

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



#### Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China











Spec No. :DS-70-99-0011 Effective Date: 08/09/2017

**Revision: D** 

**LITE-ON DCC** 

RELEASE

BNS-OD-FC001/A4



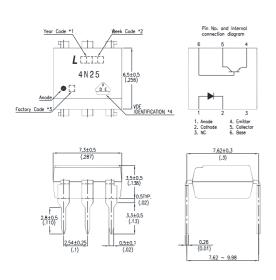
#### 1. **DESCRIPTION**

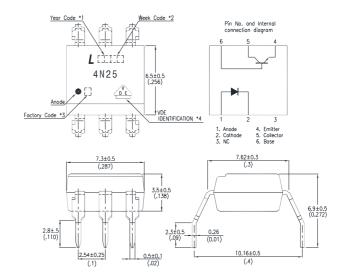
#### 1.1 Features

- High Current transfer ratio (CTR: MIN. 10% at IF = 10mA, VCE = 10V)
- Response time( ton : TYP.  $3\mu s$  at VCC = 10V, IC = 2mA,  $RL = 100\Omega$ )
- Input-output isolation voltage 4N25 series: Viso = 2,500Vrms 4N26 series: Viso = 1,500Vrms 4N27 series: Viso = 1,500Vrms 4N28 series: Viso = 500Vrms
- Dual-in-line package :

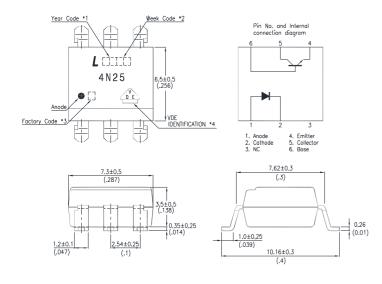
4N25, 4N26, 4N27, 4N28

- Wide lead spacing package :
  - 4N25M, 4N26M, 4N27M, 4N28M
- Surface mounting package :
  - 4N25S, 4N26S, 4N27S, 4N28S
- Tape and reel packaging:
  - 4N25S-TA1, 4N26S-TA1, 4N27S-TA1, 4N28S-TA1
- Safety approval
  - UL approval (NO. E113898)
  - TUV approval (NO. R9653630)
  - DEMKO approval (NO. 303985)
  - CSA & cUL, VDE, FIMKO, CQC approved
- RoHS Compliance
  - All materials be used in device are followed EU RoHS directive (No.2002/95/EC).
- ESD pass HBM 8000V/MM2000V
- MSL class 1


#### 1.2 Applications


- Hybrid substrates that require high density mounting.
- Programmable controllers




#### 2. PACKAGE DIMENSIONS

#### 2.1 4N25 2.2 4N25M





#### 2.3 4N25S

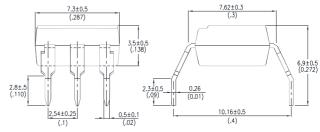


#### Notes:

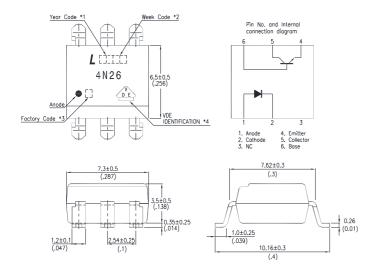
- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. VDE option.



#### 2.4 4N26


# Year Code \*1 Week Code \*2 Pin No. and Internal connection diagram 6 5 4 4 N 2 6 6.5±0.5 (.256) VOE I. Anode 2. Cothode 5. Collector 3. NC 4. Emitter 2. Cothode 6. Base 7.5±0.5 (.138) 7.5±0.5 (.138) 7.5±0.5 (.027)

3.3±0.5 (.13)


0.5±0,1 (.02)

# Year Code \*1 Week Code \*2 Pin No. and Internal connection diagram 6 5 4 4 N 2 6 6,5±0.5 (,256) VDE DENTIFICATION \*4 1. Anode 4. Emitter 2. Cothode 5. Collector 3. NC 6. Bose 7.3±0.5 7.6±0.3

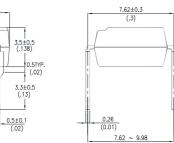
2.5 4N26M



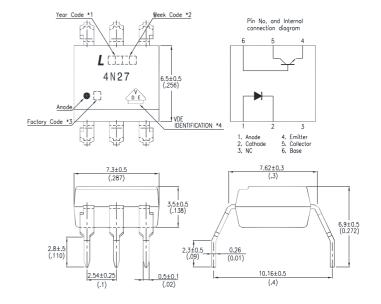
#### 2.6 4N26S



#### Notes:

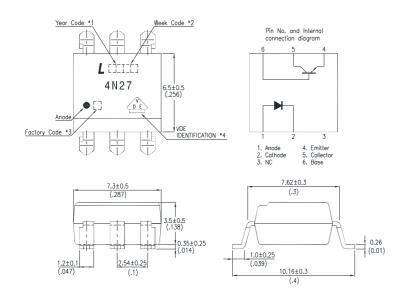

- 1. Year date code.
- 2. 2-digit work week.
- Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. VDE option.






#### 2.7 4N27

# Year Code \*1 Week Code \*2 Pin No. and Internal connection diagram 6 5 4 4 N 2 7 6,5±0,6 (256) VDE IDENTIFICATION \*4 1 2 3 1. Anode 5. Collector 3. NC 6. Base




#### 2.8 4N27M

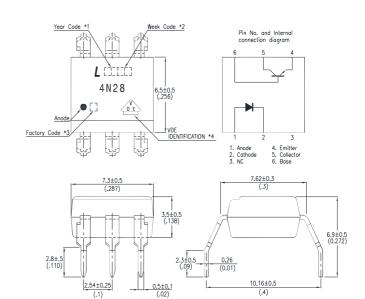


#### 2.9 4N27S

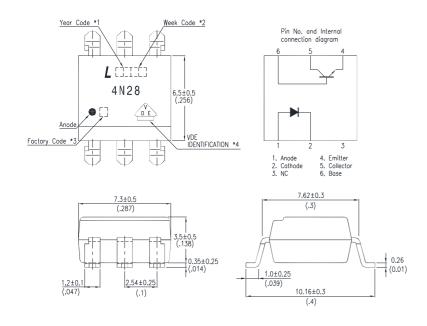
2.8±0.5 (,110)



#### Notes:


- 1. Year date code.
- 2. 2-digit work week.
- Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. VDE option.






#### 2.10 4N28

# Year Code \*1 Week Code \*2 Pin No. and Internal connection diagram 6 5 4 4 N 2 8 6,5±0.5 (,256) NOE IDENTIFICATION \*4 1 2 5 1, Anode 4, Emitter 2, Corinde 5, Collector 5, Collector 6, Bose (,138) 7.5±0.5 (,287) 7.5±0.5 (,138) 0.5†VP. (,02) 3.3±0.5 (,13) 0.5†VP. (,02) 7.62 × 9.98

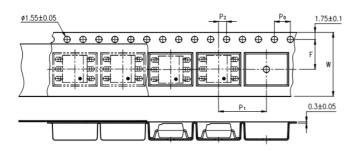


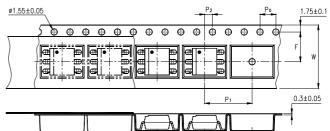
#### 2.12 4N28S



#### Notes:

2.11 4N28M


- 1. Year date code.
- 2. 2-digit work week.
- Factory identification mark shall be marked (W: China-CZ, Y: Thailand)
- 4. VDE option.




#### **TAPING DIMENSIONS**

3.1 4N25S-TA, 4N26S-TA, 4N27S-TA, 4N28S-TA

3.2 4N25S-TA1, 4N26S-TA1, 4N27S-TA1, 4N28S-TA1





| Description                            | Symbol         | Dimension in mm (inch) |
|----------------------------------------|----------------|------------------------|
| Tape wide                              | W              | 16±0.3 (0.63)          |
| Pitch of sprocket holes                | P <sub>0</sub> | 4±0.1 (0.15)           |
| Distance of compartment                | F              | 7.5±0.1 (0.295)        |
|                                        | P <sub>2</sub> | 2±0.1 (0.079)          |
| Distance of compartment to compartment | P <sub>1</sub> | 12±0.1 (0.472)         |

#### 3.3 Quantities Per Reel

| Package Type     | TA/TA1 |
|------------------|--------|
| Quantities (pcs) | 1000   |



#### 4. RATING AND CHARACTERISTICS

#### 4.1 Absolute Maximum Ratings at Ta=25℃

|                           | Parameter                                                                       |                  | Symbol                      | Rating | Unit             |    |   |
|---------------------------|---------------------------------------------------------------------------------|------------------|-----------------------------|--------|------------------|----|---|
| Forward Current           |                                                                                 | I <sub>F</sub>   | 80                          | mA     |                  |    |   |
| Input                     | Input Reverse Voltage Power Dissipation                                         |                  | $V_R$                       | 6      | V                |    |   |
|                           |                                                                                 |                  | Р                           | 150    | mW               |    |   |
|                           | Collector - Emitter Voltage                                                     |                  | Collector - Emitter Voltage |        | V <sub>CEO</sub> | 30 | V |
| Emitter - Collector       |                                                                                 | Voltage          | V <sub>ECO</sub>            | 7      | V                |    |   |
| Output                    | Output Collector - Base Voltage  Collector Current  Collector Power Dissipation |                  | V <sub>CBO</sub>            | 70     | V                |    |   |
|                           |                                                                                 |                  | I <sub>C</sub>              | 100    | mA               |    |   |
|                           |                                                                                 |                  | Pc                          | 150    | mW               |    |   |
|                           | Total Power Dissipation                                                         |                  | P <sub>tot</sub>            | 250    | mW               |    |   |
| *1 Isolation Voltage 4N26 |                                                                                 | 4N25 series      |                             | 2,500  | $V_{rms}$        |    |   |
|                           |                                                                                 | 4N26 series      | $V_{iso}$                   | 1,500  |                  |    |   |
|                           |                                                                                 | 4N27 series      | <b>V</b> iso                | 1,500  |                  |    |   |
|                           |                                                                                 | 4N28 series      |                             | 500    |                  |    |   |
| Operating Temperature     |                                                                                 | T <sub>opr</sub> | -55 ~ +100                  | °C     |                  |    |   |
| Storage Temperature       |                                                                                 | T <sub>stg</sub> | -55 ~ +150                  | °C     |                  |    |   |
| *2 Soldering Temperature  |                                                                                 | T <sub>sol</sub> | 260                         | °C     |                  |    |   |

#### \*1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.

#### \*2. For 10 Seconds



#### 4.2 Electrical Optical Characteristics at Ta=25℃

|                                 | Parameter                               | Symbol               | Min.               | Тур.               | Max. | Unit | Test Condition                            |  |
|---------------------------------|-----------------------------------------|----------------------|--------------------|--------------------|------|------|-------------------------------------------|--|
| Input                           | Forward Voltage                         | V <sub>F</sub>       | _                  | 1.2                | 1.5  | V    | I <sub>F</sub> =10mA                      |  |
|                                 | Reverse Current                         | I <sub>R</sub>       | _                  | _                  | 10   | μΑ   | V <sub>R</sub> =4V                        |  |
|                                 | Terminal Capacitance                    | Ct                   | _                  | 50                 | _    | pF   | V=0, f=1KHz                               |  |
| Output                          | Collector Dark Current                  | I <sub>CEO</sub>     | _                  | _                  | 50   | nA   | V <sub>CE</sub> =10V, I <sub>F</sub> =0   |  |
|                                 | Collector-Emitter Breakdown Voltage     | BV <sub>CEO</sub>    | 30                 | _                  | _    | V    | I <sub>C</sub> =0.1mA, I <sub>F</sub> =0  |  |
|                                 | Emitter-Collector Breakdown Voltage     | BV <sub>ECO</sub>    | 7                  | _                  | —    | V    | I <sub>E</sub> =10μΑ, I <sub>F</sub> =0   |  |
|                                 | Collector-Base Breakdown Voltage        | BV <sub>CBO</sub>    | 70                 | _                  | _    | V    | I <sub>C</sub> =0.1mA, I <sub>F</sub> =0  |  |
| TRANSFER<br>CHARACTERISTI<br>CS | Collector Current (4N25/4N26)           | Ic                   | 2                  | _                  | _    | mA   |                                           |  |
|                                 | * Current Transfer Ratio<br>(4N25/4N26) | CTR                  | 20                 | _                  | _    | %    | $I_F=10$ mA, $V_{CE}=10$ V                |  |
|                                 | Collector Current (4N27/4N28)           | Ic                   | 1                  | _                  | _    | mA   |                                           |  |
|                                 | * Current Transfer Ratio<br>(4N27/4N28) | CTR                  | 10                 | _                  | _    | %    |                                           |  |
|                                 | Collector-Emitter Saturation Voltage    | V <sub>CE(sat)</sub> | _                  | 0.1                | 0.5  | V    | I <sub>F</sub> =50mA, I <sub>C</sub> =2mA |  |
|                                 | Isolation Resistance                    | R <sub>iso</sub>     | 5×10 <sup>10</sup> | 1×10 <sup>11</sup> | _    | Ω    | DC500V,<br>40 ~ 60% R.H.                  |  |
|                                 | Floating Capacitance                    | C <sub>f</sub>       | _                  | 1                  | _    | pF   | V=0, f=1MHz                               |  |
|                                 | Response Time (Rise)                    | t <sub>r</sub>       | _                  | 3                  | _    | μs   | V <sub>CE</sub> =2V, I <sub>C</sub> =2mA  |  |
|                                 | Response Time (Fall)                    | t <sub>f</sub>       | _                  | 3                  | _    | μs   | $R_L=100\Omega$ ,                         |  |



#### 5. CHARACTERISTICS CURVES

Fig.1 Forward Current vs. Ambient Temperature

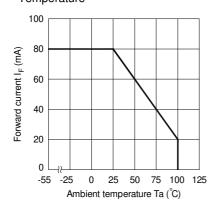



Fig.3 Forward Current vs. Forward Voltage

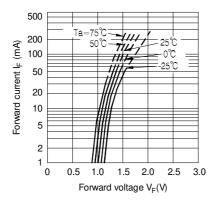



Fig.5 Collector Current vs.
Collector-emitter Voltage

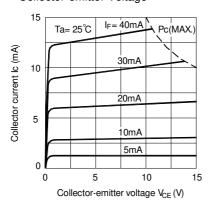



Fig.2 Collector Power Dissipation vs.
Ambient Temperature

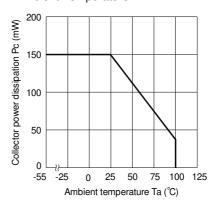



Fig.4 Current Transfer Ratio vs. Forward Current

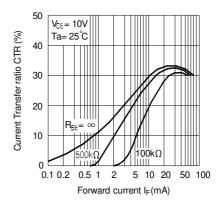



Fig.6 Relative Current Transfer Ratio vs. Ambient Temperature

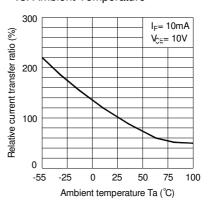





Fig.7 Collector-emitter Saturation Voltage vs.
Ambient Temperature

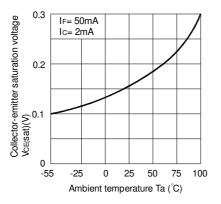



Fig.9 Response Time vs. Load Resistance

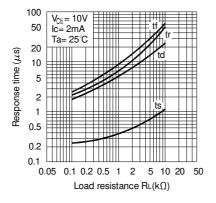



Fig.11 Collector-emitter Saturation Voltage vs. Forward Current

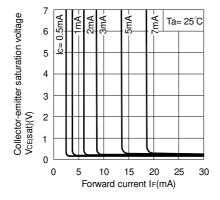
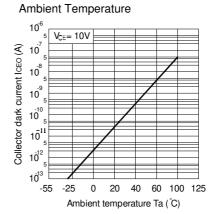
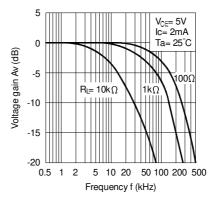
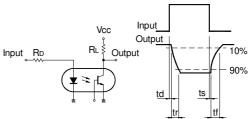
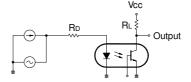



Fig.8 Collector Dark Current vs.



Fig.10 Frequency Response

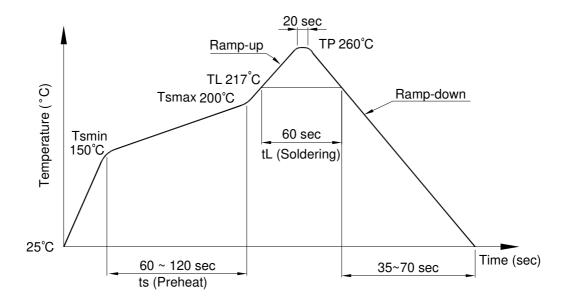


Test Circuit for Response Time



Test Circuit for Frequency Response






#### 6. TEMPERATURE PROFILE OF SOLDERING

#### 6.1 IR Reflow Soldering (JEDEC-STD-020C compliant)

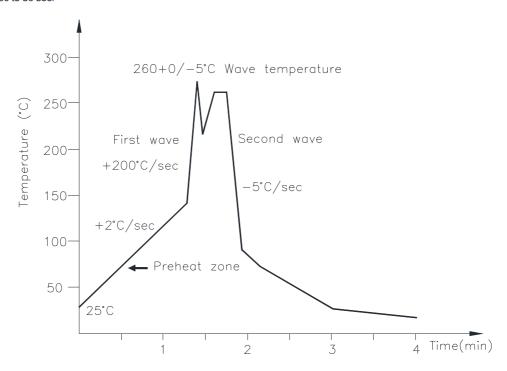
One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

| Profile item                           | Conditions     |  |  |  |
|----------------------------------------|----------------|--|--|--|
| Preheat                                |                |  |  |  |
| - Temperature Min (T <sub>Smin</sub> ) | 150°C          |  |  |  |
| - Temperature Max (T <sub>Smax</sub> ) | 200°C          |  |  |  |
| - Time (min to max) (ts)               | 90±30 sec      |  |  |  |
| Soldering zone                         |                |  |  |  |
| - Temperature (T <sub>L</sub> )        | 217°C          |  |  |  |
| - Time (t <sub>L</sub> )               | 60 sec         |  |  |  |
| Peak Temperature (T <sub>P</sub> )     | 260°C          |  |  |  |
| Ramp-up rate                           | 3°C / sec max. |  |  |  |
| Ramp-down rate                         | 3~6°C / sec    |  |  |  |





#### 6.2 Wave Soldering (JEDEC22A111 compliant)


One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

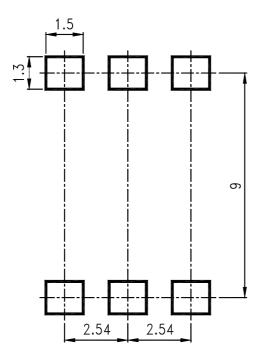
Time: 10 sec.

Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.



#### 6.3 Hand Soldering by Soldering Iron

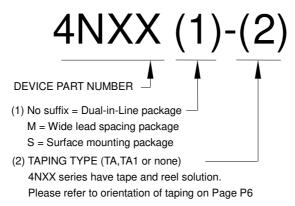

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C

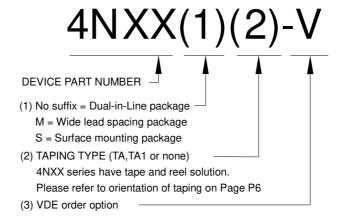
Time: 3 sec max.



#### 7. RRECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)




#### Note:


Dimensions in millimeters.



#### 8. Naming rule



Example: 4N25S-TA1



Example: 4N25STA1-V-G

#### 9. Notes:

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerging unit's body in solder paste is not recommended.

Part No.: 4N2X series BNS-OD-FC002/A4