

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Film Capacitors

Metallized Polypropylene Film Capacitors (MKP)

Series/Type: B32774P ... B32778P

Date: February 2017

© EPCOS AG 2017. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

EPCOS AG is a TDK Group Company.

Metallized polypropylene film capacitors (MKP)

B32774P ... B32778P

MKP DC Link - 125 °C series up to 50 μ F

Typical applications

- Frequency converters
- Industrial and high-end power supplies
- Automotive DC-DC and Compressor

Climatic

- Max. operating temperature: 125 °C (case)
- Climatic category (IEC 60068-1): 40/110/56

Construction

- Dielectric: Polypropylene (MKP)
- Plastic case (UL 94 V-0)
- Epoxy resin sealing (UL 94 V-0)

Features

- Capacitance value up to 50 μF
- Good self-healing properties
- Over-voltage capability
- Low losses with high current capability
- High reliability
- RoHS-compatible

Terminals

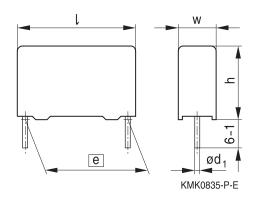
- Parallel wire leads, lead-free tinned
- 2-pin and 4-pin
- Standard lead lengths: 6 –1 mm

Marking

Manufacturer's logo and lot number, date code, rated capacitance (coded), capacitance tolerance (code letter), rated DC voltage

Delivery mode

Bulk (untaped, lead length 6-1 mm)

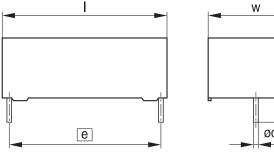

Dimensional drawings

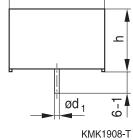
Number of wires	Lead spacing e ±0.4	Lead diameter d ₁ ±0.05	Туре
2-pin	27.5	1.01)	B32774P
2-pin	37.5	1.0	B32776P
2-pin	37.5	1.01)	B32776P
4-pin	37.5	1.21)	B32776P
4-pin	52.5	1.21)	B32778P

Dimensions in mm

Dimensional drawings 2-pin versions

B32774P, B32776P





	B32774P	B32776P
Lead spacing e ±0.4:	27.5	37.5
Lead diameter d₁:	1.0 ¹⁾	1.0

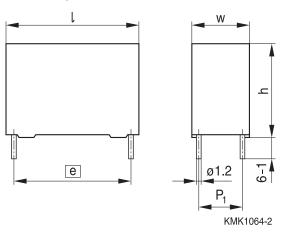
Dimensions in mm

B32776P

Lead spacing @ ±0.4:	37.5
Lead diameter d ₁ :	1.01)

Dimensions in mm

1) Reinforced for vibration



MKP DC Link - 125 $^{\circ}\text{C}$ series up to 50 μF

Dimensional drawings 4-pin versions

B32776P, B32778P

	B32776P	B32778P
Lead spacing <u>@</u> ±0.4:	37.5	52.5
Lead diameter d₁:	1.2 ²⁾	1.2 ²⁾

Dimensions in mm

²⁾ Reinforced for vibration

Overview of available types

Lead spacing 27.5 mm			37.5 mm			52.5 mm				
Туре	B32774	P		B32776	B32776P			B32778P		
Page	6	6		7			8			
V _R (V DC)	630	700	840	630	700	840	630	700	840	
C _R (μF)										
1.0										
1.5										
2.0										
2.2										
2.7										
3.0										
3.3										
3.5										
3.9										
4.7										
5.0										
6.8										
7.0										
7.5										
8.0										
10										
12										
14										
15										
16										
20										
22										
25										
27										
30										
35										
40										
50										

B32774P

MKP DC Link - 125 $^{\circ}$ C series up to 50 μ F

Ordering codes and packing units (lead spacing 27.5 mm)

$C_R^{1)}$	Max. dimensions	P ₁	Ordering code	I _{RMS,max} ²⁾	ESR _{typ}	ESL _{typ} ³⁾	tan δ	tan δ	MOQ
	$w \times h \times l$		(composition see	85 °C			max.	max.	
			below)	10 kHz	10 kHz		1 kHz	10 kHz	
μF	mm	mm		Α	mΩ	nH	10 ⁻³	10-3	pcs.
$V_{R,85}$	° _C = 630 V DC								
1.5	$11.0 \times 19.0 \times 31.5$	_	B32774P6155+000	3.5	22.3	13.2	0.5	3.5	1280
2.2	$12.5 \times 21.5 \times 31.5$	_	B32774P6225+000	4.7	15.5	14.5	0.5	3.5	1120
3.0	$14.0\times24.5\times31.5$	_	B32774P6305+000	6.0	11.5	16.1	0.5	3.5	1040
4.7	$18.0 \times 27.5 \times 31.5$	_	B32774P6475+000	8.2	7.6	18.7	0.5	3.7	800
6.8	$21.0 \times 31.0 \times 31.5$	_	B32774P6685+000	10.4	5.4	21.3	0.6	3.9	720
8.0	$22.0 \times 36.5 \times 31.5$	_	B32774P6805+000	12.0	4.5	24.0	0.6	4.0	640
$V_{R,85}$	° _C = 700 V DC								
1.5	$11.0 \times 19.0 \times 31.5$	-	B32774P7155+000	3.6	20.3	18.4	0.5	3.2	1280
2.0	$12.5 \times 21.5 \times 31.5$	_	B32774P7205+000	4.7	15.3	19.8	0.5	3.2	1120
3.3	$18.0 \times 27.5 \times 31.5$	_	B32774P7335+000	7.3	9.6	22.9	0.5	3.3	800
4.7	$19.0 \times 30.0 \times 31.5$	_	B32774P7475+000	9.0	6.9	25.8	0.5	3.4	720
7.0	$22.0\times36.5\times31.5$		B32774P7705+000	11.8	5.0	31.2	0.5	3.7	640
$V_{R,85}$	° _C = 840 V DC								
1.0	$11.0 \times 19.0 \times 31.5$		B32774P8105+000	3.3	25.2	18.3	0.5	2.7	1280
1.5	$12.5 \times 21.5 \times 31.5$	_	B32774P8155+000	4.4	17.2	20.2	0.5	2.7	1120
3.0	$18.0 \times 27.5 \times 31.5$	_	B32774P8305+000	7.5	9.1	25.6	0.5	2.8	800
5.0	$22.0\times36.5\times31.5$	_	B32774P8505+000	12.5	5.8	31.6	0.5	3.0	640

MOQ = Minimum Order Quantity, consisting of 4 packing units. Intermediate capacitance values are available on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

J = ±5%

Packing code:

000 = untaped (lead length 6 - 1 mm)

Other lead lengths available upon request

¹⁾ Capacitance value measured at 1 kHz

²⁾ Max. ripple current I_{RMS} at 85 °C at 10 kHz for a $\Delta T \leq$ 15 °C when $\Delta ESR_{typ} \leq \pm 5\%$

³⁾ ESL value measured at resonance frequency (see specific graphs of Z vs freq)

B32776P

Ordering codes and packing units (lead spacing 37.5 mm)

$C_R^{1)}$	Max. dimensions	P ₁	Ordering code	I _{RMS,max} ²⁾	ESR _{typ}	ESL _{typ} ³⁾	tan δ	tan δ	MOQ
	$w \times h \times I$		(composition see	85 °C			max.	max.	
			below)	10 kHz	10 kHz		1 kHz	10 kHz	
μF	mm	mm	,	Α	mΩ	nH	10 ⁻³	10 ⁻³	pcs.
$V_{R,85}$	_{°C} = 630 V DC								
5.0	$24.0 \times 15.0 \times 42.0$	_	B32776P6505+000	6.0	13.4	19.4	0.9	6.9	1040
7.5	$24.0 \times 19.0 \times 42.0$	_	B32776P6755K000	7.6	9.5	19.6	0.9	6.9	780
10.0	$18.0 \times 32.5 \times 42.0$	_	B32776P6106K000	9.6	7.0	23.4	0.9	7.2	720
15.0	$20.0 \times 39.5 \times 42.0$	10.2	B32776P6156K000	13.0	4.8	12.4	0.9	7.1	640
20.0	$28.0 \times 37.0 \times 42.0$	10.2	B32776P6206K000	16.0	3.6	11.5	0.9	7.1	440
22.0	$28.0 \times 42.5 \times 42.0$	10.2	B32776P6226K000	17.5	3.2	13.2	0.9	7.3	440
25.0	$30.0 \times 45.0 \times 42.0$	20.3	B32776P6256+000	19.5	2.9	13.9	0.9	7.4	400
30.0	$33.0 \times 48.0 \times 42.0$	20.3	B32776P6306+000	22.5	2.4	15.1	0.9	7.6	180
$V_{R,85}$	_{°C} = 700 V DC								
3.9	$24.0 \times 15.0 \times 42.0$	_	B32776P7395+000	5.6	15.3	19.2	0.8	6.2	1040
5.0	$24.0 \times 19.0 \times 42.0$	_	B32776P7505+000	6.8	12.1	19.1	8.0	6.3	780
12.0	$20.0 \times 39.5 \times 42.0$	10.2	B32776P7126K000	12.5	5.3	12.4	8.0	6.4	640
14.0	$28.0 \times 37.0 \times 42.0$	10.2	B32776P7146+000	14.5	4.4	11.3	8.0	6.4	440
16.0	$28.0 \times 42.5 \times 42.0$	10.2	B32776P7166+000	16.0	3.9	12.5	8.0	6.5	440
20.0	$30.0 \times 45.0 \times 42.0$	20.3	B32776P7206+000	19.0	3.2	13.5	8.0	6.6	400
22.0	$33.0 \times 48.0 \times 42.0$	20.3	B32776P7226+000	20.5	2.9	14.2	0.9	6.7	180
$V_{R,85}$	_{°C} = 840 V DC								
2.7	$24.0 \times 15.0 \times 42.0$	-	B32776P8275+000	5.2	18.6	19.2	0.7	5.2	1040
3.5	$24.0 \times 19.0 \times 42.0$	_	B32776P8355+000	6.2	14.3	19.2	0.7	5.2	780
8.0	$20.0 \times 39.5 \times 42.0$	10.2	B32776P8805+000	11.0	6.3	12.4	0.7	5.3	640
10.0	$28.0 \times 37.0 \times 42.0$	10.2	B32776P8106+000	13.5	5.1	11.5	0.7	5.3	440
12.0	$28.0 \times 42.5 \times 42.0$	10.2	B32776P8126+000	15.0	4.4	12.8	0.7	5.4	440
14.0	$30.0 \times 45.0 \times 42.0$	20.3	B32776P8146+000	17.0	3.8	13.7	0.7	5.5	400
16.0	$33.0 \times 48.0 \times 42.0$	20.3	B32776P8166+000	19.0	3.3	14.5	0.7	5.5	180

MOQ = Minimum Order Quantity, consisting of 4 packing units. Intermediate capacitance values are available on request.

Composition of ordering code

+ = Capacitance tolerance code:

 $K = \pm 10\%$

J = ±5%

Packing code:

000 = untaped (lead length 6 - 1 mm)

Other lead lengths available upon request

¹⁾ Capacitance value measured at 1 kHz

²⁾ Max. ripple current I_{RMS} at 85 °C at 10 kHz for a $\Delta T \leq$ 15 °C when $\Delta ESR_{typ} \leq \pm 5\%$

³⁾ ESL value measured at resonance frequency (see specific graphs of Z vs freq)

B32778P

MKP DC Link - 125 $^{\circ}$ C series up to 50 μ F

Ordering codes and packing units (lead spacing 52.5 mm)

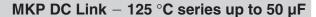
$C_R^{1)}$	Max. dimensions	P ₁	Ordering code	I _{RMS,max} ²⁾	ESR _{typ}	ESL _{typ} ³⁾	$tan \ \delta$	tan δ	MOQ
	$w \times h \times l$		(composition see	85 °C			max.	max.	
			below)	10 kHz	10 kHz		1 kHz	10 kHz	
μF	mm	mm		Α	mΩ	nΗ	10 ⁻³	10 ⁻³	pcs.
V _{R,85} °C	= 630 V DC								
35.0	$30.0\times45.0\times57.5$	20.3	B32778P6356+000	18.5	4.0	13.9	1.6	14.3	280
50.0	$35.0\times50.0\times57.5$	20.3	B32778P6506K000	23.5	2.9	16.0	1.6	14.8	108
V _{R,85} °C	= 700 V DC								
30.0	$30.0\times45.0\times57.5$	20.3	B32778P7306+000	18.5	4.2	14.2	1.5	12.9	280
40.0	$35.0\times50.0\times57.5$	20.3	B32778P7406+000	22.5	3.2	15.9	1.5	13.2	108
V _{R,85} °C	c = 840 V DC								
20.0	$30.0\times45.0\times57.5$	20.3	B32778P8206+000	16.5	5.1	14.0	1.2	10.6	280
27.0	$35.0\times50.0\times57.5$	20.3	B32778P8276+000	20.5	3.9	15.7	1.3	10.8	108

MOQ = Minimum Order Quantity, consisting of 4 packing units. Intermediate capacitance values are available on request.

Composition of ordering code

+ = Capacitance tolerance code:

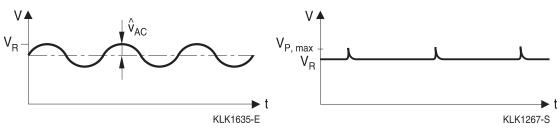
 $K = \pm 10\%$ $J = \pm 5\%$ Packing code:


000 = untaped (lead length 6 − 1 mm)
Other lead lengths available upon request

¹⁾ Capacitance value measured at 1 kHz

²⁾ Max. ripple current I_{RMS} at 85 °C at 10 kHz for a $\Delta T \leq$ 15 °C when $\Delta ESR_{typ} \leq \pm 5\%$

³⁾ ESL value measured at resonance frequency (see specific graphs of Z vs freq)


Technical data

Reference standard: IEC 60384-16 and AEC-Q200. All data given at T = 20 °C, unless otherwise specified.

Operating temperature	range (case)	Max. op	erating tem	perature, T _{op.max} +1	25 °C¹)	
a paramag aanaparamara	,g. (13.15.1)		_	perature T _{max}	+110 °C	
		Lower c	ategory tem	nperature T _{min}	-40 °C	
Insulation Resistance R	_{ins} given as time	τ > 1000	00 s (after 1	min) at 500 V DC	;	
constant $\tau = C_R \cdot R_{ins}$, re	el. humidity ≤ 65%					
(minimum as-delivered	values)					
DC voltage test between	n terminals (10 s)	1.5 · V _F	}			
Voltage test terminal to	case (10 s)	2110 V AC, 50 Hz				
Peak current I _P (A)		C (μF) · dV/dt				
Reliability:	Failure rate λ	5 fit (≤ 1	l ⋅ 10 ⁻⁹ h) at	0.5 ⋅ V _R , 40 °C		
	Service life t _{SL}	40 000	h at V_R , 85 $^\circ$	°C		
		For con	version to o	ther operating cor	nditions and	
		tempera	atures, refer	to chapter		
		"Quality	, 2 Reliabilit	ty".		
	V_R (V DC) at 85 $^{\circ}C^{1)}$	630	700	840		
Continuous operation vo	oltage V _{op} at 105 °C ¹⁾	540	600	720		
Continuous operation vo	oltage V _{op} at 125 °C ¹⁾	450	500	600		
For temperatures between	en 85 °C and 125 °C1)	0.7%/°C	of V _{op} de-ra	ating compared to	V _{op} at 85 °C	

¹⁾ Temperatures given as operating temperature T_{op} (ambient temperature + self-heating), for example when ambient temperature is 125 °C, selfheating is 0 °C, or ripple current cannot be permitted.

Typical waveforms

Restrictions:

 V_R : Maximum operating peak voltage of either polarity but of a non-reversing waveform, for which the capacitor has been designed for continuous operation.

$$\boldsymbol{\hat{u}}_{\text{AC}}\!\leq\boldsymbol{0.2}\,\cdot\,\boldsymbol{V}_{\text{R}}$$

 $V_{p, max}$:

Overvoltage	Maximum duration within one day
1.1 · V _R	30% of on-load duration
1.15 · V _R	30 min.
$1.2 \cdot V_R$	5 min.
1.3 · V _R	1 min.

MKP DC Link - 125 $^{\circ}\text{C}$ series up to 50 μF

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

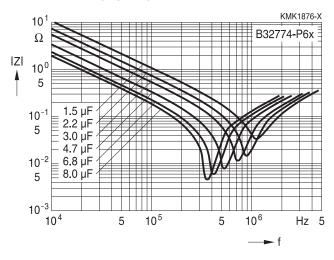
Note:

The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor. These parameters are given for isolated pulses in such a way that the heat generated by one pulse will be completely dissipated before applying the next pulse. For a train of pulses, please refer to the curves of permissible AC voltage-current versus frequency.

dV/dt values

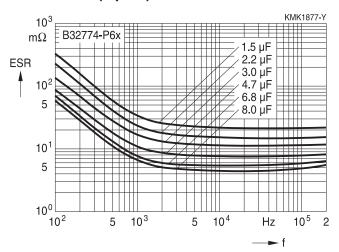
Lead spacing	27.5 mn	n		37.5 mn	n		52.5 mn	n	
Туре	B32774	Р		B32776	Р		B32778	Р	
V _R (V DC)	630	700	840	630	700	840	630	700	840
dV/dt in V/μs	50	75	100	35	54	73	25	35	50

MKP DC Link - 125 °C series up to 50 μ F

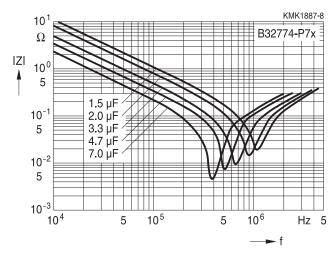


Characteristics curves

Additional technical information can be found under "Design support" on www.epcos.com.


Impedance Z versus frequency f (typical values)

Lead spacing 27.5 mm B32774-P6x (2 pins) / 630 V DC


ESR versus frequency f (typical values)

Lead spacing 27.5 mm B32774-P6x (2 pins) / 630 V DC

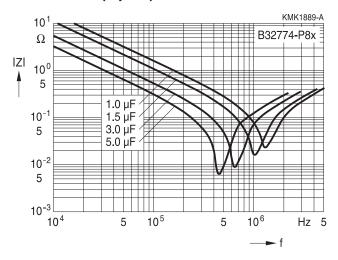
Impedance Z versus frequency f (typical values)


Lead spacing 27.5 mm B32774-P7x (2 pins) / 700 V DC

ESR versus frequency f

(typical values)

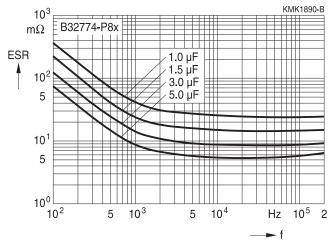
Lead spacing 27.5 mm B32774-P7x (2 pins) / 700 V DC



MKP DC Link - 125 $^{\circ}$ C series up to 50 μ F

Characteristics curves

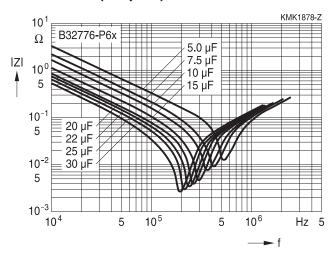
Impedance Z versus frequency f (typical values)


Lead spacing 27.5 mm B32774-P8x (2 pins) / 840 V DC

ESR versus frequency f

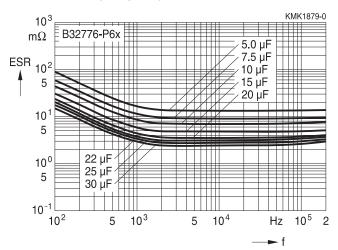
(typical values)

Lead spacing 27.5 mm B32774-P8x (2 pins) / 840 V DC

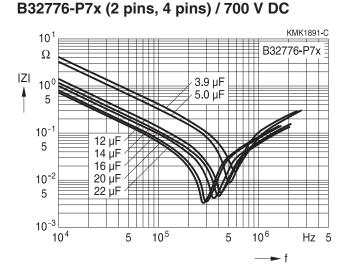

MKP DC Link - 125 °C series up to 50 μ F

Characteristics curves

Impedance Z versus frequency f (typical values)

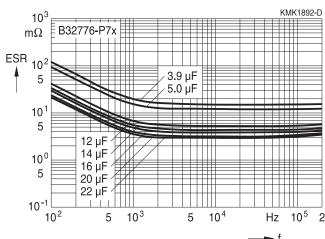

Lead spacing 37.5 mm B32776-P6x (2/4 pins) / 630 V DC

ESR versus frequency f


(typical values)

Lead spacing 37.5 mm B32776-P6x (2/4 pins) / 630 V DC

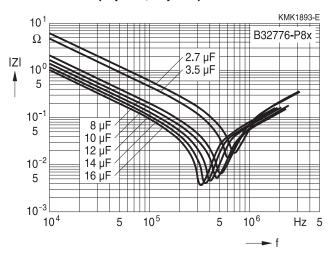
Impedance Z versus frequency f (typical values)


Lead spacing 37.5 mm

ESR versus frequency f

(typical values)

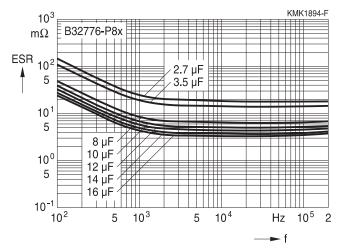
Lead spacing 37.5 mm B32776-P7x (2 pins, 4 pins) / 700 V DC



MKP DC Link - 125 °C series up to 50 μF

Characteristics curves

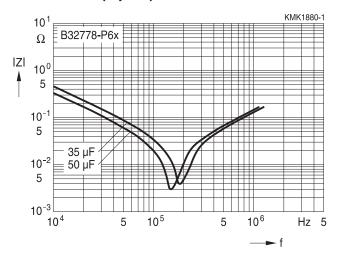
Impedance Z versus frequency f (typical values)


Lead spacing 37.5 mm B32776-P8x (2 pins, 4 pins) / 840 V DC

ESR versus frequency f

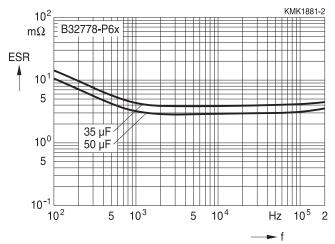
(typical values)

Lead spacing 37.5 mm B32776-P8x (2 pins, 4 pins) / 840 V DC

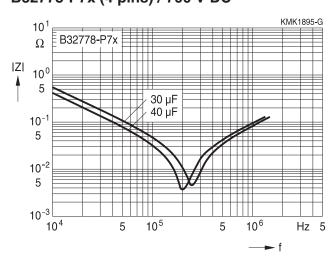

MKP DC Link - 125 °C series up to 50 μ F

Characteristics curves

Impedance Z versus frequency f (typical values)

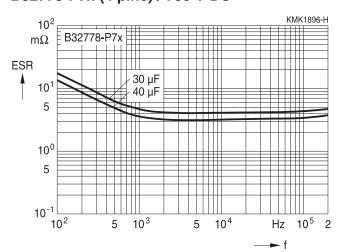

Lead spacing 52.5 mm B32778-P6x (4 pins) / 630 V DC

ESR versus frequency f


(typical values)

Lead spacing 52.5 mm B32778-P6x (4 pins) / 630 V DC

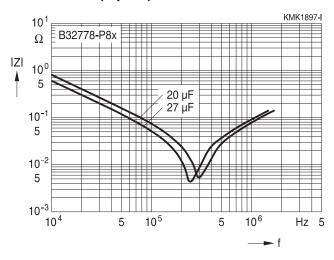
Impedance Z versus frequency f (typical values)


Lead spacing 52.5 mm B32778-P7x (4 pins) / 700 V DC

ESR versus frequency f

(typical values)

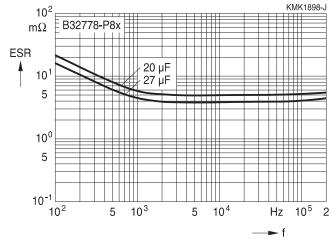
Lead spacing 52.5 mm B32778-P7x (4 pins) / 700 V DC

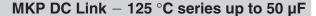


MKP DC Link - 125 °C series up to 50 μF

Characteristics curves

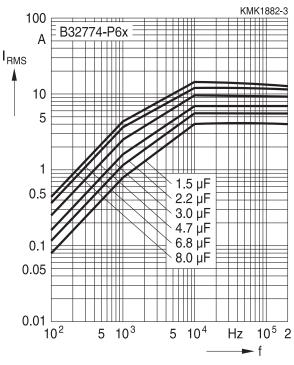
Impedance Z versus frequency f (typical values)

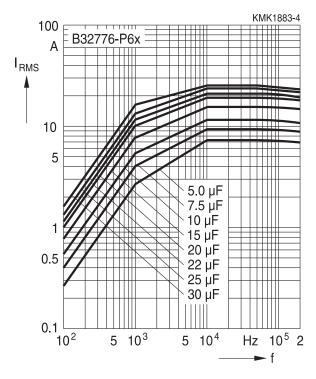

Lead spacing 52.5 mm B32778-P8x (4 pins) / 840 V DC


ESR versus frequency f

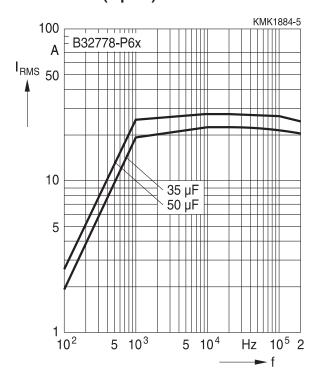
(typical values)

Lead spacing 52.5 mm B32778-P8x (4 pins) / 840 V DC



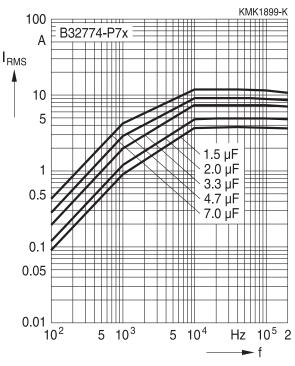

Characteristics curves

Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms, $T_A \le 85$ °C) For $T_A > 85$ °C, please use derating factor F_T .

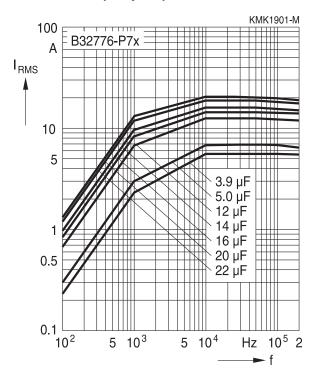

Lead spacing 27.5 mm B32774-P6x (2 pins) / 630 V DC

Lead spacing 37.5 mm B32776-P6x (2/4 pins) / 630 V DC

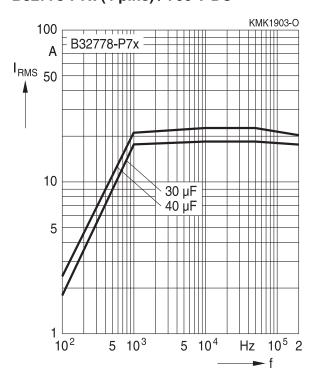
Lead spacing 52.5 mm B32778-P6x (4 pins) / 630 V DC

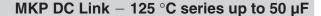


MKP DC Link - 125 °C series up to 50 μ F

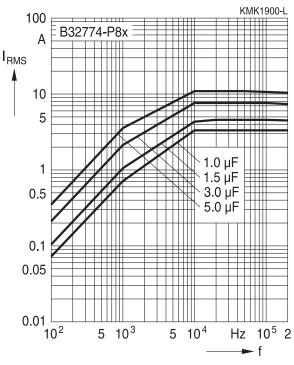

Characteristics curves

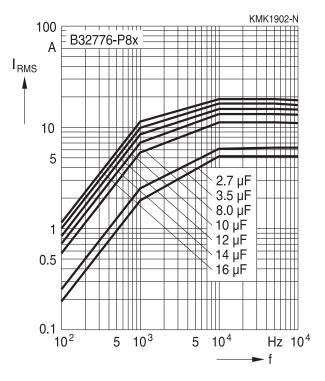
Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms, $T_A \le 85$ °C) For $T_A > 85$ °C, please use derating factor F_T .


Lead spacing 27.5 mm B32774-P7x (2 pins) / 700 V DC

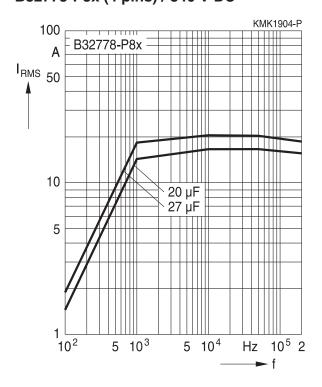

Lead spacing 37.5 mm B32776-P7x (2/4 pins) / 700 V DC

Lead spacing 52.5 mm B32778-P7x (4 pins) / 700 V DC



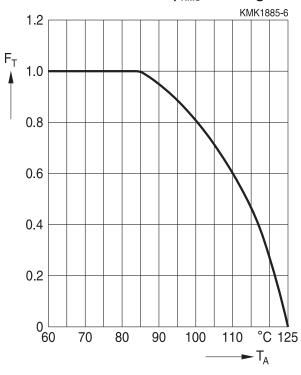

Characteristics curves

Permissible current I_{RMS} versus frequency f (for sinusoidal waveforms, $T_A \le 85$ °C) For $T_A > 85$ °C, please use derating factor F_T .


Lead spacing 27.5 mm B32774-P8x (2 pins) / 840 V DC

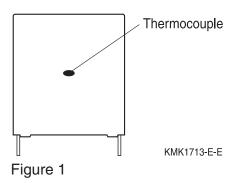
Lead spacing 37.5 mm B32776-P8x (2/4 pins) / 840 V DC

Lead spacing 52.5 mm B32778-P8x (4 pins) / 840 V DC



MKP DC Link - 125 $^{\circ}\text{C}$ series up to 50 μF

Curves Characteristics (I_{RMS} derating vs temperature)


Maximum I_{RMS} current as function of the ambient temperature: I_{RMS} (T_A) = $F_T \times I_{RMS}$ (85 °C)

Heat transference for self heating calculation

Box dime	ensions		Equivalent heat coefficient
w (mm)	h (mm)	I (mm)	G (mW/°C)
11.0	19.0	31.5	25
11.0	21.0	31.5	28
12.5	21.5	31.5	30
13.5	23.0	31.5	32
14.0	24.5	31.5	35
15.0	24.5	31.5	36
16.0	32.0	31.5	45
18.0	27.5	31.5	44
18.0	33.0	31.5	48
19.0	30.0	31.5	48
21.0	31.0	31.5	51
22.0	36.5	31.5	58
12.0	22.0	42.0	70
14.0	25.0	42.0	43
16.0	28.5	42.0	50
18.0	32.5	42.0	59
20.0	39.5	42.0	72
24.0	19.0	42.0	50
24.0	15.0	42.0	44
28.0	37.0	42.0	83
28.0	42.5	42.0	90
30.0	45.0	42.0	100
33.0	48.0	42.0	110
30.0	45.0	57.5	125
35.0	50.0	57.5	145

The equivalent heat coefficient "G (mW/°C)" is given for measuring the temperature on the lateral surface of the plastic box as figure 1 shows. By using a thermocouple and avoiding effect of radiation and convection the temperature measured during operation conditions should be a result of the dissipated power divided by the equivalent heat coefficient.

MKP DC Link - 125 °C series up to 50 μF

Self Heating by power dissipation and equivalent heat coefficient

The I_{RMS} and consequently the power dissipation must be limited during operation in order to not exceed the maximum limit of ΔT allowed for this series. ΔT_{max} given for this series is equal or lower than 15 °C at rated temperature (85 °C), for higher ambient temperatures ΔT_{max} (T) will have the same derating factor than I_{RMS} vs temperature and then an equivalent derating as per:

$$\Delta T_{\text{max}}$$
 (T) = (Factor)² × ΔT (85 °C).

For any particular I_{RMS} the ΔT may be calculated by:

$$\Delta T$$
 (°C) = P_{dis} (mW) / $G(mW/^{\circ}C)$.

Where ΔT (°C) is the difference between the temperature measured on the box (see figure 1) and the ambient temperature when capacitor is working during normal operation;

$$\Delta T$$
 (°C) = T_{op} (°C) - T_{A} (°C).

It represents the increasing of temperature provoked by the I_{BMS} during operation.

G (mW/°C) is the equivalent heat coefficient described above and P_{dis} (mW) is the dissipated power defined by: P_{dis} (mW) = ESR_{tvp} (m Ω) × I_{RMS}^2 (A_{RMS}).

Example for thermal calculation:

We will take as reference B32778P6506K (50 μ F/630 V DC) type for thermal calculation. Considering the following load and capacitor characteristics:

 I_{RMS} : 15 A_{RMS} at 20 kHz

T_A: 100 °C

 $35 \times 50 \times 57.5$ box

G (mW/ºC): 145

Then we have to find the ESR_{tvp} at 20 kHz what is approximately 2.9 m Ω .

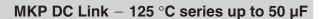
So according to P_{dis} (mW) = ESR_{tvp} (m Ω) × I_{RMS} ² (A_{RMS})

we have the following: P_{dis} (mW) = 2.9 m $\Omega \times 10$ A_{RMS}^2 = 290 mW.

And as per ΔT (°C) = P_{dis} (mW) / G (mW/°C)

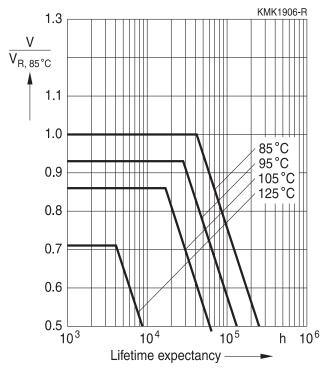
we have the following: ΔT (°C) = 290 (mW) / 145 (mW/°C) = 4.5 °C.

What is below of the ΔT_{max} (100 °C) = (Factor)² × ΔT (85 °C) = (0.80)² × 15 °C = 9.6 °C.


On the other hand we may confirm that max I_{RMS} at 20 kHz at 85 °C = 23.5 A_{RMS} .

And then max I_{BMS} for 85 °C of ambient temperature is defined as follows:

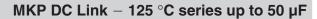
$$I_{RMS}$$
 (100 °C) = Factor × I_{RMS} (85 °C) = 0.80 × 23.5 A_{RMS} = 18.8 A_{RMS} .


What confirms once again that I_{RMS} (10 A_{RMS} at 20 kHz at 100 °C) is below the max specified for such frequency and ambient temperature.

Service life Life time expectancy - typical curve

Note:

- (1) Confidence level of 98%
- (2) Life expectancy is given as a function of operating temperature (capacitor body temperature).



MKP DC Link - 125 $^{\circ}\text{C}$ series up to 50 μF

Testing and Standards

Test	Reference	Conditions of test		Performance	
				requirements	
Electrical Parameters (Routine test)	IEC 61071-11	Voltage between terminals, 1.5 V_R , during 10 s Insulation resistance, R_{INS} at 500 V Capacitance, C at 1 kHz (room temperature) Dissipation factor, tan δ at 1/10 kHz (room temperature)		Within specified limits	
Robustness	IEC 60068-2-21	Tensile strength (test Ua	1)	Capacitance and $\tan \delta$	
of termina- tions (Type test)		Wire diameter	Tensile force	within specified limits	
		$0.5 < d_1 \le 0.8 \text{ mm}$ $0.8 < d_1 \le 1.25 \text{ mm}$	10 N 20 N		
Resistance to solder- ing heat (Type test)	IEC 60068-2-20, test Tb, method 1A	Solder bath temperature at 260 \pm 5 $^{\circ}$ C, immersion for 10 seconds		$ \Delta C/C_0 \le 2\%$ $ \Delta \tan \delta \le 0.002$	
Bump (Type test)	IEC 60384-16	Test Eb: Total 4000 bumps with 390 m/s² mounted on PCB 6 ms duration		No visible damage $\begin{split} & \Delta C/C_0 \leq 2\%\\ & \Delta\ tan\ \delta l \leq 0.002\\ &R_{INS} \geq 50\%\ of\ initial\ limit \end{split}$	
Climatic sequence (Type test)	IEC 60384-16	Dry heat Tb / 16 h. Damp heat cyclic, 1st cycle + 55 °C / 24h / 95% 100% RH Cold Ta / 2h Damp heat cyclic, 5 cycles + 55 °C / 24h / 95% 100% RH		No visible damage $ \Delta C/C_0 \leq 3\%$ $ \Delta \tan \delta \leq 0.001$ $R_{\text{INS}} \geq 50\% \text{ of initial limit}$	
Thermal shock	AEC-Q200	-55 °C +85 °C, 1000 cycles		No visible damage $\begin{split} \Delta C/C0 &\leq 2\% \\ \Delta \ \text{tan } \delta &\leq 0.002 \ \text{(1kHz)} \\ R_{\text{INS}} &\geq 50\% \ \text{of initial limit} \end{split}$	
Vibration	AEC-Q200	5 <i>g</i> for 20 minutes, 12 cycles, each of 3 orientations (X, Y, Z axis), 240 min/axis, total 12 hours Test from 10-2000 Hz		No visible damage	

Test	Reference	Conditions of test	Performance requirements
High tem- perature high humi- dity with load	AEC-Q200	40 °C/93% RH/1000 hours with V_R 60 °C/95% RH/500 hours with V_R	No visible damage $\begin{split} \Delta C/C_0 &\leq 5\% \\ \Delta \ tan \ \delta/tan \ \delta &\leq 400\% \ (1\text{kHz}) \\ R_{\text{INS}} &\geq 50\% \ of \ initial \ limit \end{split}$
		V_R = 630: 85 °C/85% RH/1000 hours with 450 V DC V_R = 700: 85 °C/85% RH/1000 hours with 500 V DC	$\begin{split} & \Delta C/C_0 \leq 5\%\\ & \Delta\ tan\ \delta \leq 0.005\ (1kHz)\\ &R_{INS} \geq 50\%\ of\ initial\ limit \end{split}$
		V _R = 840: 85 °C/85% RH/1000 hours with 600 V DC	
Endurance (Type test)	IEC 60384-16	$85 ^{\circ}\text{C}/1.25 \text{V}_{\text{R}} / 1000 \text{hours or}$ $105 ^{\circ}\text{C}/1.25 \text{V}_{\text{op}} / 1000 \text{hours}$ or $125 ^{\circ}\text{C}/1.25 \text{V}_{\text{op}} / 1000 \text{hours}$	No visible damage $\begin{split} \Delta C/C_0 &\leq 5\% \\ \Delta \ tan \ \delta &\leq 0.005 \ (1 \ kHz) \\ R_{INS} &\geq 50\% \ of \ initial \ limit \end{split}$

Mounting guidelines

1 Soldering

1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

Solder bath temperature	235 ±5 °C		
Soldering time	2.0 ±0.5 s		
Immersion depth	2.0 +0/-0.5 mm from capacitor body or seating plane		
Evaluation criteria:			
Visual inspection	Wetting of wire surface by new solder ≥90%, free-flowing solder		