imall

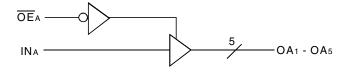
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

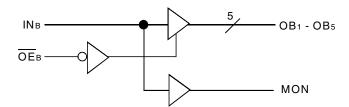
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

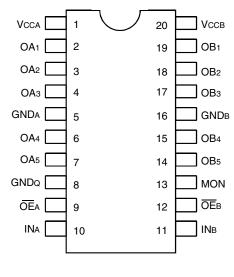

3.3V CMOS DUAL 1-TO-5 CLOCK DRIVER


1

FEATURES:

- Advanced CMOS Technology
- Guaranteed low skew < 200ps (max.)
- Very low propagation delay < 2.5ns (max)
- Very low duty cycle distortion < 270ps (max)
- Very low CMOS power levels
- Operating frequency up to 166MHz
- TTL compatible inputs and outputs
- · Inputs can be driven from 3.3V or 5V components
- Two independent output banks with 3-state control
- 1:5 fanout per bank
- "Heartbeat" monitor output
- Vcc = 3.3V ± 0.3V
- Available in SSOP and QSOP packages

FUNCTIONAL BLOCK DIAGRAM


DESCRIPTION:

The FCT3805 is a 3.3 volt clock driver built using advanced CMOS technology. The device consists of two banks of drivers, each with a 1:5 fanout and its own output enable control. The device has a "heartbeat" monitor for diagnostics and PLL driving. The MON output is identical to all other outputs and complies with the output specifications in this document. The FCT3805 offers low capacitance inputs.

The FCT3805 is designed for high speed clock distribution where signal quality and skew are critical. The FCT3805 also allows single point-to-point transmission line driving in applications such as address distribution, where one signal must be distributed to multiple recievers with low skew and high signal quality.

For more information on using the FCT3805 with two different input frequencies on bank A and B, please see AN-236.

PIN CONFIGURATION

SSOP/ QSOP TOP VIEW

Outputs

MON

L

Н

L

Н

OAn, OBn

L

Н

Ζ

Ζ

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
Vcc	Input Power Supply Voltage	-0.5 to +4.6	V
Vi	InputVoltage	-0.5 to +5.5	V
Vo	Output Voltage	-0.5 to Vcc+0.5	V
TJ	Junction Temperature	150	°C
Tstg	Storage Temperature	-65 to +165	°C

PIN DESCRIPTION

FUNCTION TABLE⁽¹⁾

INA, INB

L

Н

L

Н

Inputs

OEA, OEB

L

L

Н

Н

Z = High-Impedance

NOTE: 1. H = HIGH L = LOW

Pin Names	Description
OEA, OEB	3-State Output Enable Inputs (Active LOW)
INA, INB	Clock Inputs
OAn, OBn	Clock Outputs
MON	MonitorOutput

NOTE:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE ($T_A = +25^{\circ}C$, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	3	4	рF
Соит	Output Capacitance	Vout = 0V	_	6	pF

NOTE:

1. This parameter is measured at characterization but not tested.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified Industrial: $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, Vcc = 3.3V ± 0.3 V

Symbol	Parameter	Test C	conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Vih	Input HIGH Level			2	—	5.5	V
VIL	Input LOW Level			-0.5	—	0.8	V
Ін	Input HIGH Current	Vcc = Max.	VI = 5.5V	_	—	±1	
lı∟	Input LOW Current	Vcc = Max.	VI = GND	_	_	±1	μA
Іоzн	High Impedance Output Current	Vcc = Max.	Vo = Vcc	_	_	±1	1
Iozl	(3-State Outputs Pins)		Vo = GND		_	±1	1
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18mA		_	-0.7	-1.2	V
Іорн	Output HIGH Current	VCC = 3.3V, VIN = VIH or VIL, VO = 1.5V ^(3,4)		-45	-74	-180	mA
IODL	Output LOW Current	VCC = 3.3V, VIN = VIH or VIL, VO = 1.5V ^(3,4)		50	90	200	mA
los	Short Circuit Current	Vcc = Max., Vo = GND ^(3,4)		-60	-135	240	mA
Vон	Output HIGH Voltage	Vcc = Min.	Іон = –12mA	2.4 ⁽⁵⁾	3	_	
		VIN = VIH or VIL	Iон =8mA	2.4 ⁽⁵⁾	3	_	V
			Іон = –100µА	Vcc-0.2	_	_	
Vol	Output LOW Voltage	Vcc = Min.	IOL = 12mA		0.3	0.4	
		VIN = VIH or VIL	IOL = 8mA		0.2	0.4	v
			IoL = 100μA	_	_	0.2	

NOTES:

2. Typical values are at Vcc = 3.3V, 25°C ambient.

^{1.} For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

^{3.} Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

^{4.} This parameter is guaranteed but not tested.

^{5.} $V_{OH} = V_{CC} - 0.6V$ at rated current.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Cor	nditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
ICCL	Quiescent Power Supply Current	Vcc = Max.		-	0.1	30	μA
Іссн		VIN = GND or VCC					
Iccz							
Δlcc	Power Supply Current per Input HIGH	Vcc = Max.		—	45	300	μA
		VIN = VCC -0.6V					
ICCD	Dynamic Power Supply Current	Vcc = Max.	VIN = VCC	—	80	120	μA/MHz
	per Output ⁽³⁾	CL = 15pF	VIN = GND				
		All Outputs Toggling					
lc	Total Power Supply Current ⁽⁴⁾	Vcc = Max.	VIN = VCC	—	125	150	
		C∟ = 15pF	VIN = GND				
		All Outputs Toggling	VIN = VCC -0.6V	—	125	150	1
		fi = 133MHz	VIN = GND				mA
		Vcc = Max.	VIN = VCC	-	155	195	1
		CL = 15pF	VIN = GND				
		All Outputs Toggling	VIN = VCC -0.6V	_	160	195	
		fi = 166MHz	VIN = GND				

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

3. This parameter is not directly testable, but is derived for use in Total Power Supply calculations.

4. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (foNo)$

Icc = Quiescent Current (IccL, IccH and Iccz)

 Δ Icc = Power Supply Current for a TTL High Input (VIN = Vcc -0.6V)

DH = Duty Cycle for TTL Inputs High

 $\mathsf{N}\mathsf{T}$ = Number of TTL Inputs at $\mathsf{D}\mathsf{H}$

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fo = Output Frequency

No = Number of Outputs at fo

INDUSTRIAL TEMPERATURE RANGE

SWITCHING CHARACTERISTICS OVER OPERATING RANGE - 3805D (3,4)

Symbol	Parameter	Conditions ⁽¹⁾	Min. ⁽²⁾	Max.	Unit
tPLH	Propagation Delay	CL = 15pF	1	3	ns
t PHL	INA to OAn, INB to OBn	f ≤133MHz			
ħ	Output Rise Time (0.8V to 2V)		—	1.5	ns
tF	Output Fall Time (2V to 0.8V)		—	1.5	ns
tsk(O)	Same device output pin to pin skew ⁽⁵⁾		—	270	ps
tSK(P)	Pulse skew ^(6,9)		—	270	ps
tSK(PP)	Part to part skew ⁽⁷⁾		—	550	ps
tPZL	Output Enable Time		_	5.2	ns
tPZH	OEA to OAn, OEB to OBn				
tPLZ	Output Disable Time		—	5.2	ns
tPHZ	OEA to OAn, OEB to OBn				
fMAX	Input Frequency		—	133	MHz

SWITCHING CHARACTERISTICS OVER OPERATING RANGE - 3805E (3,4)

Symbol	Parameter	Conditions ^(1,8)	Min. ⁽²⁾	Max.	Unit
tPLH	Propagation Delay	CL = 15pF	0.5	2.5	ns
t PHL	INA to OAn, INB to OBn	f ≤166MHz			
tR	Output Rise Time (0.8V to 2V)		—	1	ns
tF	Output Fall Time (2V to 0.8V)		—	1	ns
tsk(0)	Same device output pin to pin skew ⁽⁵⁾		—	200	ps
tSK(P)	Pulse skew ^(6,9)		—	270	ps
tsk(PP)	Part to part skew ⁽⁷⁾		—	550	ps
tPZL	Output Enable Time		_	5.2	ns
tPZH	OEA to OAn, OEB to OBn				
tPLZ	Output Disable Time		_	5.2	ns
tPHZ	OEA to OAn, OEB to OBn				
fMAX	Input Frequency		_	166	MHz

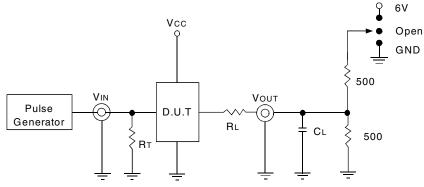
NOTES:

1. See test circuits and waveforms.

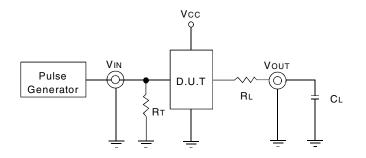
2. Minimum limits are guaranteed but not tested on Propagation Delays.

3. tPLH, tPHL, tsk(P), and tsk(o) are production tested. All other parameters guaranteed but not production tested.

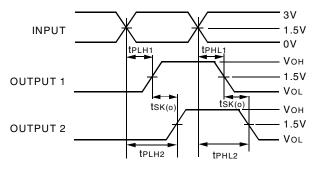
4. Propagation delay range indicated by Min. and Max. limit is due to Vcc, operating temperature and process parameters. These propagation delay limits do not imply skew. 5. Skew measured between all outputs under identical transitions and load conditions.


6. Skew measured is difference between propagation delay times tPHL and tPLH of same outputs under identical load conditions.

7. Part to part skew for all outputs given identical transitions and load conditions at identical Vcc levels and temperature.


8. Airflow of 1m/s is recommended for frequencies above 133MHz.

9. This parameter is measured using f = 1MHz.


TEST CIRCUITS AND WAVEFORMS

CL = 15pF Test Circuit

tSK(o) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|

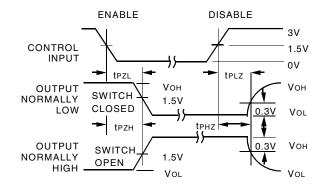
Output Skew - tsk(0)

SWITCH POSITION

Test	Switch
Disable Low Enable Low	6V
Disable High Enable High	GND

TEST CONDITIONS

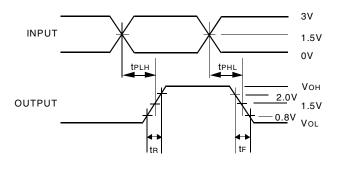
Symbol	$Vcc = 3.3V \pm 0.3V$	Unit
CL	15	pF
RT	Zout of pulse generator	Ω
R∟	33	Ω
tR/tF	1 (0V to 3V or 3V to 0V)	ns

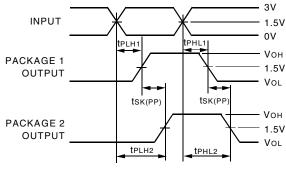

DEFINITIONS:

 C_{L} = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

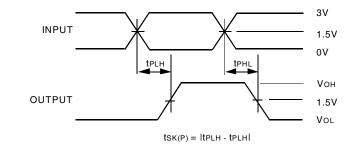
 $t_{R} / t_{F} = Rise/Fall$ time of the input stimulus from the Pulse Generator.


TEST CIRCUITS AND WAVEFORMS

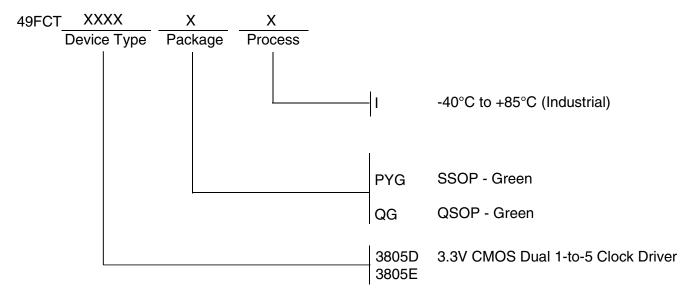

Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH


Propagation Delay

tsk(PP) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


Part-to-Part Skew - tSK(PP)

Part-to-Part Skew is for the same package and speed grade.

Pulse Skew

ORDERINGINFORMATION

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138

for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775

www.idt.com

for Tech Support: clockhelp@idt.com