

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

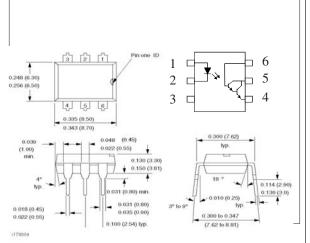
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

OPTICALLY COUPLED ISOLATOR PHOTODARLINGTON OUTPUT

DESCRIPTION


The 4N29, 4N30, 4N31, 4N32, 4N33 series of optically coupled isolators consist of an infrared light emitting diode and NPN silicon photodarlington in a space efficient dual in line plastic package.

FEATURES

- Options:-10mm lead spread - add G after part no. Surface mount - add SM after part no. Tape&reel - add SMT&R after part no.
- High Current Transfer Ratio
- $\begin{array}{l} High \, Isolation \, Voltage \, (5.3 kV_{RMS}, 7.5 kV_{PK}) \\ All \, electrical \, parameters \, 100\% \, tested \end{array}$
- Custom electrical selections available

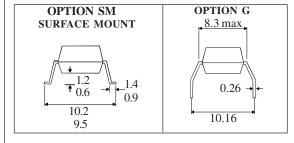
APPLICATIONS

- Computer terminals
- Industrial systems controllers
- Measuring instruments
- Signal transmission between systems of different potentials and impedances

ABSOLUTE MAXIMUM RATINGS (25°C unless otherwise specified)

Storage Temperature -55° C to + 150° C Operating Temperature _ -55°C to + 100°C Lead Soldering Temperature (1/16 inch (1.6mm) from case for 10 secs) 260°C

INPUT DIODE


Forward Current	80mA
Reverse Voltage	5V
Power Dissipation	100mW

OUTPUT TRANSISTOR

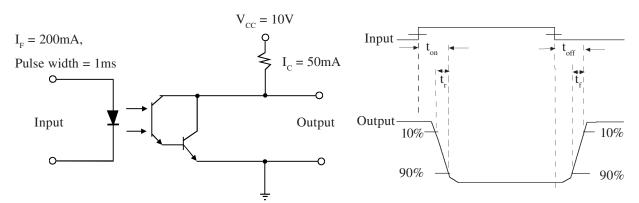
Collector-emitter Voltage BV _{CEO}	30V
Collector-base Voltage BV _{CBO}	50V
Emitter-collector Voltage BV _{ECO}	5V
Power Dissipation	150mW

POWER DISSIPATION

Total Power Dissipation	250mW
(derate linearly 3.3mW/°C above	25°C)

ISOCOM COMPONENTS 2004 LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, TS25 1UD England Tel: (01429)863609 Fax: (01429)863581 e-mail sales@isocom.co.uk http://www.isocom.com


28/11/08 DB90048

ELECTRICAL CHARACTERISTICS ($\rm T_{_{A}}$ = 25°C Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V _F)		1.2	1.5	V	$I_F = 50 \text{mA}$
	$ReverseCurrent(I_{_{R}})$			10	μΑ	$V_R = 6V$
Output	$ \begin{array}{l} \text{Collector-emitter Breakdown (BV}_{\text{CEO}}) \\ \text{Collector-base Breakdown (BV}_{\text{CBO}}) \\ \text{Emitter-collector Breakdown (BV}_{\text{ECO}}) \\ \text{Collector-emitter Dark Current (I_{CEO})} \end{array} $	30 50 5		100	V V V nA	$I_{C} = 1 \text{mA (note 2)}$ $I_{C} = 100 \mu \text{A}$ $I_{E} = 100 \mu \text{A}$ $V_{CE} = 10 \text{V}$
Coupled	Collector Output Current (I _c) (Note 2) 4N32, 4N33 4N29, 4N30 4N31	50 10 5			mA mA mA	$\begin{array}{c} 10 \mathrm{mA} \; \mathrm{I_F}, 10 \mathrm{V} \; \mathrm{V_{CE}} \\ 10 \mathrm{mA} \; \mathrm{I_F}, 10 \mathrm{V} \; \mathrm{V_{CE}} \\ 10 \mathrm{mA} \; \mathrm{I_F}, 10 \mathrm{V} \; \mathrm{V_{CE}} \end{array}$
	Collector-emitter Saturation VoltageV _{CE(SAT)} 4N29,4N30,4N32,4N33 4N31			1.0	V V	$\begin{array}{l} 8\text{mA I}_{\scriptscriptstyle F},2\text{mA I}_{\scriptscriptstyle C} \\ 8\text{mA I}_{\scriptscriptstyle F},2\text{mA I}_{\scriptscriptstyle C} \end{array}$
	Input to Output Isolation Voltage V_{ISO} Input-output Isolation Resistance R_{ISO}	5300 7500 5x10 ¹⁰			$egin{array}{c} V_{RMS} \ V_{PK} \ \Omega \end{array}$	(note 1) (note 1) V ₁₀ = 500V (note 1)
	Output Turn on Time ton Output Turn off Time 4N32, 4N33 toff 4N29, 4N30, 4N31			5 100 40	μs μs μs	$V_{cc} = 10V, I_c = 50mA,$ $I_F = 200mA,$ Pulse Width = 1ms fig.1

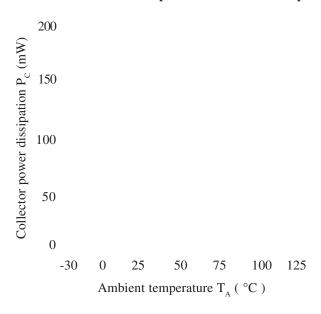
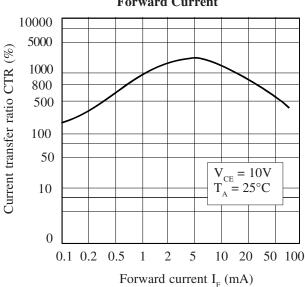
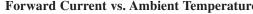
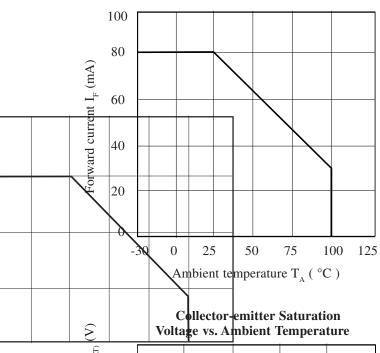

- Note 1 Measured with input leads shorted together and output leads shorted together.
- Note 2 Special Selections are available on request. Please consult the factory.

FIGURE 1

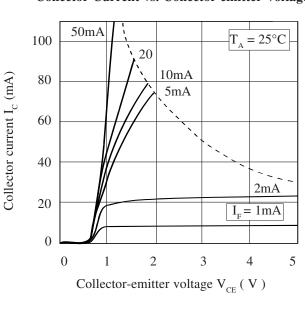


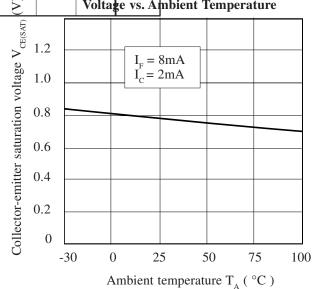
28/11/08 DB90048-AAS/A4

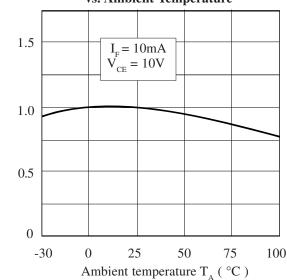

Collector Power Dissipation vs. Ambient Temperature



Current Transfer Ratio vs. Forward Current




Forward Current vs. Ambient Temperature



Collector Current vs. Collector-emitter Voltage

Relative Current Transfer Ratio vs. Ambient Temperature

Relative current transfer ratio