

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Spec No. :DS-70-99-0012 Effective Date: 08/22/2017

Revision: E

LITE-ON DCC

RELEASE

BNS-OD-FC001/A4

1. DESCRIPTION

1.1 Features

■ Current transfer ratio (CTR : MIN. 100% at I_F = 10mA, V_{CE} = 10V, Ta=25°C)

■ High input-output isolation voltage 4N35 series : Viso = 3,550Vrms 4N37 series : Viso = 1,500Vrms

Response time (tr : TYP. 3μs at Vcc = 10V, IC = 2mA, RL = 100Ω)

■ Dual-in-line package :

4N35, 4N37

■ Wide lead spacing package :

4N35M, 4N37M

Surface mounting package :

4N35S, 4N37S

■ Tape and reel packaging :

4N35S-TA, 4N37S-TA, 4N35S-TA1, 4N37S-TA1

Safety approval

* UL approved (No. E113898)

* CSA approved (No. CA91533-1)

* FIMKO approved (No. 193422-01)

* VDE approved (No. 40015248)

* BSI approved (No. 9018-9)

* CQC approved (No.CQC11001061921-2)

■ Creepage distance > 8.0 mm; Clearance > 8.0 mm

■ The relevant models are the models Approved by VDE according to DIN EN 60747-5-5

Approved Model No.: 4N35-V / 4N37-V / 4N35M-V / 4N37M-V / 4N35S-V / 4N37S-V / 4N35STA-V / 4N37STA-V /

4N35STA1-V / 4N37STA1-V

VDE approved No.: 40015248 (According to the specification DIN EN 60747-5-5)

Operating isolation voltage VIORM : 420V (Peak)

Transient voltage VTR: 6000V (Peak)

Pollution : 2 (According to VDE 0110-1 : 1997-04)

■ Clearances distance (Between input and output): 7.0mm (MIN.)

■ Creepage distance (Between input and output) : 7.0mm (MIN.)

Isolation thickness between input and output : 0.4mm (MIN.)

■ Safety limit values Current (Isi): 400mA (Diode side)

Power (Psi): 700mW (Phototransistor side)

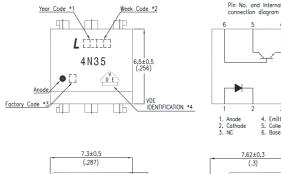
Temperature(Tsi): 175°C

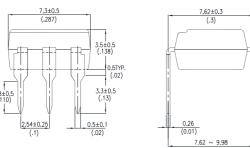
In order to keep safety electric isolation of photocoupler, please set the protective circuit to keep within safety limit values when the actual application equipment troubled.

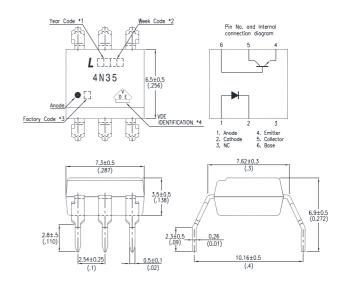
■ Indication of VDE approval prints " on sleeve package.

- RoHS Compliance
 All materials be used in device are followed EU RoHS directive (No.2002/95/EC).
- ESD pass HBM 8000V/MM2000V
- MSL class1

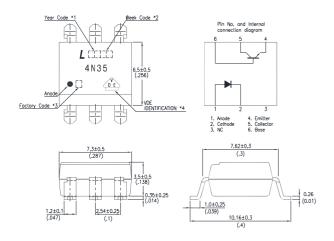
1.2 Applications


- Power Supply regulators
- Digital logic inputs
- Microprocessor inputs


Part No.: 4N3X series BNS-OD-FC002/A4

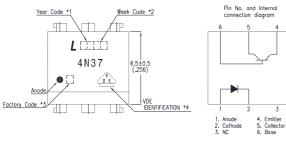

2. PACKAGE DIMENSIONS

2.1 4N35

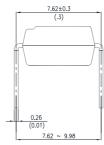


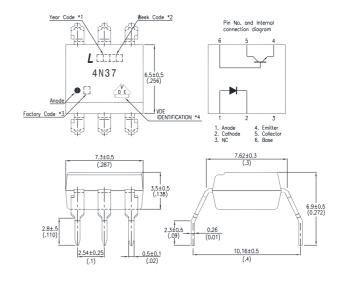
2.2 4N35M

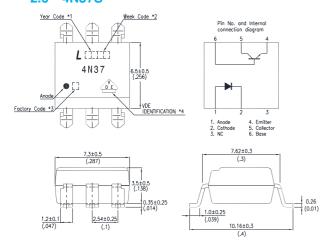
2.3 4N35S


Notes:

- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark shall be marked (W: China-CZ, Y: Thailand X: China-TJ).
- 4. VDE option.


Dimensions in millimeters(inches).


2.4 4N37

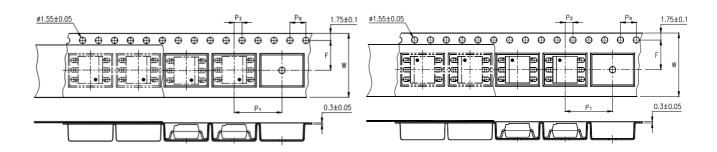


2.5 4N37M

2.6 4N37S

Notes:

- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark shall be marked (W: China-CZ, Y: Thailand X: China-TJ).
- 4. VDE option.


Dimensions in millimeters(inches).

TAPING DIMENSIONS

3.1 4N35S-TA, **4N37S-TA**:

3.2 4N35S-TA1, 4N37S-TA1:

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	P ₀	4±0.1 (0.15)
Distance of compartment	F	7.5±0.1 (0.295)
	P_2	2±0.1 (0.079)
Distance of compartment to compartment	P ₁	12±0.1 (0.472)

3.3 Quantities Per Reel

Package Type	TA/TA1
Quantities (pcs)	1000

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25℃

Parameter			Symbol	Rating	Unit
	Forward (Current	I _F	60	mA
Input	Reverse '	Voltage	V _R	6	V
Power Dissipation			Р	100	mW
	Collector - Emitter Voltage		V_{CEO}	30	V
	Emitter -	Collector Voltage	V _{ECO}	7	V
Output	Collector	- Base Voltage	V _{CBO}	70	V
	Collector	Current	Ic	100	mA
	Collector	Power Dissipation	Pc	300	mW
Total Power Di	Total Power Dissipation		P _{tot}	350	mW
*1 loclotion \/o	4		V	3,550	V_{rms}
*1 Isolation Voltage		4N37 series	V_{iso}	1,500	V_{rms}
Operating Temperature			T_{opr}	-55 ~ +100	°C
Storage Temperature			T _{stg}	-55 ~ +150	°C
*2 Soldering Temperature			T _{sol}	260	°C

*1. AC For 1 Minute, R.H. = $40 \sim 60\%$

Isolation voltage shall be measured using the following method.

- (1) Short between anode and cathode on the primary side and between collector and emitter on the secondary side.
- (2) The isolation voltage tester with zero-cross circuit shall be used.
- (3) The waveform of applied voltage shall be a sine wave.
- *2. For 10 Seconds

4.2 ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25°C

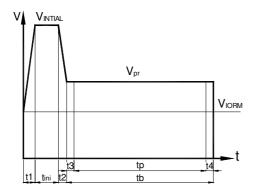
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
	Forward Voltage		VF	_	1.2	1.5	٧	IF=10mA
INPUT	Reverse Current		IR	_	_	10	μΑ	VR=4V
Terminal C		erminal Capacitance		_	50	_	pF	V=0, f=1KHz
OUTPUT	Collector Dark	Ta=25°C	1050	_	_	50	nA	VCE=10V, IF=0
	Current	Ta=100°C	ICEO	_	_	500	μΑ	VCE=30V, IF=0
	Collector-Emitter Breakdown Voltage		BVCEO	30	_	_	٧	IC=0.1mA IF=0
	Emitter-Collector Breakdown Voltage		BVECO	7	_	_	V	IE=10μA IF=0
	Collector-Base Breakdown Voltage		BVCBO	70	_	_	٧	IC=0.1mA IF=0
	Collector Current		IC	10	_	_	mA	IF=10mA
	*Current Transfer Ratio		CTR	100	_	_	%	VCE=10V
	Collector-Emitter Saturation Voltage		VCE(sat)	_	_	0.3	٧	IF=50mA IC=2mA
TRANSFER CHARACTERISTICS	Isolation Resistance		Riso	5×10 ¹⁰	1×10 ¹¹	_	Ω	DC500V 40 ~ 60% R.H.
	Floating Capacitance		Cf	_	1	2.5	pF	V=0, f=1MHz
	Response Time (Rise)		tr	_	3	10	μs	VCE=10V, IC=2mA
	Response Time (Fall)		tf	_	3	10	μs	RL=100Ω

$$^*CTR = \frac{I_C}{I_F} \times 100\%$$

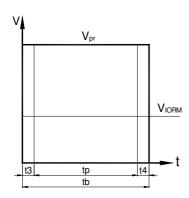
Part No.: 4N3X series BNS-OD-FC002/A4

4.3 ISOLATION SPECIFICATION ACCORDING TO VDE

Parameter		Symbol	Conditions	Rating	Unit	Remark
Class of environmental test		-	DIN IEC68	55/100/21	-	
Pollution		-	DIN VDE0110	2	-	
Maximum Operating Isolation Voltage		V_{IORM}	-	420	V _{PEAK}	
Partial Discharge Test	Diagram 1	Van	tp=60s, qc<5pC	630	V_{PEAK}	Refer to the Diagram
Voltage (Between Input and Output)	Diagram 2	Vpr	tp=1s, qc<5pC	788	V_{PEAK}	
Maximum Over-Voltage		$V_{INITIAL}$	t _{INI} = 10s	6000	V_{PEAK}	
Safety Maximum Ratings						
1) Case Temperature		Tsi	$I_F = 0, Pc = 0$	175	°C	Refer to the Figure 1, 3
2) Input Current		Isi	Pc=0	400	mA	
Electric Power (Output or Total Power Issipation)		Psi	-	700	mW	
Isolation Resistance (Test Voltage Between Input and Output : DC500V)		R _{ISO}	Ta=Tsi	MIN.10 ⁹		
			Ta=Topr(MAX.)	MIN.10 ¹¹	Ω	
			Ta=25°C	MIN.10 ¹²		


Precautions in performing isolation test

- * Partial discharge test methods shall be the ones according to the specifications of DIN EN 60747-5-5
- * Please don't carry out isolation test (Viso) over V_{INITIAL} ,This product deteriorates isolation characteristics by partial discharge due to applying high voltage (ex. V_{INITIAL}). And there is possibility that this product occurs partial discharge in operating isolation voltage (V_{IORM})


4.4 PARTIAL DISCHARGE TEST METHOD

Method (A) for type testing and random testing.

$$\begin{array}{lll} \text{t1, t2} & = 1 \text{ to 10s} \\ \text{t3, t4} & = 1 \text{s} \\ \text{tp (Partial Discharge Measuring Time)= 60s} \\ \text{tb} & = 62 \text{s} \\ \text{tini} & = 10 \text{s} \\ \end{array}$$

Method (B) for routine testing.

t3, t4 = 0.1s tp (Partial Discharge Measuring Time)= 1s tb =
$$1.2s$$

The partial discharge level shall not exceed 5 pc during the partial discharge measuring time interval t_p under the test conditions shown above.

5. CHARACTERISTICS CURVES

Fig.1 Forward Current vs. Ambient Temperature

Fig.3 Forward Current vs. Forward Voltage

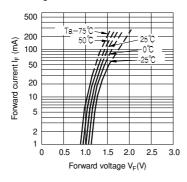


Fig.5 Collector Current vs.
Collector-emitter Voltage

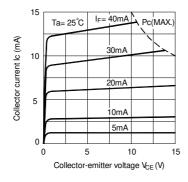


Fig.2 Collector Power Dissipation vs.
Ambient Temperature

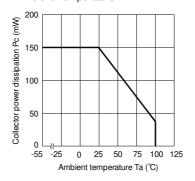


Fig.4 Current Transfer Ratio vs. Forward Current

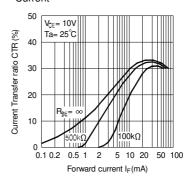


Fig.6 Relative Current Transfer Ratio vs. Ambient Temperature

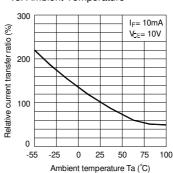


Fig.7 Collector-emitter Saturation Voltage vs.
Ambient Temperature

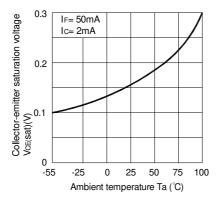


Fig.9 Response Time vs. Load Resistance

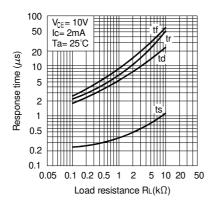


Fig.11 Collector-emitter Saturation Voltage vs. Forward Current

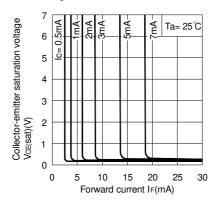
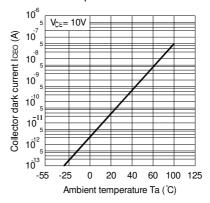
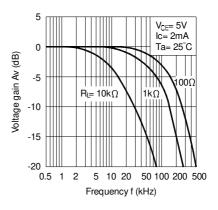
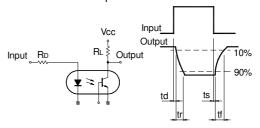
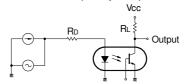


Fig.8 Collector Dark Current vs.

Ambient Temperature

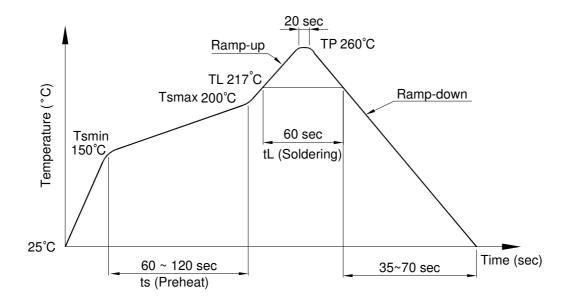

Fig.10 Frequency Response

Test Circuit for Response Time

Test Circuit for Frequency Response

11/15

Part No. : 4N3X series BNS-OD-FC002/A4 Rev.: D



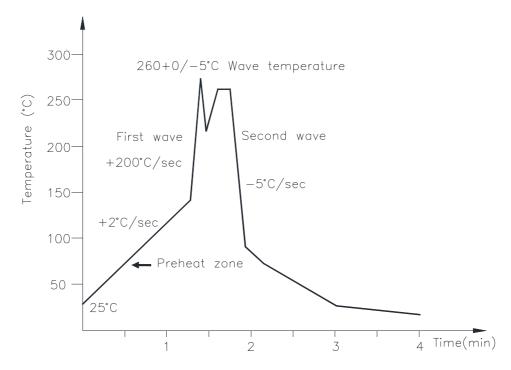
6. TEMPERATURE PROFILE OF SOLDERING

6.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions		
Preheat			
- Temperature Min (T _{Smin})	150°C		
- Temperature Max (T _{Smax})	200°C		
- Time (min to max) (ts)	90±30 sec		
Soldering zone			
- Temperature (T _L)	217°C		
- Time (t _L)	60 sec		
Peak Temperature (T _P)	260°C		
Ramp-up rate	3°C / sec max.		
Ramp-down rate	3~6°C / sec		

6.2 Wave soldering (JEDEC22A111 compliant)


One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

Preheat temperature:25 to 140°C

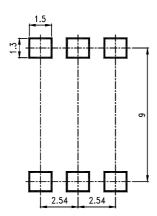
Preheat time: 30 to 80 sec.

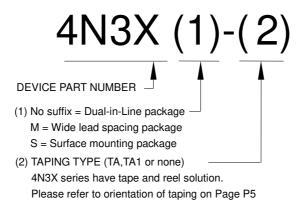
6.3 Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

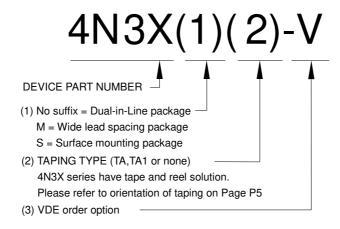
Temperature: 380+0/-5°C

Time: 3 sec max.


Part No.: 4N3X series BNS-OD-FC002/A4 Rev.: D


7. RRECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)

Unit: mm



8. Naming rule

Example: 4N35S-TA1

Notes:

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.

Example: 4N35STA1-V-G

Immerge unit's body in solder paste is not recommended.

15/15

Part No.: 4N3X series BNS-OD-FC002/A4 Rev.: D