lead lengths available on request

Marking


Manufacturer's logo, lot number, series number, rated capacitance (code), capacitance tolerance (code with letter), rated AC voltage, date of manufacture (code)

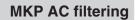
Delivery mode


Bulk (untaped, lead length 6-1 mm)

Dimensional drawings

2-pin version

4-pin version



Dimensions in mm

Version	Lead spacing <u>e</u> ±0.4	Lead diameter d ₁ ±0.05	Туре
2-pin	27.5	0.8	B32754C
2-pin	37.5	1.0	B32756C
4-pin	37.5	1.01)/1.2	B32756G
4-pin	52.5	1.2	B32758G

¹⁾ For box dimensions $22.0 \times 45.0 \times 42.0$ mm

Overview of available types

Lead spacing 27.5 mm		37.5 mm			52.5 mm					
Туре	B32754		B32756			B32758				
Page	4			5	5			7		
V _{RMS} (V AC)	250	275	310	250	275	310	250	275	310	
C _R (µF)										
1.0										
1.5										
2.0										
2.5										
3.0										
3.5										
4.0										
4.5										
5.0										
6.0										
7.0										
8.0										
9.0										
10										
12										
14										
15										
20										
22										
25										
30										
35										
40										
45										
50										
55										
60										
65										
70										

MKP AC filtering

Ordering codes and packing units (lead spacing 27.5 mm)

V_{RMS}	V_R	C _R	Max. dimensions	P ₁	Ordering code	I _{RMS}	ESR _{typ}	Untaped
			$w \times h \times l$		(composition see	70 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	mΩ	pcs./MOQ
250	500	1.0	$11.0 \times 19.0 \times 31.5$	_	B32754C2105+000	2.5	26.8	2352
		2.0	$12.5 \times 21.5 \times 31.5$	_	B32754C2205+000	4.0	15.1	2100
		3.0	$14.0 \times 24.5 \times 31.5$	_	B32754C2305K000	5.0	10.5	1848
		4.0	$16.0 \times 32.0 \times 31.5$	_	B32754C2405+000	6.4	7.3	1064
		5.0	$16.0 \times 32.0 \times 31.5$	_	B32754C2505+000	7.0	6.9	1064
		6.0	$18.0 \times 33.0 \times 31.5$	_	B32754C2605+000	7.5	6.0	952
		7.0	$22.0 \times 36.5 \times 31.5$	_	B32754C2705+000	8.0	5.2	784
		8.0	$22.0 \times 36.5 \times 31.5$	_	B32754C2805+000	9.0	4.9	784
		9.0	$22.0 \times 36.5 \times 31.5$	_	B32754C2905+000	11.0	4.5	784
		10.0	$22.0 \times 36.5 \times 31.5$	_	B32754C2106K000	12.0	4.2	784
275	560	1.0	$11.0 \times 19.0 \times 31.5$	_	B32754C7105+000	2.5	26.8	2352
		1.5	$12.5 \times 21.5 \times 31.5$	_	B32754C7155+000	3.8	18.1	2100
		2.0	$13.5 \times 23.0 \times 31.5$	_	B32754C7205+000	4.5	13.8	1932
		2.5	$15.0 \times 24.5 \times 31.5$	_	B32754C7255+000	5.0	11.3	1680
		3.0	$16.0 \times 32.0 \times 31.5$	_	B32754C7305+000	6.0	8.7	1064
		4.0	$18.0 \times 33.0 \times 31.5$	_	B32754C7405+000	7.0	6.8	952
		5.0	$18.0 \times 33.0 \times 31.5$	_	B32754C7505K000	8.0	6.0	952
		6.0	$22.0 \times 36.5 \times 31.5$	_	B32754C7605+000	9.0	4.9	784
		7.0	$22.0 \times 36.5 \times 31.5$	_	B32754C7705+000	10.0	4.6	784
310	630	1.0	$11.0 \times 21.0 \times 31.5$	_	B32754C3105+000	3.0	24.6	2352
		1.5	$13.5 \times 23.0 \times 31.5$	_	B32754C3155+000	3.8	16.7	1932
		2.0	$14.0 \times 24.5 \times 31.5$	_	B32754C3205K000	5.0	12.8	1848
		2.5	$16.0 \times 32.0 \times 31.5$	_	B32754C3255K000	5.2	10.3	1064
		3.0	$18.0 \times 27.5 \times 31.5$	_	B32754C3305+000	6.5	8.9	1428
		3.5	$18.0 \times 33.0 \times 31.5$	_	B32754C3355+000	7.0	7.6	952
		4.0	$19.0 \times 30.0 \times 31.5$	_	B32754C3405K000	7.5	7.0	896
		4.5	$21.0 \times 31.0 \times 31.5$	_	B32754C3455+000	8.5	6.0	784
		5.0	$22.0 \times 36.5 \times 31.5$	_	B32754C3505+000	9.0	5.6	784
		6.0	$22.0\times36.5\times31.5$	_	B32754C3605K000	10.0	4.8	784

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

Ordering codes and packing units (lead spacing 37.5 mm)

V_{RMS}	V _R	C_R	Max. dimensions	P ₁	Ordering code	I _{RMS}	ESR _{typ}	Untaped
			$w \times h \times l$		(composition see	70 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	mΩ	pcs./MOQ
250	500	5.0	$18.0 \times 32.5 \times 42.0$	_	B32756C2505+000	7.0	12.5	720
		6.0	$18.0 \times 32.5 \times 42.0$	_	B32756C2605+000	7.0	10.6	720
		7.0	$18.0 \times 32.5 \times 42.0$	_	B32756C2705+000	7.0	10.0	720
		8.0	$18.0 \times 32.5 \times 42.0$	_	B32756C2805+000	8.3	9.7	720
		9.0	$18.0 \times 32.5 \times 42.0$	_	B32756C2905+000	8.5	8.7	720
		10	$20.0 \times 39.5 \times 42.0$	10.2	B32756G2106+000	10.0	6.8	640
		12	$20.0 \times 39.5 \times 42.0$	10.2	B32756G2126+000	11.0	6.3	640
		15	$22.0 \times 45.0 \times 42.0$	10.2	B32756G2156+000	12.0	5.2	560
		20	$28.0 \times 42.5 \times 42.0$	10.2	B32756G2206+000	14.0	4.0	440
		22	$30.0 \times 45.0 \times 42.0$	20.3	B32756G2226+000	16.0	3.7	400
		25	$33.0 \times 48.0 \times 42.0$	20.3	B32756G2256+000	17.0	3.3	180
		30	$33.0 \times 48.0 \times 42.0$	20.3	B32756G2306K000	18.0	3.0	180
275	560	5.0	$18.0 \times 32.5 \times 42.0$	_	B32756C7505+000	7.0	12.5	720
		6.0	$18.0 \times 32.5 \times 42.0$	_	B32756C7605+000	7.0	10.6	720
		7.0	$18.0 \times 32.5 \times 42.0$	_	B32756C7705+000	8.0	10.0	720
		8.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G7805+000	9.0	7.7	640
		9.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G7905+000	10.0	6.9	640
		10	$20.0 \times 39.5 \times 42.0$	10.2	B32756G7106+000	11.0	6.8	640
		12	$22.0 \times 45.0 \times 42.0$	10.2	B32756G7126+000	12.0	5.7	560
		15	$28.0 \times 42.5 \times 42.0$	10.2	B32756G7156+000	14.0	4.7	440
		20	$30.0 \times 45.0 \times 42.0$	20.3	B32756G7206K000	17.0	3.6	400
		22	$33.0 \times 48.0 \times 42.0$	20.3	B32756G7226+000	18.0	3.4	180

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

MKP AC filtering

Ordering codes and packing units (lead spacing 37.5 mm)

$\overline{V_{RMS}}$	V_R	C_R	Max. dimensions	P ₁	Ordering code	I _{RMS}	ESR _{typ}	Untaped
			$w \times h \times l$		(composition see	70 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	mΩ	pcs./MOQ
310	630	5.0	$18.0 \times 32.5 \times 42.0$	_	B32756C3505+000	7.0	12.5	720
		6.0	$18.0 \times 32.5 \times 42.0$	_	B32756C3605+000	9.0	10.5	720
		7.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G3705+000	10.0	8.7	640
		8.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G3805+000	11.0	7.7	640
		9.0	$20.0 \times 39.5 \times 42.0$	10.2	B32756G3905K000	11.0	6.9	640
		10	$22.0 \times 45.0 \times 42.0$	10.2	B32756G3106+000	12.0	6.2	560
		12	$22.0 \times 45.0 \times 42.0$	10.2	B32756G3126K000	12.5	5.3	560
		14	$28.0 \times 42.5 \times 42.0$	10.2	B32756G3146K000	13.5	4.7	440
		15	$30.0 \times 45.0 \times 42.0$	20.3	B32756G3156+000	16.0	4.3	400
		20	$33.0 \times 48.0 \times 42.0$	20.3	B32756G3206K000	17.0	3.6	180

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

Ordering codes and packing units (lead spacing 52.5 mm)

$\overline{V_{RMS}}$	V_R	C_R	Max. dimensions	P ₁	Ordering code	I _{RMS}	ESR _{typ}	Untaped
			$w \times h \times l$		(composition see	70 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	$m\Omega$	pcs./MOQ
250	500	20	$30.0 \times 45.0 \times 57.5$	20.3	B32758G2206+000	13.0	6.2	280
		22	$30.0\times45.0\times57.5$	20.3	B32758G2226+000	13.0	5.7	280
		25	$30.0\times45.0\times57.5$	20.3	B32758G2256+000	14.0	5.6	280
		30	$30.0\times45.0\times57.5$	20.3	B32758G2306+000	16.0	5.2	280
		35	$30.0\times45.0\times57.5$	20.3	B32758G2356K000	17.0	4.5	280
		40	$35.0 \times 50.0 \times 57.5$	20.3	B32758G2406+000	20.0	4.0	108
		45	$35.0 \times 50.0 \times 57.5$	20.3	B32758G2456K000	21.0	3.6	108
		50	$38.0\times57.5\times57.5$	20.3	B32758G2506+000	22.0	3.4	96
		55	$38.0\times57.5\times57.5$	20.3	B32758G2556+000	24.0	3.1	96
		60	$38.0\times57.5\times57.5$	20.3	B32758G2606K000	25.0	3.0	96
		65	$45.0 \times 57.0 \times 57.5$	20.3	B32758G2656+000	26.0	2.7	140
		70	$45.0\times57.0\times57.5$	20.3	B32758G2706K000	26.0	2.6	140
275	560	20	$30.0\times45.0\times57.5$	20.3	B32758G7206+000	13.0	6.2	280
		22	$30.0\times45.0\times57.5$	20.3	B32758G7226+000	14.0	5.7	280
		25	$30.0\times45.0\times57.5$	20.3	B32758G7256+000	16.0	5.6	280
		30	$35.0\times50.0\times57.5$	20.3	B32758G7306+000	17.0	4.5	108
		35	$35.0\times50.0\times57.5$	20.3	B32758G7356+000	20.0	4.1	108
		40	$38.0\times57.5\times57.5$	20.3	B32758G7406+000	21.0	3.7	96
		45	$38.0\times57.5\times57.5$	20.3	B32758G7456+000	23.0	3.4	96
		50	$45.0 \times 57.0 \times 57.5$	20.3	B32758G7506+000	24.0	3.1	140
		55	$45.0 \times 57.0 \times 57.5$	20.3	B32758G7556K000	25.0	2.8	140

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

MKP AC filtering

Ordering codes and packing units (lead spacing 52.5 mm)

V_{RMS}	V _R	C_R	Max. dimensions	P ₁	Ordering code	I _{RMS}	ESR _{typ}	Untaped
			$w \times h \times l$		(composition see	70 °C	10 kHz	
					below)	10 kHz		
V AC	V DC	μF	mm	mm		Α	mΩ	pcs./MOQ
310	630	20	$30.0\times45.0\times57.5$	20.3	B32758G3206+000	15.0	6.2	280
		22	$30.0 \times 45.0 \times 57.5$	20.3	B32758G3226+000	16.5	5.7	280
		25	$35.0 \times 50.0 \times 57.5$	20.3	B32758G3256+000	18.0	5.1	108
		30	$35.0 \times 50.0 \times 57.5$	20.3	B32758G3306+000	21.0	4.3	108
		35	$38.0\times57.5\times57.5$	20.3	B32758G3356+000	22.0	3.8	96
		40	$38.0\times57.5\times57.5$	20.3	B32758G3406K000	24.0	3.4	96
		45	$45.0 \times 57.0 \times 57.5$	20.3	B32758G3456K000	26.0	3.1	140

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further E series and intermediate capacitance values on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

Technical data

Reference standard: IEC 60384-14:2013/AMD1:2016, Grade III A and AEC-Q200D. All data given at T = 20 $^{\circ}$ C, unless otherwise specified.

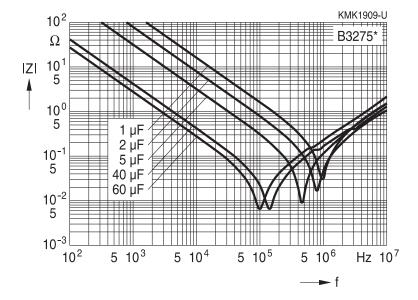
at 1 = 20 °C, unless otherwise specific	ea.
Operating temperature range (case)	Max. operating temperature, T _{op,max} +105 °C
	Upper category temperature T _{max} +85 °C
	Lower category temperature T _{min} -40 °C
	Note:
	At T > 85 $^{\circ}$ C derating for V _{RMS} (V AC) should be 1.5%/ $^{\circ}$ C
Dissipation factor tan δ (in 10 ⁻³)	1.0 (1 kHz)
at 20 °C (upper limit values)	
Insulation resistance R _{ins} after 1min,	10 000 s
given as time constant	
$\tau = C_R \cdot R_{ins}$, rel. humidity $\leq 65\%$	
(minimum as-delivered values)	
Measuring voltage: 500 V DC	
Test voltage between terminals	1.5 · V _R for 10 s
DC Test voltage terminal to case	2000 V AC at 50 Hz, 10 s
Self-inductance (LS)	< 1 nH per mm of lead spacing
Maximum peak current (A)	$I_{P,max} = C_R \cdot \frac{dV}{dt}$
Damp heat test	1. 56 days/40 °C/93% relative humidity
Limit values after damp heat test	Capacitance change $ \Delta C/C \leq 5\%$
	Dissipation factor change Δ tan $\delta \le 1.5 \cdot 10^{-3}$ (at 1 kHz)
	Insulation resistance R _{ins} ≥ 50% of minimum as-delivered values
	2. 1344 hours/60 °C/95% relative humidity V _{B.AC}
	Capacitance change $ \Delta C/C \leq 10\%$
	Dissipation factor change Δ tan $\delta \le 5$ · upper limit values
	Insulation resistance R_{ins} $\geq 50\%$ of minimum
	as-delivered values
Change of temperature	In accordance with IEC 60068-2-14 (Test Nb)
Reliability:	
Failure rate λ	10 fit (\leq 10 \times 10- 9 /h) at 0.5 \times U _N , 40 $^{\circ}$ C
Service life t _{SL}	> 60 000 h at 0.9 V _R , 70 °C
	For conversion to other operating conditions and
	temperatures, refer to chapter "Quality, 2 Reliability".
Failure criteria:	
Total failure	Short/open circuit
Failure due to variation of	Capacitance change $ \Delta C/C \geq 10\%$
parameters	Dissipation factor change Δ tan $\delta > 4 \cdot$ upper limit values
	Insulation resistance R _{ins}
	or time constant $\tau = C_R \cdot R_{ins}$ < 500 s

MKP AC filtering

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

"k0" represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in $V^2/\mu s$.


Note:

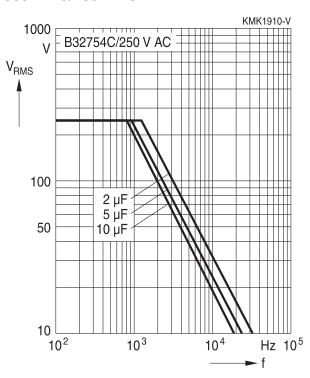
The values of dV/dt and k0 provided below must not be exceeded in order to avoid damaging the capacitor. These parameters are given for isolated pulses in such a way that the heat generated by one pulse will be completely dissipated before applying the next pulse. For a train of pulses, please refer to the curves of permissible AC voltage-current versus frequency

Lead spacing	27.5 mm			37.5 mm			52.5 mm		
Туре	B32754			B32756			B32758		
V _R (V DC)	500	560	630	500	560	630	500	560	630
V _{RMS} (V AC)	250	275	310	250	275	310	250	275	310
	dV/dt in V/μs								
	50	55	68	25	30	35	13	15	17

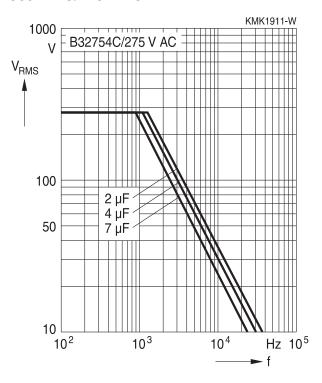
Impedance Z versus frequency f

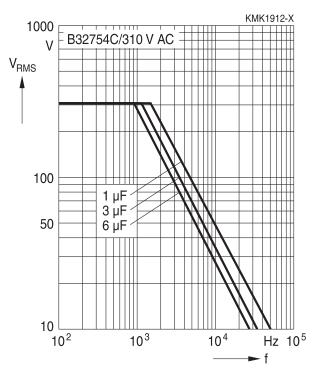
(typical values)

MKP AC filtering



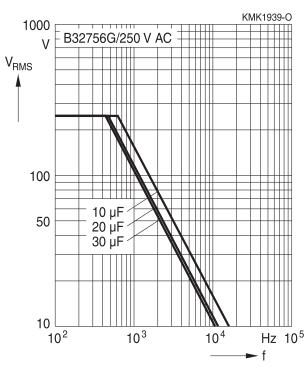
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_{op} ≤85 °C)


For T_{op} >85 °C, please refer to derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

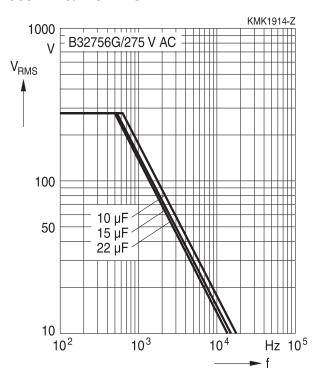

Lead spacing 27.5 mm

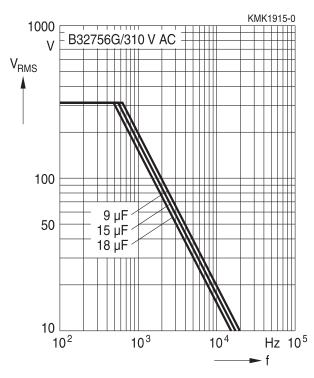
500 V DC/250 V AC

560 V DC/275 V AC


MKP AC filtering

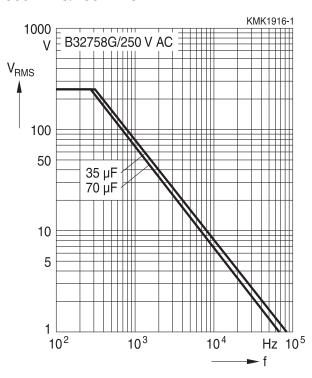
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, T_{op} ≤85 °C)


For T_{op} >85 °C, please refer to derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

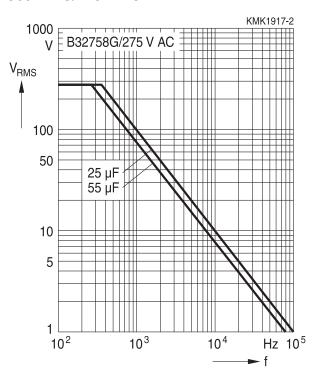

Lead spacing 37.5 mm (2 pins, 4 pins)

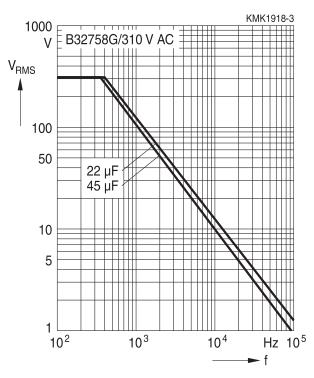
500 V DC/250 V AC

560 V DC/275 V AC



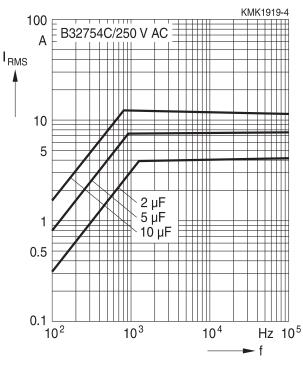
Permissible AC voltage V_{RMS} versus frequency f (for sinusoidal waveforms, $T_{op} \le 85$ °C)


For T_{op} >85 °C, please refer to derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

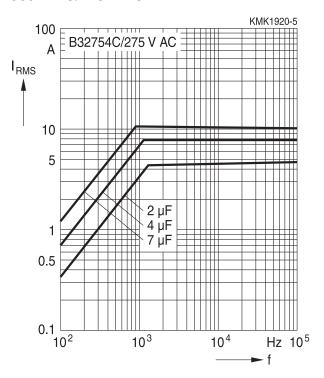

Lead spacing 52.5 mm

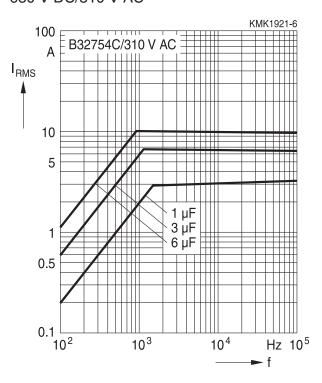
500 V DC/250 V AC

560 V DC/275 V AC



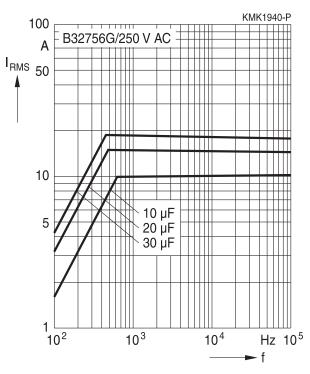
Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms $T_{op} \le 85$ °C)


For T_{op} >85 °C, please use the derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

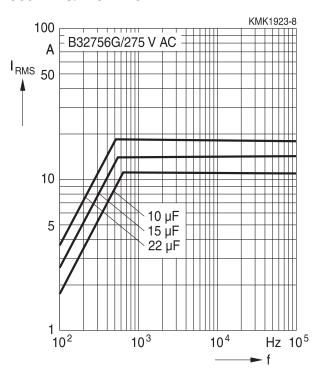

Lead spacing 27.5 mm

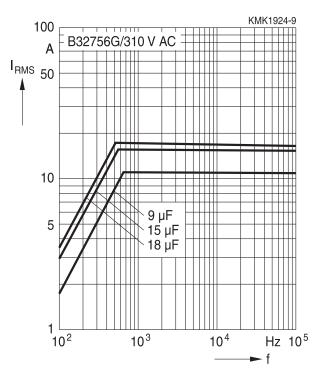
500 V DC/250 V AC

560 V DC/275 V AC



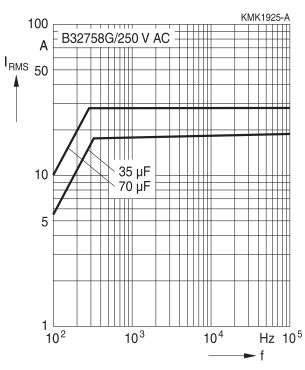
Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms T_{op} ≤85 °C)


For T_{op} >85 °C, please use the derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.

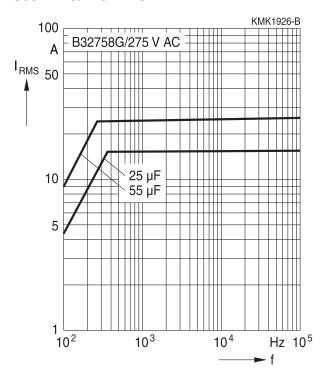

Lead spacing 37.5 mm (2 pins, 4 pins)

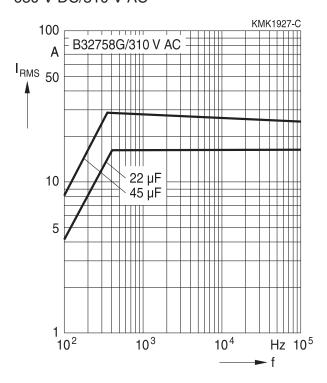
500 V DC/250 V AC

560 V DC/275 V AC


MKP AC filtering

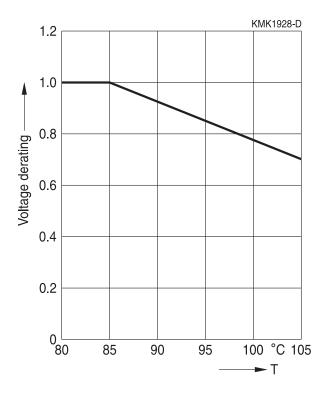
Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms $T_{op} \le 85$ °C)


For T_{op} >85 °C, please use the derating curve. The maximum component surface temperature must be lower than 105 °C and maximum temperature rise between case and free ambient shall be lower than 15 °C.


Lead spacing 52.5 mm

500 V DC/250 V AC

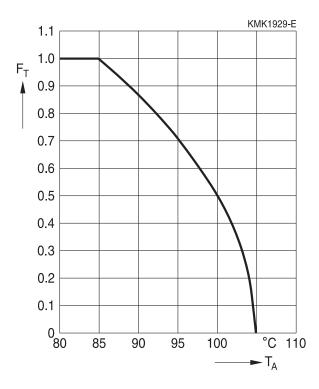
560 V DC/275 V AC



Maximum permissible continuous DC voltage versus temperature T

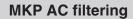
MKP AC filtering

Maximum AC voltage (V_{RMS}) versus temperature T_{op} ≤85 °C


The graphs described in the previous section for the maximum AC voltage versus frequency are valid for moderate temperature: $T_{op} \le 85$ °C in MKP. For temperatures higher than these limits, we have to consider additional effects depending on the frequency and dielectric:

Low frequency (f <f1)

For frequency below f1 (the frequency is the V_{RMS} begin to derating versus frequency), a derating of the V_{RMS} versus the working temperature has to be applied, following the rules defined above.


High frequencies (f1 ≤f)

For frequency below f1 (The frequency is the V_{RMS} begin to derating versus frequency), a derating of the V_{RMS} versus the working temperature has to be applied, following the rules defined as below:

Derating factor F_T for V_{RMS} versus T_A

Testing and Standards

Test	Reference	Conditions of tes	t		Performance requirements
Electrical parameters	IEC 61071:2007	Voltage between to 1.5 V _R , 60 s	erminals:	Within specified limits No visible damage	
		Terminals and end	losure: 20	000 V AC	No flashover
		Insulation resistant Capacitance C _R Dissipation factor t			
Robustness	IEC	Tensile strength (to		1	Within specified
of termina- tions	60068-2-21:2006		Section	Tensile force	specification
		$0.5 < d_1 \le 0.8 \text{ mm}$ $0.8 < d_1 \le 1.25 \text{ mm}$	≤0.5m² ≤1.2m²	10 N 20 N	
		Duration: 10 s +/-	1s		
		Bending U _b metho	d 1		
		Wire diameter	Section	Tensile force	
		$0.5 < d_1 \le 0.8 \text{ mm}$ $0.8 < d_1 \le 1.25 \text{ mm}$	≤0.5m ² ≤1.2m ²	10 N 20 N	
		4 × 90 °C Duration: 2 s to 3 s	s / bend	'	
Resistance to solder- ing heat	IEC 60068-2-20:2008	Solder bath temper immersion for 10 se		60±5°C,	$\Delta C/C_0 \le 0.5\%$ Increase of tan $\delta \le 0.005$
Vibration	IEC 60068-2-6:2007	10 Hz to 55 Hz: Amplitude ±0.35 m acceleration 98 m/			No visible damage
		Test duration: 10 f 3 axes offset from 1 octave/min, Visual examination			
Bump	IEC 60068-2-6:2007	Pulse shape: half sine Acceleration: 490 m/s² Duration of pulse: 11 ms Visual examination			No visible damage $ \Delta C/C_0 \le 0.5\%$ Increase of tan $\delta \le 0.005$ compared to initial value
Damp heat test		60 °C / 95% RH / \	V _{R, AC} / 100	00 h	$\begin{split} \Delta C/C_0 \leq &10\% \\ \Delta \tan \delta \leq &500\% \text{ (10 kHz)} \\ R_{\text{ins}} \geq &50\% \text{ of minimum as} \\ \text{delivered value} \end{split}$

MKP AC filtering

Test	Reference	Conditions of test	Performance requirements
Surge test	IEC 61071:2007	$1.1 \cdot V_R$ or $I_{test} = 1.1 I_{max}$. Number of discharges: 5 Time lapse: every 2 min (10 min total) within 5 min after the surge discharge test Duration: 10 s; $1.5 \cdot V_R$ at T_A	No visible damage $ \Delta C/C_0 \le 1\%$ tan δ (10 kHz) ≤ 1.2 initial tan δ +0.0001
Self-healing	IEC 61071:2007	1.5 · V _R ; duration 10 s Number of clearings: ≤5 Clearing = voltage drop of 5% Increase the voltage at 100 V/s till 5 clearings occur with a maximum of 2.5 · V _R for a duration of 10 s	$ \Delta C/C_0 \le 0.5\%$ tan δ (10 kHz) ≤ 1.12 initial tan δ +0.0001
Environ- mental	IEC 61071:2007	 Change of temperature acc. to IEC 60068-2-14, test N_b T_{max.} = 85 °C, T_{min.} = -40 °C, Transition time: 1 h, equiv. to 1 °C/min, 5 cycles Damp heat steady state acc. to IEC 60068-2-78, test C_a T = 40 °C ±2 °C, RH = 93% ±3 %, Duration: 56 days DC voltage between terminal, 1.5 · V_R at ambient temperature Duration: 10 s 	No puncturing or flashover Self-healing punctures permitted $ \Delta C/C_0 \leq \!\! 2\%$ Increase of tan δ (10 kHz) $\leq \!\! 0.015$
Thermal stability test under overload conditions	IEC 61071:2007	Natural cooling $T_A \pm 5$ °C 1.21 · $P_{max.} = (V_2/2) \cdot W_2 \cdot C \cdot \tan \delta =$ 1.21 · $(I_{max.}^2/W_2 \cdot C) \cdot \tan \delta_2$ with $W_2 = 2 \cdot \pi \cdot f_2$ for $I_{max.}$ (see specific reference data) $f_2 = 10$ kHz, duration 48 h Measure the temperature every 1.5 h during the last 6 h	Temperature rise <1 °C $ \Delta C/C_0 \leq 2\%$ Increase of tan δ (10 kHz) \leq 1.2 initial tan δ +0.015
Endurance test between terminal	IEC 61071:2007	Sequence: $1.25 \cdot V_R \text{ at } T_{\text{max.}} = 85 ^{\circ}\text{C}$ $1.0 \cdot V_R \text{ at } T_{\text{max.}} = 105 ^{\circ}\text{C}$ $1.0 \cdot V_R \text{ at } T_{\text{max.}} = 105 ^{\circ}\text{C}$ Duration: 500 h $1000 \times \text{discharge at } 1.4 \cdot \text{I}$ (max.repetitive peak current in continuous operation) $1.25 \cdot V_R \text{ at } T_{\text{max.}} = 85 ^{\circ}\text{C}$ $1.0 \cdot V_R \text{ at } T_{\text{max.}} = 105 ^{\circ}\text{C}$ Duration: 500 h	$ \Delta C/C_0 \le 3\%$ Increase of tan $\delta \le 0.015$ compared to initial value

Mounting guidelines

1 Soldering

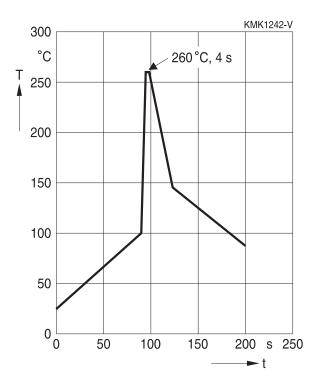
1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20:2008, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2:2007, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

Solder bath temperature	235 ±5 °C
Soldering time	2.0 ±0.5 s
Immersion depth	2.0 + 0/-0.5 mm from capacitor body or seating plane
Evaluation criteria:	
Visual inspection	Wetting of wire surface by new solder ≥90%, free-flowing solder

1.2 Resistance to soldering heat


Resistance to soldering heat is tested to IEC 60068-2-20:2008, test Tb, method 1. Conditions:

Series		Solder bath temperature	Soldering time
MKT	boxed (except $2.5 \times 6.5 \times 7.2$ mm) coated	260 ±5 °C	10 ±1 s
	uncoated (lead spacing >10 mm)		
MFP			
MKP	(lead spacing >7.5 mm)		
MKT	boxed (case $2.5 \times 6.5 \times 7.2$ mm)		5 ±1 s
MKP	(lead spacing ≤7.5 mm)		<4 s
MKT	uncoated (lead spacing ≤10 mm)		recommended soldering
	insulated (B32559)		profile for MKT uncoated
			(lead spacing ≤ 10 mm) and
			insulated (B32559)

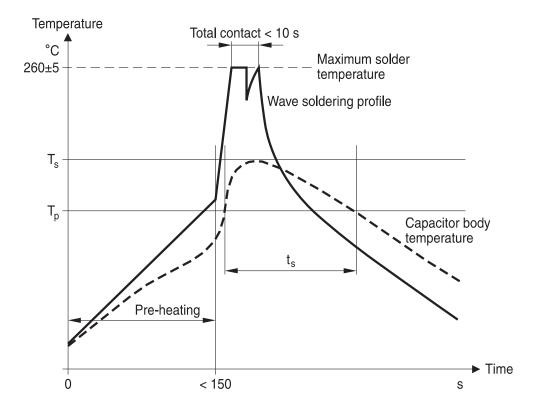
MKP AC filtering

Immersion depth	2.0 +0/-0.5 mm from capacitor body or seating plane	
Shield	Heat-absorbing board, (1.5 ± 0.5) mm thick, between	
	capacitor body and liquid solder	
Evaluation criteria:		
Visual inspection	No visible damage	
10/0	2% for MKT/MKP/MFP	
$\Delta C/C_0$	5% for EMI suppression capacitors	
$tan \delta$	As specified in sectional specification	

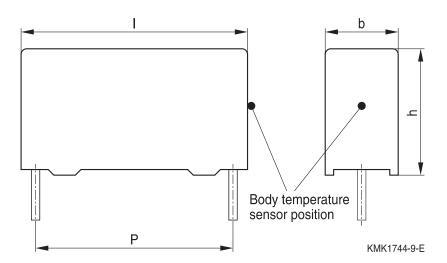
1.3 General notes on soldering

Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max} . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics:
 diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings



The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.


EPCOS recommendations

As a reference, the recommended wave soldering profile for our film capacitors is as follows:

T_s: Capacitor body maximum temperature at wave soldering

T_n: Capacitor body maximum temperature at pre-heating KMK1745-A-E

MKP AC filtering

Body temperature should follow the description below:

MKP capacitor

During pre-heating: $T_p \le 110 \, ^{\circ}\text{C}$ During soldering: $T_s \le 120 \, ^{\circ}\text{C}$, $t_s \le 45 \, \text{s}$

MKT capacitor

During pre-heating: T_p ≤125 °C

During soldering: T_s ≤160 °C, t_s ≤45 s

When SMD components are used together with leaded ones, the film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.

Leaded film capacitors are not suitable for reflow soldering.

In order to ensure proper conditions for manual or selective soldering, the body temperature of the capacitor (T_s) must be ≤ 120 °C.

One recommended condition for manual soldering is that the tip of the soldering iron should be <360 °C and the soldering contact time should be no longer than 3 seconds.

For uncoated MKT capacitors with lead spacings ≤10 mm (B32560/B32561) the following measures are recommended:

- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

Please refer to EPCOS Film Capacitor Data Book in case more details are needed.

Cautions and warnings

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.
- Consult us if application is with severe temperature and humidity condition.
- There are no serviceable or repairable parts inside the capacitor. Opening the capacitor or any attempts to open or repair the capacitor will void the warranty and liability of EPCOS.
- Please note that the standards referred to in this publication may have been revised in the meantime.

The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

Topic	Safety information	Reference chapter
		"General technical
		information"
Storage	Make sure that capacitors are stored within the specified	4.5
conditions	range of time, temperature and humidity conditions.	"Storage conditions"
Flammability	Avoid external energy, such as fire or electricity (passive	5.3
	flammability), avoid overload of the capacitors (active	"Flammability"
	flammability) and consider the flammability of materials.	
Resistance to	Do not exceed the tested ability to withstand vibration.	5.2
vibration	The capacitors are tested to IEC 60068-2-6:2007.	"Resistance to
	EPCOS offers film capacitors specially designed for	vibration"
	operation under more severe vibration regimes such as	
	those found in automotive applications. Consult our	
	catalog "Film Capacitors for Automotive Electronics".	

Topic	Safety information	Reference chapter
		"Mounting guidelines"
Soldering	Do not exceed the specified time or temperature limits	1 "Soldering"
	during soldering.	
Cleaning	Use only suitable solvents for cleaning capacitors.	2 "Cleaning"