

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

4N35

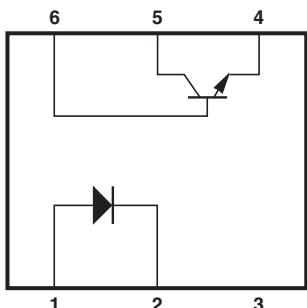
Phototransistor Optocoupler General Purpose Type

AVAGO
TECHNOLOGIES

Data Sheet

RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product

Description

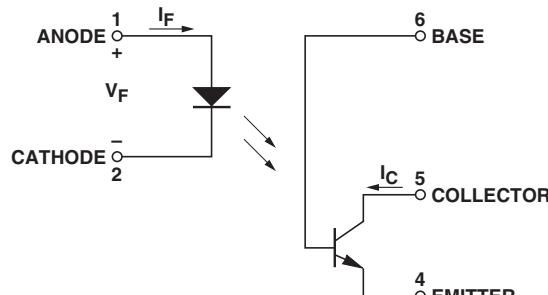

The 4N35 is an optocoupler for general purpose applications. It contains a light emitting diode optically coupled to a photo-transistor. It is packaged in a 6-pin DIP package and available in wide-lead spacing option and lead bend SMD option. Response time, t_r , is typically 3 μ s and minimum CTR is 100% at input current of 10 mA.

Applications

- I/O interfaces for computers
- System appliances, measuring instruments
- Signal transmission between circuits of different potentials and impedances

Functional Diagram

PIN NO. AND INTERNAL CONNECTION DIAGRAM



1. ANODE 4. Emitter
2. CATHODE 5. COLLECTOR
3. NC 6. BASE

Features

- High Current Transfer Ratio (CTR: min. 100% at $I_F = 10$ mA, $V_{CE} = 10$ V)
- Response time (t_r : typ., 3 μ s at $V_{CE} = 10$ V, $I_C = 2$ mA, $R_L = 100$ Ω)
- Input-output isolation voltage ($V_{iso} = 3550$ Vrms)
- Dual-in-line package
- UL approved
- CSA approved
- IEC/EN/DIN EN 60747-5-2 approved
- Options available:
 - Leads with 0.4" (10.16 mm) spacing (W00)
 - Leads bends for surface mounting (300)
 - Tape and reel for SMD (500)
 - IEC/EN/DIN EN 60747-5-2 approvals (060)

Schematic

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Ordering Information

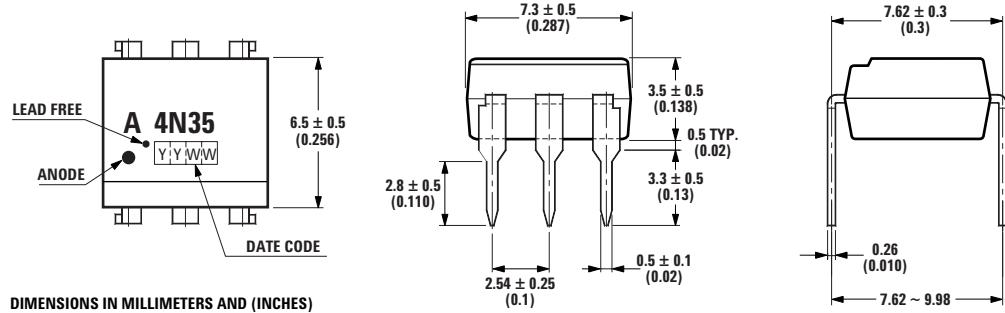
4N35-xxxx is UL Recognized with 3550 Vrms for 1 minute per UL1577 and is approved under CSA Component Acceptance Notice #5, File CA 88324.

RoHS Component Option							
Part Number	Rank '0' 100%<CTR	Package	Surface Mount	Gull Wing	Tape & Reel	IEC/EN/DIN EN 60747-5-2	Quantity
4N35	-000E	300 mil DIP-6					65 pcs per tube
	-300E	300 mil DIP-6	X	X			65 pcs per tube
	-500E	300 mil DIP-6	X	X	X		1000 pcs per reel
	-060E	300 mil DIP-6				X	65 pcs per tube
	-360E	300 mil DIP-6	X	X		X	65 pcs per tube
	-560E	300 mil DIP-6	X	X	X	X	1000 pcs per reel
	-W00E	400 mil DIP-6					65 pcs per tube
	-W60E	400 mil DIP-6				X	65 pcs per tube

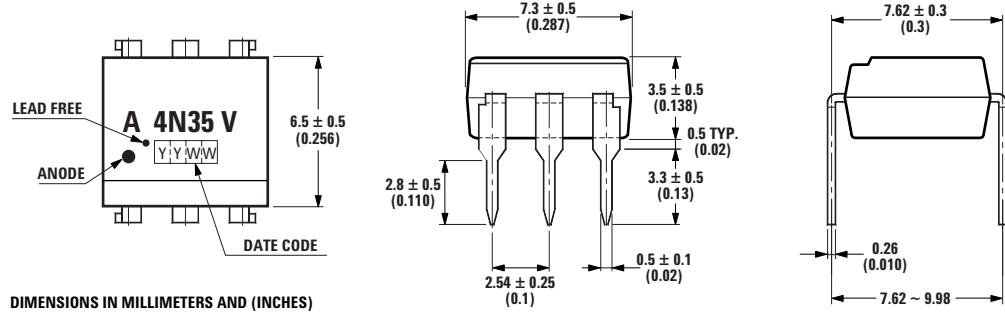
To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

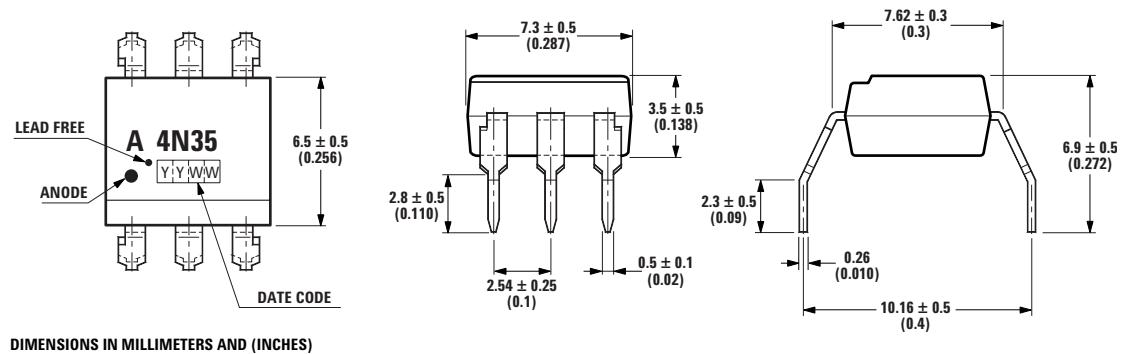
4N35-360E to order product of 300 mil DIP-6 DC Gull Wing Surface Mount package in Tube packaging with 100%<CTR, IEC/EN/DIN EN 60767-5-2 Safety Approval and RoHS compliant.

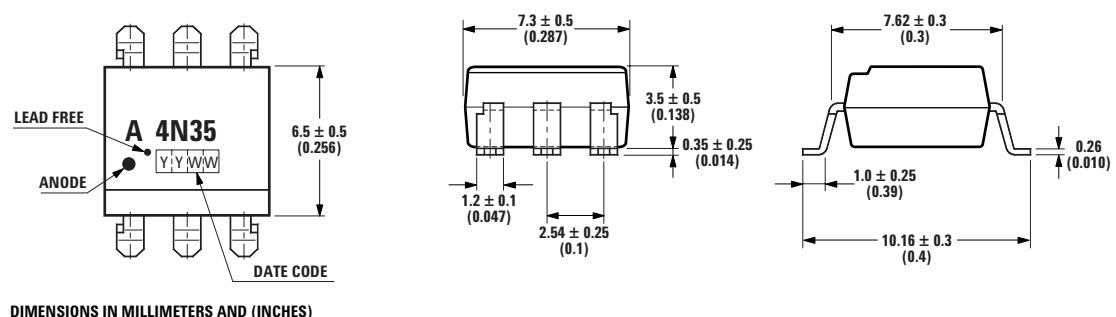

Example 2:

4N35-W00E to order product of 400 mil DIP-6 DC package in Tube packaging with 100%<CTR and RoHS compliant.

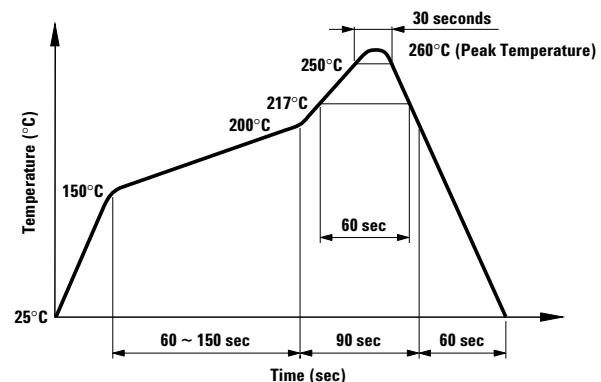

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings


4N35-000E


4N35-060E

4N35-W00E



4N35-300E

Solder Reflow Temperature Profile

- 1) One-time soldering reflow is recommended within the condition of temperature and time profile shown at right.
- 2) When using another soldering method such as infrared ray lamp, the temperature may rise partially in the mold of the device. Keep the temperature on the package of the device within the condition of (1) above.

Note: Non-halide flux should be used.

Absolute Maximum Ratings

Storage Temperature, T_S	-55°C to +150°C
Operating Temperature, T_A	-55°C to +100°C
Lead Solder Temperature, max. (1.6 mm below seating plane)	260°C for 10 s
Average Forward Current, I_F	60 mA
Reverse Input Voltage, V_R	6 V
Input Power Dissipation, P_I	100 mW
Collector Current, I_C	100 mA
Collector-Emitter Voltage, V_{CEO}	30 V
Emitter-Collector Voltage, V_{ECO}	7 V
Collector-Base Voltage, V_{CBO}	70 V
Collector Power Dissipation	300 mW
Total Power Dissipation	350 mW
Isolation Voltage, V_{iso} (AC for 1 minute, R.H. = 40 ~ 60%)	3550 Vrms

Electrical Specifications ($T_A = 25^\circ\text{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions
Forward Voltage	V_F	—	1.2	1.5	V	$I_F = 10\text{ mA}$
Reverse Current	I_R	—	—	10	μA	$V_R = 4\text{ V}$
Terminal Capacitance	C_t	—	50	—	pF	$V = 0, f = 1\text{ KHz}$
Collector Dark Current	I_{CEO}	—	—	50	nA	$V_{CE} = 10\text{ V}, I_F = 0, T_A = 25^\circ\text{C}$
		—	—	500	μA	$V_{CE} = 30\text{ V}, I_F = 0, T_A = 100^\circ\text{C}$
Collector-Emitter Breakdown Voltage	BV_{CEO}	30	—	—	V	$I_C = 0.1\text{ mA}, I_F = 0$
Emitter-Collector Breakdown Voltage	BV_{ECO}	7	—	—	V	$I_E = 10\text{ }\mu\text{A}, I_F = 0$
Collector-Base Breakdown Voltage	BV_{CBO}	70	—	—	V	$I_C = 0.1\text{ mA}, I_F = 0$
Collector Current	I_C	10	—	—	mA	$I_F = 10\text{ mA}$
*Current Transfer Ratio	CTR	100	—	—	%	$V_{CE} = 10\text{ V}$
Collector-Emitter Saturation Voltage	$V_{CE(\text{sat})}$	—	—	0.3	V	$I_F = 50\text{ mA}, I_C = 2\text{ mA}$
Response Time (Rise)	t_r	—	3	10	μs	$V_{CC} = 10\text{ V}, I_C = 2\text{ mA}$
Response Time (Fall)	t_f	—	3	10	μs	$R_L = 100\Omega$
Isolation Resistance	R_{iso}	5×10^{10}	1×10^{11}	—	Ω	DC 500 V 40 ~ 60% R.H.
Floating Capacitance	C_f	—	1	2.5	pF	$V = 0, f = 1\text{ MHz}$

$$* \text{CTR} = \frac{I_C}{I_F} \times 100\%$$

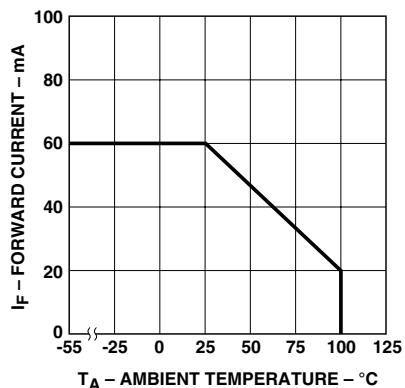


Figure 1. Forward current vs. temperature.

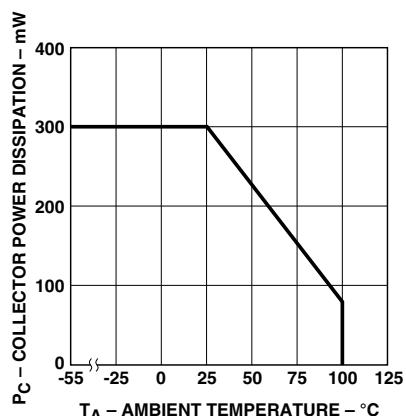


Figure 2. Collector power dissipation vs. temperature.

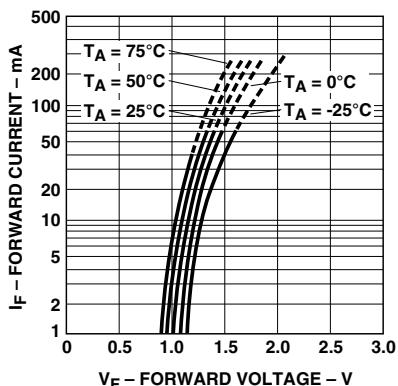


Figure 3. Forward current vs. forward voltage.

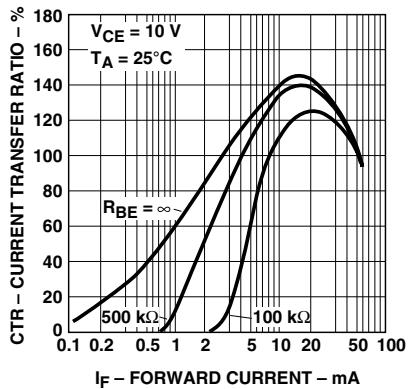


Figure 4. Current transfer ratio vs. forward current.

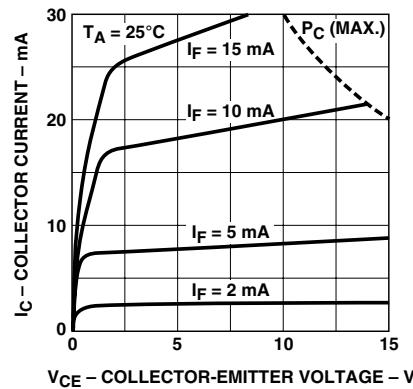


Figure 5. Collector current vs. collector-emitter voltage.

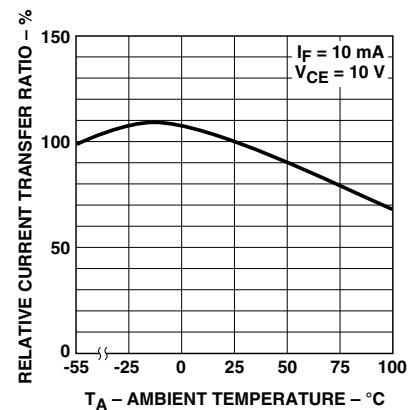


Figure 6. Relative current transfer ratio vs. temperature.

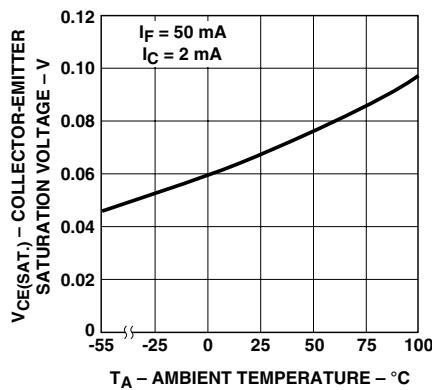


Figure 7. Collector-emitter saturation voltage vs. temperature.

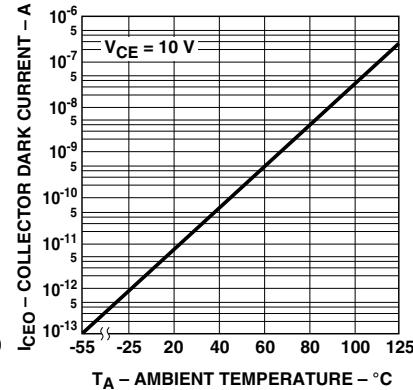


Figure 8. Collector dark current vs. temperature.

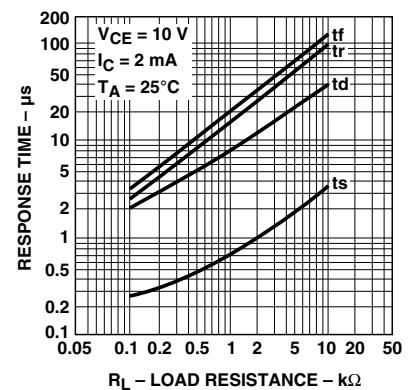


Figure 9. Response time vs. load resistance.

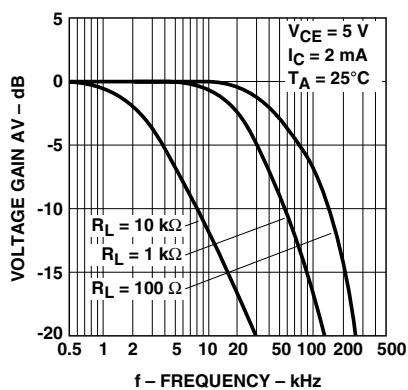


Figure 10. Frequency response.

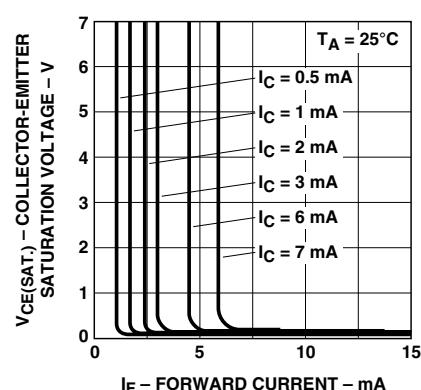
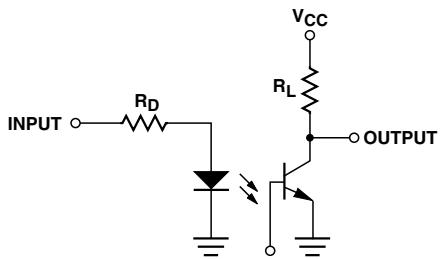
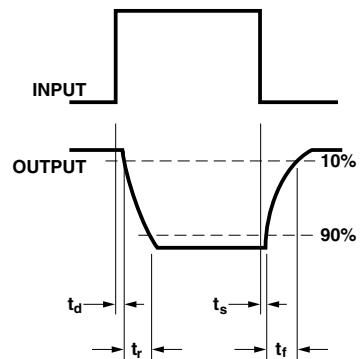
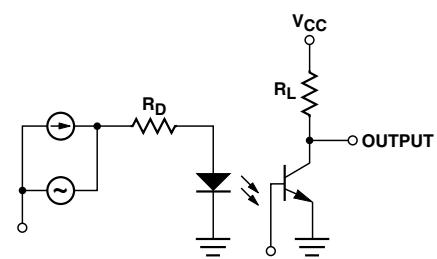





Figure 11. Collector-emitter saturation voltage vs. forward current.

Test Circuit for Response Time

Test Circuit for Frequency Response

For product information and a complete list of distributors, please go to our website: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
 Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved. Obsoletes AV01-0537EN
 AV02-0773EN - October 18, 2007

AVAGO
 TECHNOLOGIES