

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

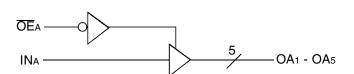
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

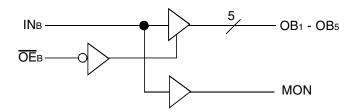
3.3V CMOS BUFFER/CLOCK DRIVER

IDT49FCT3805B

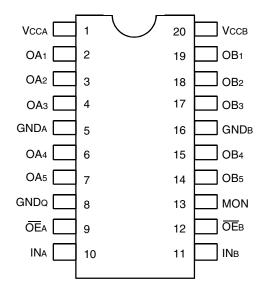
FEATURES:

- 0.5 MICRON CMOS Technology
- Guaranteed low skew < 500ps (max.)
- Very low duty cycle distortion < 1.0ns (max.)
- Very low CMOS power levels
- · TTL compatible inputs and outputs
- Inputs can be driven from 3.3V or 5V components
- Two independent output banks with 3-state control
- 1:5 fanout per bank
- "Heartbeat" monitor output
- $Vcc = 3.3V \pm 0.3V$
- · Available in SSOP, SOIC, and QSOP packages


DESCRIPTION:


The FCT3805B is a 3.3 volt, non-inverting clock driver built using advanced dual metal CMOS technology. The device consists of two banks of drivers, each with a 1:5 fanout and its own output enable control. The device has a "heartbeat" monitor for diagnostics and PLL driving. The MON output is identical to all other outputs and complies with the output specifications in this document. The FCT3805B offers low capacitance inputs with hysteresis.

The FCT3805B is designed for high speed clock distribution where signal quality and skew are critical. The FCT3805B also allows single point-to-point transmission line driving in applications such as address distribution, where one signal must be distributed to multiple recievers with low skew and high signal quality.


For more information on using the FCT3805B with two different input frequencies on bank A and B, please see AN-236.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

SOIC/ SSOP/ QSOP TOP VIEW

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND -0.5 to		V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	erminal Voltage with Respect to GND -0.5 to +7	
VTERM ⁽⁴⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	
lout	DC Output Current	-60 to +60 n	

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
 permanent damage to the device. This is a stress rating only and functional operation
 of the device at these or any other conditions above those indicated in the operational
 sections of this specification is not implied. Exposure to absolute maximum rating
 conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. Input terminals.
- 4. Outputs and I/O terminals.

CAPACITANCE (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	5.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description
OEA, OEB	3-State Output Enable Inputs (Active LOW)
INA, INB	Clock Inputs
OAn, OBn	Clock Outputs
MON	Monitor Output

FUNCTION TABLE (1)

Inpi	uts	Outputs			
OEA, OEB INA, INB		OAn, OBn	MON		
L	L	L	L		
L	Н	Н	Н		
H L		Z	L		
н н		Z	Н		

- 1. H = HIGH
 - L = LOW
 - Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified

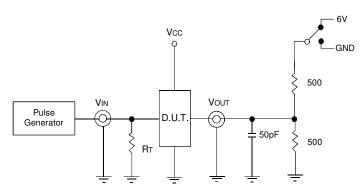
Commercial: $T_A = 0^{\circ}C$ to $+70^{\circ}C$, Industrial: $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{CC} = 3.3V \pm 0.3V$

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Тур.	Max.	Unit
VIH	Input HIGH Level (Input pins)	Guaranteed Logic HIGH Level		2	_	5.5	V
	Input HIGH Level (I/O pins)			2	_	Vcc + 0.5	
VIL	Input LOW Level (Input and I/O pins)	Guaranteed Logic LOW Leve	l	-0.5	_	0.8	V
lін	Input HIGH Current (Input pins)	Vcc = Max.	VI = 5.5V		_	±1	
	Input HIGH Current (I/O pins)	1	VI = VCC	_	_	±1	μΑ
lıL	Input LOW Current (Input pins)	Vcc = Max.	VI = GND		_	±1	
	Input LOW Current (I/O pins)	1	VI = GND	_	_	±1	
lozh	High Impedence Output Current	Vcc = Max.	Vo = Vcc	_	_	±1	μА
lozL	(3-State Output Pins)		Vo = GND	_	_	±1	
Vık	Clamp Diode Voltage	Vcc = Min., In = -18mA		<u> </u>	-0.7	-1.2	V
IODH	Output HIGH Current	$VCC = 3.3V$, $VIN = VIH \text{ or } VIL$, $VO = 1.5V^{(3)}$		-36	-60	-110	mA
IODL	Output LOW Current	$VCC = 3.3V$, $VIN = VIH \text{ or } VIL$, $VO = 1.5V^{(3)}$		50	90	200	mA
Vон	Output HIGH Voltage	Vcc = Min.	IOH = -0.1mA	Vcc-0.2	_	<u> </u>	
		VIN = VIH or VIL	Iон = -8mA	2.4 ⁽⁵⁾	3	_	V
Vol	Output LOW Voltage	Vcc = Min.	IOL = 0.1mA	T -	_	0.2	
		VIN = VIH or VIL	IOL = 16mA	_	0.2	0.4	V
			IOL = 24mA	_	0.3	0.5	
loff	Input Power Off Leakage	Vcc = 0V, Vin = 4.5V			_	±1	μА
los	Short Circuit Current ⁽⁴⁾	Vcc = Max., Vo = GND ⁽³⁾		-60	-135	-240	mA
Vн	Input Hysteresis	_			150	_	mV
ICCL	Quiescent Power Supply Current	Vcc = Max.			0.1	10	μА
Іссн		VIN = GND or VCC					
Iccz							

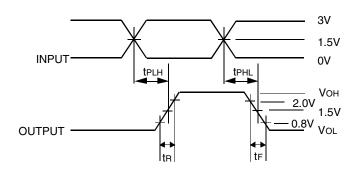
- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 3.3V, $+25^{\circ}C$ ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. This parameter is guaranteed but not tested.
- 5. VoH = Vcc 0.6V at rated current.

POWER SUPPLY CHARACTERISTICS

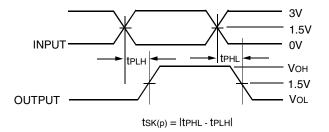
Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current	Vcc = Max.		T -	10	30	μА
	TTL Inputs HIGH	VIN = VCC -0.6V(3)					
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max.	VIN = VCC	T -	0.035	0.06	mA/MHz
		Outputs Open	VIN = GND				
		OEA = OEB = GND					
		Per Output Toggling					
		50% Duty Cycle					
Ic	Total Power Supply Current ⁽⁶⁾	Vcc = Max.	VIN = VCC	T -	0.9	1.6	
		Outputs Open	VIN = GND				
		fo = 25MHz					
		50% Duty Cycle	VIN = VCC - 0.6V	-	0.9	1.6	
		OEA = OEB = VCC	VIN = GND				
		Mon. Output Toggling					
		Vcc = Max.	VIN = VCC	-	20	33 ⁽⁵⁾	mA
		Outputs Open	VIN = GND				
		fo = 50MHz					
		50% Duty Cycle	VIN = VCC -0.6V	-	20	33 ⁽⁵⁾	
		OEA = OEB = GND	VIN = GND				
		Eleven Outputs Toggling					

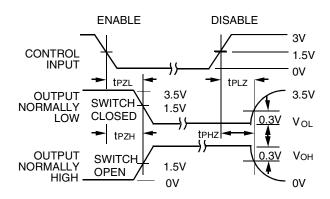

- 1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.
- 3. Per TTL driven input (VIN = Vcc -0.6V); all other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.
- 5. Values for these conditions are examples of the Ic formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (foNo)$
 - Icc = Quiescent Current (IccL, IccH and Iccz)
 - ΔIcc = Power Supply Current for a TTL High Input (VIN = Vcc -0.6V)
 - DH = Duty Cycle for TTL Inputs High
 - N⊤ = Number of TTL Inputs at DH
 - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
 - fo = Output Frequency
 - No = Number of Outputs at fo
 - All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (3,4)


		Comn	nercial	Indu	strial	
Parameter	Conditions ⁽¹⁾	Min. ⁽²⁾	Max.			Unit
Propagation Delay	CL = 50pF	1.5	5	1.5	5.2	ns
INA to OAn, INB to OBn	$RL = 500\Omega$					
Output Rise Time		_	2	_	2	ns
Output Fall Time		_	2	_	2	ns
Output skew: skew between outputs of all banks of		_	0.5	_	0.6	ns
same package (inputs tied together)						
Pulse skew: skew between opposite transitions		_	1	_	1	ns
of same output (ItPHL—tPLHI)						
Package skew: skew between outputs of different		_	1.2	_	1.2	ns
packages at same power supply voltage,						
temperature, package type and speed grade						
Output Enable Time		1.5	6	1.5	6	ns
OEA to OAn, OEB to OBn						
Output Disable Time		1.5	5	1.5	5	ns
OEA to OAn, OEB to OBn						
	Propagation Delay INA to OAn, INB to OBn Output Rise Time Output Fall Time Output skew: skew between outputs of all banks of same package (inputs tied together) Pulse skew: skew between opposite transitions of same output (Itphl—tplhl) Package skew: skew between outputs of different packages at same power supply voltage, temperature, package type and speed grade Output Enable Time OEA to OAn, OEB to OBn Output Disable Time	Propagation Delay INA to OAn, INB to OBn Output Rise Time Output Fall Time Output skew: skew between outputs of all banks of same package (inputs tied together) Pulse skew: skew between opposite transitions of same output (Itphl—tplhl) Package skew: skew between outputs of different packages at same power supply voltage, temperature, package type and speed grade Output Enable Time OEA to OAn, OEB to OBn Output Disable Time	Parameter Conditions(1) Min.(2) Propagation Delay CL = 50pF 1.5 INA to OAn, INB to OBn RL = 500Ω — Output Rise Time — — Output Fall Time — — Output skew: skew between outputs of all banks of same package (inputs tied together) — — Pulse skew: skew between opposite transitions of same output (ItPHL—tPLHI) — — Package skew: skew between outputs of different packages at same power supply voltage, temperature, package type and speed grade — 1.5 Output Enable Time 1.5 — OEA to OAn, OEB to OBn — 1.5	Propagation Delay CL = 50pF 1.5 5 INA to OAn, INB to OBn — 2 Output Rise Time — 2 Output Fall Time — 2 Output skew: skew between outputs of all banks of same package (inputs tied together) — 0.5 Pulse skew: skew between opposite transitions of same output (ItPHL—tPLHI) — 1 Package skew: skew between outputs of different packages at same power supply voltage, temperature, package type and speed grade — 1.2 Output Enable Time 1.5 6 OEA to OAn, OEB to OBn 1.5 5	Parameter Conditions(1) Min.(2) Max. Propagation Delay INA to OAn, INB to OBn CL = 50pF RL = 500Ω 1.5 5 1.5 Output Rise Time — 2 — Output Fall Time — 2 — Output skew: skew between outputs of all banks of same package (inputs tied together) — 0.5 — Pulse skew: skew between opposite transitions of same output (ItPHL—tPLHI) — 1 — Package skew: skew between outputs of different packages at same power supply voltage, temperature, package type and speed grade — 1.2 — Output Enable Time OEA to OAn, OEB to OBn 1.5 6 1.5 Output Disable Time 1.5 5 1.5	Parameter Conditions(1) Min.(2) Max. Propagation Delay INA to OAn, INB to OBn CL = 50pF RL = 500Ω 1.5 5 1.5 5.2 Output Rise Time Output Fall Time Output skew: skew between outputs of all banks of same package (inputs tied together) — 2 — 2 Pulse skew: skew between opposite transitions of same output (ItPHL—tPLHI) — 1 — 1 Package skew: skew between outputs of different packages at same power supply voltage, temperature, package type and speed grade — 1.2 — 1.2 Output Enable Time OEA to OAn, OEB to OBn 1.5 5 1.5 5 Output Disable Time 1.5 5 1.5 5

- 1. See test circuits and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. tplh, tphl, tsk(t) are production tested. All other parameters guaranteed but not production tested.
- 4. Propagation delay range indicated by Min. and Max. limit is due to Vcc, operating temperature and process parameters. These propagation delay limits do not imply skew.

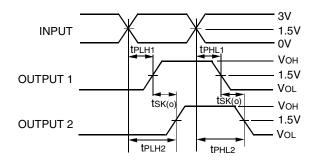

TEST CIRCUITS AND WAVEFORMS


Test Circuits for All Outputs

Package Delay

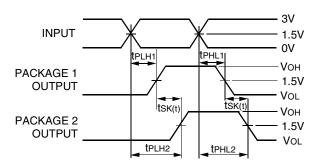
Pulse Skew - tsk(P)

Output Skew - tsk(X)


SWITCH POSITION

Test	Switch
Disable LOW Enable LOW	6V
Disable HIGH Enable HIGH	GND

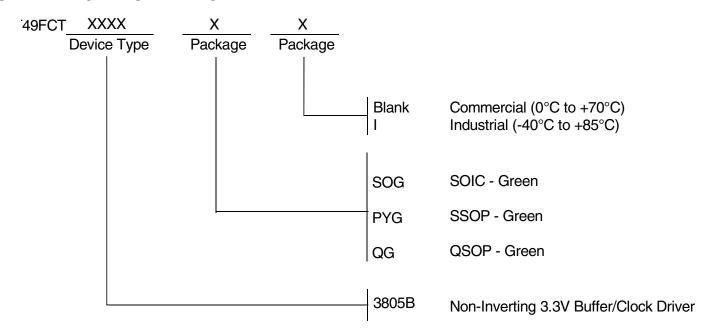
DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.

tSK(o) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

Output Skew - tsk(0)



tsk(t) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

Package Skew - tsk(T)

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH
- 2. Pulse Generator for All Pulses: f \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns

ORDERING INFORMATION

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: clockhelp@idt.com