imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Ceramic Component Solutions

AC Safety Certified **High Voltage SMT High Capacitance High Temperature** EMI Filters (X2Y[®]) LICC Low ESL **SMPS Stacks High Voltage Radials Precision Power Resistors Power Inductors Planar Array** Discoidal CapStrate® **Custom Solutions**

Construction of the second

YOUR TECHNOLOGY PARTNER

The mission of the Johanson Companies is to translate our customer needs into quality electronic components, produced in factories that are models of excellence, supported by innovative service. With over 30 years of experience, Johanson Dielectrics provides both standard and custom technology solutions tailored to your specific electronic applications.

Our standard product range includes High Voltage and AC Safety Capacitors providing solutions for Lighting, IT and Business Equipment designs. Our X2Y[®] Capacitor line provides advanced EMI filtering and IC decoupling solutions and our High Capacitance Tanceram[®] products provide the highest capacitance values in the smallest cases sizes.

HIGH FREQUENCY CERAMIC SOLUTIONS

Johanson Technology Inc., Camarillo CA. Products include High Q Capacitors, Ceramic and Wirewound Chip Inductors, and a broad range of LTCC based RF IPCs such as Antennas, Filters, Baluns, Couplers, Matched Filter Baluns, etc.

www.johansontechnology.com

Customized solutions in the areas of High Temperature and High AC power ceramic capacitors are available to customers who require a partnered technology solution.

Johanson Dielectrics design and manufacturing operations are located in Sylmar, California and Zhoaqing, PRC. Our quality minded management system utilizes continuous improvement programs focused on increased product reliability, manufacturing through-put, and product performance. Our broad experience, applications support, and responsive service enhance our ability to drive down your total cost of procurement and speed your time to market.

Johanson Dielectrics, Inc. reserves the right to make design and price changes without notice. All sales are subject to the Johanson terms and conditions, including a limited warranty and remedies for non-conforming goods or defective goods. Download the Johanson terms and conditions from our website at https://www.johansondielectrics.com/terms-and-conditions.

INDEX OF PRODUCTS

SURFACE MOUNT CERAMIC CAPACITORS	
Ceramic Capacitor Prototyping Kits	4-5
High Voltage Capacitors 250 - 6,000 VDC	6-7
Safety Capacitors 250 VAC, Y2, X1, X2	8-9
EMI - X2Y [®] Filter & Decoupling Capacitors	10-13
Low Inductance Capacitors	14
Chip Feedthru Filter Capacitors	15
High Temperature - 200°C Capacitors	16-17
High Capacitance Tanceram [®] Capacitors	18-19
SMT Multi-layer Ceramic Capacitors 10 - 200 VDC	20-21
Leaded Ceramic Capacitors	
SMPS Stacked Capacitors, 125°C & 200°C versions	22-23
Mini-SMPS Stacked Capacitors	24-25
BME Mini SMPS Capacitors	26-27
Switch-mode Radial Leaded Capacitors	28-29
High Voltage Radial Leaded Capacitors, 125°C, 200°C versions	30-31
Precision Power Resistors	
Resistor Wirewound Precision	32-33
Resistor Wirewound Precision SMT	34-35
Resistor Wirewound High Power Rating	36-39
Resistor Wirewound Chasis Mount	40-42
Resistor Thin Film Precision	43-46
Resistor Thin Film Current Sense	47-49
Resistor High Power Low Inductance	50-52
Resistor Thick Film, High Temperature	53-55
Resistor Metal Element Current Sense	56-57
Resistor Power Thin Film	58-60
Power Inductors	
Semi-shielded (Coated) & Molded	61-73
PLANAR CAPACITORS & CUSTOM CERAMIC SOLUTIONS	
Planar Array Capacitors	74-75
CAPSTRATE & CUSTOMER CERAMIC SOLUTIONS	
CapStrate [®] & Customer Ceramic Solutions	76-77
PART NUMBER, DIELECTRIC, PACKAGING SPECIFICATIONS	
Capacitor General Electrical Characteristics and PN breakdown	78
Tape and Reel Packaging	79

Johanson Dielectrics, Inc. offers a variety of multi-layer chip capacitor sample kits for proto-type design work. Each kit is grouped by type, size, or voltage and contains a selection of popular values and tolerances. The chips are individually packaged in labeled plastic compartments for easy access. The general range of kit contents is described below. Specific part number details may be found at www.johansondielectrics.com

0402 Ceramic Chip (P/N: S-0402						
1400 piece sample assortment of selected values from 1.0pF to 0.22µF							
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty		
0402	50 VDC - 6.3 VDC	NP0, X7R	1.0pF to 0.22µF	50 pcs	1400 pcs		

0603 Ceramic Chip (P/N: S-0603						
1400 piece sample assortment of selected values from 1.0pF to 0.22µF							
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty		
0603	50 VDC - 16 VDC	NP0, X7R	10pF to 0.22µF	50 pcs	1400 pcs		

0805 Ceramic Chip (P/N: S-0805						
1400 piece sample assortment of selected values from 1.0pF to $0.47 \mu F$							
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty		
0805	100 VDC - 16 VDC	NP0, X7R	10pF to 0.47µF	50 pcs	1400 pcs		

TANCERAM [®] HIGH (P/N: S-TAN-X5R						
500 piece sample assortment of selected values from $1.0\mu F$ to $100\mu F$							
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty		
0402, 0603, 0805 1206, 1210	25 VDC - 6.3 VDC	X5R	1.0µF - 100µF	10 - 25 pcs	500 pcs		

500 VDC Ceramic C	P/N: S-500						
400 piece sample assortment of selected values from 33pF to 0.1 μ F							
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty		
0805 - 1812	500 VDC	NP0, X7R	33pF to 0.1µF	10-20 pcs	400 pcs		

1000 VDC Ceramic (P/N: S-1KV						
400 piece sample assortment of selected values from 22pF to 0.1 μ F							
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty		
0805 - 2225	1000 VDC	NP0, X7R	22pF to 0.1µF	10-20 pcs	400 pcs		

Johanson may from time-time adjust actual kit contents based on design demand trends. Check the Johanson web site for design kit updates and kit content changes.

CERAMIC CAPACITOR ENGINEERING DESIGN KITS

2000 VDC Ceramic (P/N: S-2KV						
300 piece sample assortment of selected values from 22pF to 0.022 μ F							
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty		
1206 - 2225	2000 VDC	NP0, X7R	22pF to 0.022µF	10-20 pcs	300 pcs		

X2 SAFETY CERTIFI	P/N: S-SY3							
240 piece sample assortment of selected values from 10pF to 1500 pF								
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty			
1808	3KV DC / 250 AC	NP0, X7R	10pF to 1500 pF	20 pcs	240 pcs			

X1/Y2 SAFETY CER	P/N: S-SY2						
200 piece sample assortment of selected values from 10pF to 2200 pF							
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty		
1808 - 2220	5KV DC / 250 AC	NP0, X7R	10pF to 2200pF	20 pcs	200 pcs		

X2Y [®] EMI FILTER Ca	P/N: S-X07CBK						
600 piece sample assortment of selected values from 1.0pF to $0.01 \mu F$							
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty		
0402	10 - 50 VDC	NP0, X7R	1.0pF to 0.01µF	50 pcs	600 pcs		

X2Y [®] EMI FILTER Ca	P/N: S-X14CBK						
700 piece sample assortment of selected values from 1.0pF to $0.01 \mu F$							
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty		
0603	50 - 100 VDC	NP0, X7R	1.0pF to 0.01µF	50 pcs	700 pcs		

X2Y [®] POWER BYPA	SS Capacitor Kit - 060	03 Size			P/N: S-X14-PBP
	300 piece s	sample assortment of se	elected values from 1.0r	ηF to 1.0μF	
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty
0603	6.3 - 100 VDC	X7R, X5R	1.0nF to 1.0µF	20 pcs	300 pcs

X2Y [®] EMI FILTER Ca	apacitor Kit - 0805 Size	9			P/N: S-X15-EMI
	300 piece sa	ample assortment of sel	lected values from 1.0pl	⁼ to 0.01µF	
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty
0805	50 - 100 VDC	NP0, X7R	1.0pF to 0.01µF	20 pcs	300 pcs

X2Y [®] DC MOTOR FI	LTER Capacitor Kit		·		P/N: S-X2Y-MTR
	300 piece sa	mple assortment of sele	ected values from 0.10µ	F to 0.47µF	
Chip Size	Voltage Rating	Dielectric	Capacitance Range	Qty / Value	Total Qty
1206 - 1812	100 VDC	X7R	0.10µF to 0.47µF	30 pcs	300 pcs

Johanson may from time-time adjust actual kit contents based on design demand trends. Check the Johanson web site for design kit updates and kit content changes.

HIGH VOLTAGE SURFACE MOUNT MLCCs 250 - 6,000 VDC

CASE SIZE

These high voltage capacitors feature a special internal electrode design which reduces voltage concentrations by distributing voltage gradients throughout the entire capacitor.

This unique design also affords increased capacitance values in a given case size and voltage rating. The capacitors are designed and manufactured to the general requirement of EIA198 and are subjected to a 100% electrical testing making them well suited for a wide variety of telecommunication, commercial, and industrial applications.

APPLICATIONS

- Analog & Digital Modems
- Lighting Ballast Circuits
- DC-DC Converters
- LAN/WAN Interface
- Voltage Multipliers
- Back-lighting Inverters

Polyterm[®] soft termination option for demanding environments & processes available on select parts, please contact the factory.

				RATED	NP0 DIE	LECTRIC	X7R DIE	LECTRIC
JDI /EIA		INCHES	(MM)	VOLTAGE	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM
/	L	.080 ±.010	(2.03 ±.25)	250 VDC	-	-	1000 pF	0.022 µF
R15/0805	W	$.050 \pm .010$	(1.27 ±.25)	500 VDC	10 pF	680 pF	1000 pF	0.010 µF
	T	.055 Max.	(1.40)	630 VDC	10 pF	560 pF	1000 pF	6800 pF
	E/B	$.020 \pm .010$	(0.51±.25)	1000 VDC	10 pF	390 pF	100 pF	2700 pF
				250 VDC	-	-	1000 pF	0.068 µF
R18/1206	L	.125 ±.010	(3.18 ±.25)	500 VDC	10 pF	1500 pF	1000 pF	0.033 µF
	W	.062 ±.010	$(1.57 \pm .25)$	630 VDC	10 pF	1200 pF	1000 pF	0.027 µF
	Т	.067 Max.	(1.70)	1000 VDC	10 pF	1000 pF	100 pF	0.010 µF
	E/B	.020 ±.010	(0.51±.25)	2000 VDC	10 pF	220 pF	100 pF	4700 pF
				3000 VDC	10 pF	82 pF	100 pF	1000 pF
				250 VDC	-	-	1000 pF	0.150 µF
S41/1210	L	.125 ±.010	(3.18 ±.25)	500 VDC	10 pF	3900 pF	1000 pF	0.068 µF
	W	.095 ±.010	(2.41 ±.25)	630 VDC	10 pF	2700 pF	1000 pF	0.047 μF
	Т	.080 Max.	(2.03)	1000 VDC	10 pF	1800 pF	100 pF	0.015 µF
	E/B	.020 ±.010	(0.51±.25)	2000 VDC	10 pF	560 pF	100 pF	4700 pF
				3000 VDC	10 pF	220 pF	100 pF	1000 pF
				500 VDC	10 pF	4700 pF	1000 pF	0.100 µF
R29/1808				630 VDC	10 pF	3300 pF	1000 pF	0.047 µF
	L	185 + 020	(4.70 + 51)	1000 VDC	1.0 pF	2200 pF	100 pF	0.022 µF
	w	.080 ±.010	$(2.03 \pm .25)$	2000 VDC	1.0 pF	820 pF	100 pF	0.010 µF
	Т	.085 Max.	(2.16)	3000 VDC	1.0 pF	470 pF	100 pF	3300 pF
	E/B	$.020 \pm .010$	(0.51±.25)	4000 VDC	1.0 pF	180 pF	100 pF	1800 pF
				5000 VDC	1.0 pF	75 pF	47 pF	390 pF
				6000 VDC	1.0 pF	75 pF	47 pF	150 pF

Available cap. values include these significant retma values and their multiples: 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 (1.0 = 1.0, 10, 100, 1000, etc.) Consult factory for non-retma values and sizes or voltages not shown.

CAPACITANCE SELECTION

HIGH VOLTAGE SURFACE MOUNT MLCCs 250 - 6,000 VDC

CASE SIZE

CAPACITANCE SELECTION

				RATED	NP0 DIE	LECTRIC	X7R DIE	LECTRIC
JDI /EIA		INCHES	(MM)	VOLTAGE	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM
				250 VDC	-	-	0.010 µF	0.470 uF
S43/1812				500 VDC	100 pF	8200 pF	1000 pF	0.330 uF
			<i></i>	630 VDC	100 pF	6800 pF	1000 pF	0.120 µF
	L	.177 ±.012	$(4.50 \pm .30)$	1000 VDC	10 pF	5600 pF	1000 pF	0.100 µF
	T	.125 ±.010 110 May	(3.18 ±.25) (2.80)	2000 VDC	10 pF	1800 pF	100 pF	0.010 µF
	Ë/B	$.025 \pm .015$	$(0.64\pm.38)$	3000 VDC	10 pF	1000 pF	100 pF	4700 pF
	_, _		(0.0.100)	4000 VDC	10 pF	390 pF	100 pF	1200 pF
				5000 VDC	10 pF	150 pF	100 pF	820 pF
				6000 VDC	10 pF	150 pF	10 pF	330 pF
				500 VDC	100 pF	0.018 µF	0.01 µF	0.390 µF
S49 / 1825				630 VDC	100 pF	0.015 µF	0.01 µF	0.270 µF
	L	.180 ±.010	(4.57 ±.25)	1000 VDC	10 pF	0.012 µF	1000 pF	0.180 µF
	W	.250 ±.010	(6.35 ±.25)	2000 VDC	10 pF	5600 pF	100 pF	0.039 µF
	T_	.140 Max.	(3.56)	3000 VDC	10 pF	2200 pF	100 pF	8200 pF
	E/B	$.025 \pm .015$	(0.64±.38)	4000 VDC	10 pF	1200 pF	100 pF	2200 pF
				5000 VDC	10 pF	390 pF	100 pF	1500 pF
				6000 VDC	10 pF	390 pF	100 pF	820 pF
- /				500 VDC	1000 pF	0.018 µF	0.01 µF	0.470 µF
S47 / 2220				630 VDC	1000 pF	0.018 µF	0.01 µF	0.270 µF
	L	.225 ±.015	(5.72 ±.38)	1000 VDC	100 pF	0.015 µF	1000 pF	0.120 µF
	W	.200 ±.015	(5.08 ±.38)	2000 VDC	100 pF	5600 pF	1000 pF	0.039 µF
	T_	.150 Max.	(3.81)	3000 VDC	10 pF	2700 pF	100 pF	0.010 µF
	E/B	$.025 \pm .015$	(0.64±.38)	4000 VDC	10 pF	1500 pF	100 pF	2700 pF
				5000 VDC	10 pF	470 pF	100 pF	1500 pF
				6000 VDC	10 pF	470 pF	100 pF	820 pF
				500 VDC	1000 pF	0.027 µF	0.01 µF	0.560 µF
S48 / 2225				630 VDC	1000 pF	0.022 µF	0.01 µF	0.390 µF
	L	.225 ±.010	(5.72 ±.25)	1000 VDC	100 pF	0.018 µF	1000 pF	0.180 µF
	W	.255 ±.015	(6.48 ±.38)	2000 VDC	100 pF	8200 pF	1000 pF	0.056 µF
	T F/P	.160 Max.	(4.06)	3000 VDC	10 pF	3300 pF	100 pF	0.012 µF
	E/B	.025 ±.015	(U.64±.38)	4000 VDC	10 pF	1800 pF	100 pF	3300 pF
				5000 VDC	10 pF	470 pF	100 pF	2700 pF
				6000 VDC	10 pF	470 pF	100 pF	1200 pF

Available cap. values include these significant retma values and their multiples: 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 (1.0 = 1.0, 10, 100, 1000, etc.) Consult factory for non-retma values and sizes or voltages not shown.

ELECTRICAL CHARACTERISTICS

Meets the standard NP0 & X7R dielectric specifications listed on page 78DIELECTRIC WITHSTANDING VOLTAGEDWV = 1.5 X rated WVDC for ratings 500-999 WVDC,
DWV = 1.2 X rated WVDC for ratings ≥ 1,000 WVDC

NOTE: Capacitors may require a surface coating to prevent external arcing. Solder mask should not be used beneath capacitors. For more information see JDI Tech Note "Surface Arc Season"

How to Order High Voltage Surface Mount

P/N written: 202R18W102KV4E

202	R18	W	102	Κ	V	4	Ε
VOLTAGE	SIZE	DIELECTRIC	CAPACITANCE	TOLERANCE	TERMINATION	MARKING	PACKING
501 = 500 V 631 = 630 V	R15 = 0805 R18 = 1206	N = NP0 W = X7R	1st two digits are signifi- cant; third digit denotes	$J = \pm 5\%$ K = $\pm 10\%$	V = NI Barrier with 100% Sn Plating (Matte)	4 = Unmarked 6 = EIA Code	E = Embossed 7" T = Punched 7"
102 = 1000 V 202 = 2000 V	R29 = 1808 S41 = 1210		number of zeros. 102 = 1000 pF	$M = \pm 20\%$	F = Polyterm		No code = bulk
302 = 3000 V 402 = 4000 V	S43 = 1812 S47 = 2220		104 = 0.10 µF		Tiexible termination		Tape specs.
502 = 5000 V 602 = 6000 V	S48 = 2225 S49 = 1825				I – SIIFD		

AC SAFETY CAPACITORS

Johanson Dielectrics Type SC ceramic chip capacitors are designed for AC voltage surge and lightning protection in lineto-ground interface applications in computer networks, modem, facsimile and other equipment.

Johanson's safety capacitor offering includes four different case sizes in NP0 and X7R dielectric materials.

These devices are surface mount ready with barrier terminations and tape and reel packaging.

Information on capacitor safety ratings and certification details may be found below.

Polyterm[®] soft termination option for demanding environments & processes available on select parts, please contact the factory.

SAFETY RATING	VOLTAGE RATING	WITHSTANDING VOLTAGE	IMPULSE VOLTAGE	CASE SIZE	JOHANSON ORDERING P/N								
X2	250 VAC	1,500 VAC	2,500 V	1808	302R29V3E-****-SC								
STANDARDS: IEC/E	N 60384-14:2013 EN 6	60950 2006 • UL 60384-14, UL 609	950-01 CERTIFICATION	IS : TUV R 50227900) & T 72140662 • UL File E472557 & E212609								
X2	250 VAC	1,500 VAC	2,500 V	1812	302S43V3E-****-SC								
STANDARDS: IEC/E	N 60384-14:2013 EN 6	60950 2006 • UL 60384-14, UL 609	950-01 CERTIFICATION	IS : TUV R 50227900) & T 72140662 • UL File E472557 & E212609								
X1/Y2	250 VAC	1,500 VAC	5,000 V	1808	502R29V3E-****-SC								
STANDARDS: IEC/E	NDARDS: IEC/EN 60384-14:2013 EN 60950 2006 • UL 60384-14, UL 60950-01 CERTIFICATIONS: TUV R 50227900 & T 72140662 • UL File E472557 & E212609												
X2 STANDARDS: IEC/E	K2 250 VAC 1,500 VAC 2,500 V 1812 502S43 V3E-****-SC STANDARDS: JEC/EN 60394-14:2013 EN 60950 2006 • LU 60384-14 LU 60950-01 CERTIFICATIONS: TUV 8 50227900 & T 72140660 • LU 60950 2006 F12124069												
STANDARDS. ILU/L	TANDARDS: IEC/EN 60384-14:2013 EN 60950 2006 • UL 60384-14, UL 60950-01 CERTIFICATIONS: TUV R 50227900 & T 72140662 • UL File E472557 & E212609												
X1/Y2 250 VAC 1,500 VAC 5,000 V 2211 502R30V3E-****-SC													
STANDARDS: IEC/E	STANDARDS: IEC/EN 60384-14:2013 EN 60950 2006 • UL 60384-14, UL 60950-01 CERTIFICATIONS: TUV R 50227900 & T 72140662 • UL File E472557 & E212609												
X1/Y2	250 VAC	1,500 VAC	5,000 V	2220	502S47V3E-***-SC								
STANDARDS: IEC/E	N 60384-14:2013 EN 6	60950 2006 • UL 60384-14, UL 609	950-01 CERTIFICATION	IS : TUV R 50227900) & T 72140662 • UL File E472557 & E212609								

X Capacitors are defined as suitable for use in situations where failure of the capacitor would not lead to danger of electric shock.

Y Capacitors are defined as suitable for use in situations where failure of the capacitor could lead to danger of electric shock.

SAFETY C	EF	RTIFIED	(MM)	5 pF	10 pF	12 pF	15 pF	18 pF	22 pF	27 pF	33 pF	47 pF	56 pF	68 pF	100 pF	120 pF	150 pF	180 pF	220 pF	270 pF	330 pF	470 pF	560 pF	680 pF	1000 pF	1200 pF	1500 pF	1800 pF	2200 pF	2700 pF	3300 pF 4700 pF
R29 / 1808 X2	L W T E/B	.185 ±.015 .080 ±.010 .085 Max. .020 ±.010	(4.70 ±.38) (2.03 ±.25) (2.16) (0.51±.25)																											DIEL	ECTRIC IP0 (7R
S43 / 1812 X2	L W T E/B	.175 ±.010 .125 ±.010 .115 Max. .025 ±.015	(4.45 ±.25) (3.18 ±.25) (2.92) (0.64±.38)																												
R29 / 1808 X1/Y2	L W T E/B	.185 ±.015 .080 ±.015 .085 Max. .012 ±.015	(4.70 ±.38) (2.03 ±.38) (2.16) (0.30±.38)																												
S43 / 1812 X1/Y2	L W T E/B	.175 ±.010 .125 ±.010 .115 Max. .025 ±.015	(4.45 ±.25) (3.18 ±.25) (2.92) (0.64±.38)																												
R30 / 2211 X1/Y2	L W T E/B	.225 ±.016 .110 ±.010 .115 Max. .020 ±.010	5.72 ±.40) (2.80 ±.25) (2.92) (0.51±.25)																												
S47 / 2220 X1/Y2	L W T E/B	.225 ±.015 .200 ±.015 .150 Max. .025 ±.015	(5.72 ±.38) (5.08 ±.38) (3.81) (0.64±.38)																												

How to Order AC SAFETY CAPACITORS

502	R29	W	102	Μ	V	3	Ε	-***-SC
VOLTAGE	SIZE	DIELECTRIC	CAPACITANCE	TOLERANCE	TERMINATION	MARKING	PACKING	TYPE
302 = 250VAC [2500V Impulse] 502 = 250VAC [5000V Impulse]	R29=1808 R30=2211 S43=1812 S47=2220 AC2=2220	N = NP0 W = X7R	1st two digits are significant; third digit denotes number of zeros, R = decimal. 102 = 1000 pF $104 = 0.10 \text{ \muF}$ 5R0 = 5.0pF	$J = \pm 5\%$ $K = \pm 10\%$ $M = \pm 20\%$	V = NI Barrier with 100% Sn Plating (Matte) F = Polyterm flexible termination	3 = Required Safety Mark	E = Embossed 7" U = Embossed 13" No code = bulk Tape specs. per EIA RS481	SC = Safety Certified

P/N written: 302R29W102MV3E-***-SC

X2Y[®] FILTER & DECOUPLING CAPACITORS

X2Y[®] filter capacitors employ a unique, patented low inductance design featuring two balanced capacitors that are immune to temperature, voltage and aging performance differences.

These components offer superior decoupling and EMI filtering performance, virtually eliminate parasitics, and can replace multiple capacitors and inductors saving board space and reducing assembly costs.

ADVANTAGES

- One device for EMI suppression or decoupling
- Replace up to 7 components with one X2Y
- Differential and common mode attenuation
- Matched capacitance line to ground, both lines
- Low inductance due to cancellation effect

APPLICATIONS

- Amplifier Filter & Decoupling
- High Speed Data Filtering
- EMC I/O Filtering
- FPGA / ASIC / μ -P Decoupling

P/N written: 101X14W102MV4T

DDR Memory Decoupling

EMI Filterin (1 Y-Cap.)	g	<10pF	10pF	22pF	27pF	33pF	47pF	100pF	220pF	470pF	1000pF	1500pF	2200pF	4700pF	.010µF	.015µF	.022µF	.039µF	.047µF	0.10µF	0.18µF	0.22µF	0.33µF	0.40µF	0.47µF	1.0µF
Power Bypa (2 Y-Caps.	lss)	<20pF	20pF	44pF	54pF	66pF	94pF	200pF	440pF	940pF	2000pF	3000pF	4400pF	9400pF	.020µF	.030µF	.044µF	.078µF	.094µF	0.20µF	0.36µF	0.44µF	0.68µF	0.80µF	0.94µF	2.0µF
SIZE	CAP. CODE	XRX	100	220	270	330	470	101	221	471	102	152	222	472	103	153	223	393	473	104	184	224	334	404	474	105
0402 (207)	NP0	50	50	50	50	50	50	50																		
0402 (X07)	X7R								50	50	50	50	50	50	16											
	NP0	100	100	100	100	100	50	50	50																	
0603 (X14)	X7R						100	100	100	100	100	100	100	100	50	25	25		16	10		10				
	X5R																					16	10		10	10
0905 (V15)	NP0		100	100	100	100	100	100	100	50																
0005 (X15)	X7R							100	100	100	100	100	100	100	100	50	50		50	25	10					
1006 (V19	NP0			VC		GE					100															
1200 (X10	X7R			6.3 :	= 6.3	vDC									100	100	100		100	100		16	16		10	
1210 (X41)	X7R			10:	= 10 \ = 16 \	/DC /DC									500					100		100	100		25	16
1410 (X44)	X7R			20 : 50 : 100	= 25 \ = 50 \ _ 100	/DC /DC										500								100		
1812 (X43)	X7R			500 =	= 100 = 500	VDC												500							100	

Contact factory for part combinations not shown.

Filtering capacitance is specified as Line-to-Ground (Terminal A or B to G)

Power Bypass capacitance is specified Power-to-Ground (A + B to G)

Rated voltage is from line to ground in Circuit 1, power to ground in Circuit 2 .

How to Order X2Y® CAPACITORS

V Т 100 **X14** W 102 Μ 4 VOLTAGE SIZE DIELECTRIC CAPACITANCE TOLERANCE TERMINATION MARKING PACKING X07 = 0402 6R3 = 6.3 V N = NP01st two digits are signifi- $M = \pm 20\%$ V = NI Barrier with 100% 4 = Unmarked Е = Embossed 7" 100 = 10 V160 = 16 V* D = ± 0.50 pF X14 = 0603W = X7Rcant; third digit denotes Tin Plating (Matte) т = Punched 7" X14 = 0003X15 = 0805X18 = 1206(Not available) number of zeros, R = X = X5R*Values < 10 pF only F = Polyterm No code = bulk 250 = 25 V decimal. 500 = 50 V101 = 100 V501 = 500 V102 = 1000 pF 104 = 0.10 µF 5R6 = 5.6pF flexible termination X41 = 1210 X44 = 1410 X43 = 1812 Tape specs. per EIA RS481 T = SnPb

X2Y[®] technology patents and registered trademark under license from X2Y ATTENUATORS, LLC

www.johansondielectrics.com

X2Y[®] FILTER & DECOUPLING CAPACITORS

Equivalent Circuits

CASE SIZE

	0402	(X07)	0603	(X14)	0805	(X15)	1206	(X18)	1210	(X41)	1410	(X44)	1812	(X43)
	IN	MM												
L	0.045 ± 0.003	1.143 ± 0.076	0.064 ± 0.005	1.626 ± 0.127	0.080 ± 0.008	2.032 ± 0.203	0.124 ± 0.010	3.150 ± 0.254	0.125 ± 0.010	3.175 ± 0.254	0.140 ± 0.010	3.556 ± 0.254	0.174 ± 0.010	4.420 ± 0.254
W	0.025 ± 0.003	0.635 ± 0.076	0.035 ± 0.005	0.889 ± 0.127	0.050 ± 0.008	1.270 ± 0.203	0.063 ± 0.010	1.600 ± 0.254	0.098 ± 0.010	2.489 ± 0.254	0.098 ± 0.010	2.490 ± 0.254	0.125 ± 0.010	3.175 ± 0.254
т	0.020 max	0.508 max	0.026 max	0.660 max	0.040 max	1.016 max	0.050 max	1.270 max	0.070 max	1.778 max	0.070 max	1.778 max	0.090 max	2.286 max
EB	0.008 ± 0.003	0.203 ± 0.076	0.010 ± 0.006	0.254 ± 0.152	0.012 ± 0.008	0.305 ± 0.203	0.016 ± 0.010	0.406 ± 0.254	0.018 ± 0.010	0.457 ± 0.254	0.018 ± 0.010	0.457 ± 0.254	0.022 ± 0.012	0.559 ± 0.305
СВ	0.012 ± 0.003	0.305 ± 0.076	0.018 ± 0.004	0.457 ± 0.102	0.022 ± 0.005	0.559 ± 0.127	0.040 ± 0.005	1.016 ± 0.127	0.045 ± 0.005	1.143 ± 0.127	0.045 ± 0.005	1.143 ± 0.127	0.045 ± 0.005	1.143 ± 0.127

THE X2Y® DESIGN - A BALANCED, LOW ESL, "CAPACITOR CIRCUIT"

The X2Y[®] capacitor design starts with standard 2 terminal MLC capacitor's opposing electrode sets, A & B, and adds a third electrode set (G) which surround each A & B electrode. The result is a highly vesatile three node capacitive circuit containing two tightly matched, low inductance capacitors in a compact, four-terminal SMT chip.

EMI FILTERING:

The X2Y[®] component contains two shunt or "line-to-ground" Y capacitors. Ultra-low ESL (equivalent series inductance) and tightly matched inductance of these capacitors provides unequaled high frequency Common-Mode noise filtering with low noise mode conversion. X2Y[®] components reduce EMI emissions far better than unbalanced discrete shunt capacitors or series inductive filters. Differential signal loss is determined by the cut off frequency of the single line-to-ground (Y) capacitor value of an X2Y[®].

Power Bypass / Decoupling

For Power Bypass applications, X2Ys[®] two "Y" capacitors are connected in parallel. This doubles the total capacitance and reduces their mounted inductance by 80% or 1/5th the mounted inductance of similar sized MLC capacitors enabling high-performance bypass networks with far fewer components and vias. Low ESL delivers improved High Frequency performance into the GHz range.

GSM RFI ATTENUATION IN AUDIO & ANALOG

GSM handsets transmit in the 850 and 1850 MHz bands using a TDMA pulse rate of 217Hz. These signals cause the GSM buzz heard in a wide range of audio products from headphones to concert hall PA systems or "silent" signal errors created in medical, industrial process control, and security applications. Testing was conducted where an 840MHz GSM handset signal was delivered to the inputs of three different amplifier test circuit configurations shown below whose outputs were measured on a HF spectrum analyzer.

1) No input filter, 2 discrete MLC 100nF power bypass caps.

2) 2 discrete MLC 1nF input filter, 2 discrete MLC 100nF power bypass caps.

3) A single X2Y 1nF input filter, a single X2Y 100nF power bypass cap.

X2Y configuration provided a nearly flat response above the ambient and up to 10 dB imrpoved rejection than the conventional MLCC configuration.

AMPLIFIER INPUT FILTER EXAMPLE

In this example, a single Johanson X2Y[®] component was used to filter noise at the input of a DC instrumentation amplifier. This reduced component count by 3-to-1 and costs by over 70% vs. conventional filter components that included 1% film Y-capacitors.

Parameter	X2Y [®] 10nF	Discrete 10nF, 2 @ 220 pF	Comments
DC offset shift	< 0.1 µV	< 0.1 µV	Referred to input
Common mode rejection	91 dB	92 dB	

Source: Analog Devices, "A Designer's Guide to Instrumentation Amplifiers (2nd Edition)" by Charles Kitchin and Lew Counts

COMMON MODE CHOKE REPLACEMENT

- Superior High Frequency Emissions Reduction
- Smaller Sizes, Lighter Weight
- No Current Limitation
- Vibration Resistant
- No Saturation Concerns

See our website for a detailed application note with component test comparisons and circuit emissions measurements.

Measured Common Mode Rejection

PARALLEL CAPACITOR SOLUTION

A common design practice is to parallel decade capacitance values to extend the high frequency performance of the filter network. This causes an unintended and often over-looked effect of anti-resonant peaks in the filter networks combined impedance. X2Y's very low mounted inductance allows designers to use a single, higher value part and completely avoid the anti-resonance problem. The impedance graph on right shows the combined mounted impedance of a 1nF, 10nF & 100nF 0402 MLC in parrallel in RED. The MLC networks anti-resonance peaks are nearly 10 times the desired impedance. A 100nF and 47nF X2Y are plotted in BLUE and GREEN. (The total capacitance of X2Y (Circuit 2) is twice the value, or 200nF and 98nF in this example.) The sigle X2Y is clearly superior to the three paralleled MLCs.

X2Y High Performance Power Bypass - Improve Performance, Reduce Space & Vias

Actual measured performance of two high performance SerDes FPGA designs demonstrate how a 13 component X2Y bypass network significantly out performs a 38 component MLC network.

For more information see https://johansondielectrics.com/downloads/JDI_X2Y_STXII.pdf

LICC capacitors are specially designed to exhibit lower inductance by altering the aspect ratio of the terminations. The smaller current loop length results in Equivalent Series Inductance (ESL) that is typically 60% lower then standard MLCs of the same size. This ESL improvement is extremely advantageous in the high frequency power decoupling of high speed digital MPU, FPGA, DSP, etc..

Features

- Low Inductance
- High Series Resonant Frequency
- Sn-Pb and Polyterm® Termination Options

RoHS Compliant

P/N written: 160B14W104MV4T

CASE SIZE

AVAILABLE CAPACITANCE

JDI	EIA	MM	DIELECTRIC	10nF	22nF	47nF	0.10uF	0.22uF	0.47uF	1.00uF	2.2uF	4.7uF	10uF
D1/	0206	0016	X7R	25V	25V	25V	16V	6.3V					
D14	0300	0010	X5R				10V	10V	6.3V	6.3V	6.3V		
D15	0500	1000	X7R	50V	50V	25V	25V	16V	6.3V	6.3V			
DID	0506	1220	X5R						10V	10V	6.3V		
D10	0610	1620	X7R	50V	50V	50V	50V	25V	16V	6.3V			
DIO	0012	1032	X5R							10V	10V	6.3V	6.3V

Please visit our website for complete specifications

How to Order LICC CAPACITORS

۷ W 104 Μ 160 **B14** 4 Т TERMINATION VOLTAGE SIZE DIELECTRIC MARKING PACKING CAPACITANCE TOLERANCE 6R3 = 6.3 VB14 = 0306W = X7R1st two digits are signifi-cant; third digit denotes number of zeros *Values < 10 pF only V = NI Barrier with 100% 4 = Unmarked E = Embossed 7" $\begin{array}{r} 100 = 10 \ V \\ 160 = 16 \ V \\ 250 = 25 \ V \\ 500 = 50 \ V \end{array}$ Tin Plating (Matte) T = Punched 7' B15 = 0508X = X5R(Not available) B18 = 0612T = SnPbNo code = bulk 103 = 0.01 µF (10NF) 104 = 0.10 µF Tape specs. per EIA RS481

www.johansondielectrics.com

G

6

G

Output

Our Feed-Thru Capacitors provide excellent EMI, I/O & Power Line filtering exhibiting much lower inductance than standard SMT capacitors which results in broader frequency response. These are Precious Metal Electrode (PME) products with higher current ratings than comparable Base Metal Electrode (BME) parts.

Insertion Loss vs Frequency

FEATURES

0

APPLICATIONS

- 1 Amp Current Rating
- · Low Inductance, High SRF
- Surface Mount Non-polarized
- Sn-Pb and Polyterm® Options

- DC Power Line EMI Filter
- RF Immunity FIIter
- RF Amplifier Gain Filter

CASE SIZE

Input

AVAILABLE CAPACITANCE

JDI	EIA	MM	DIELECTRIC	22pF	47pF	100pF	220pF	470pF	1.0nF	2.2nF	4.7nF	10nF	22nF	47nF	100nF	220nF
E1 /	0602	1600	NP0	50V	50V	50V	50V									
Г14	0003	1000	X7R					25V	25V	25V	25V	25V	25V	25V		
E16	0005	2012	NP0	100V	100V	100V	100V	100V								
FIJ	0005	2012	X7R						50V	50V	50V	50V	50V	50V	50V	
E10	1006	2016	NP0	100V	100V	100V	100V	100V	100V							
FIO	1200	3210	X7R							50V	50V	50V	50V	50V	50V	50V

Please visit our website for complete specifications

How to Order Chip Filter / Feed-thru

250	F14	W	103	Y	V	4	Ε
VOLTAGE	SIZE	DIELECTRIC	CAPACITANCE	TOLERANCE	TERMINATION	MARKING	PACKING
250 = 25 V 500 = 50 V	F14 = 0603 F15 = 0805 F18 = 1206	N = NP0 W = X7R	1st two digits are signifi- cant; third digit denotes	$K = \pm 10\%$ M = $\pm 20\%$	V = Ni Barrier w/ 100% Sn Plating	4 = Unmarked (Not available)	E =Embossed 7" T =Punched 7"
201 = 200 V	F10 = 1200			Y = +50% - 20%	T = Ni Barrier w/		No code = bulk
			102 = 1000 pF 103 = 0.01 μF 104 = 0.10 μF		957651/576FD Flating		Tape specs. per EIA RS481

www.johansondielectrics.com

15

P/N written: 250F14W103YV4E

Johanson's high temperature MLCC series exhibit stable performance across an extended operating temperature range of -55°C to +200°C. Both Class I and Class II parts are available with DC voltage ratings of 50,100 and 200V satisfying a wide range of demanding applications.

FEATURES

- Stable 200°C Operation
- Compact SMD Chip
- Polyterm® Termination Option
- Sn-Pb Termination Option

APPLICATIONS

- Deep Hole Drilling Electronics
- High Temperature Modules
- Industrial Equipment
- Automotive
 Avionics

ELECTRICAL CHARACTERISTICS

	NP0	X7R
OPERATING RANGE:	-55 to +200°C	-55 to +200°C
TEMPERATURE COEFFICIENT:	0±30ppm/°C (-55to+125°C)	0±15% (-55to+125°C)
200°C CAP. DROP:	-0.5% max.	-45% max.
DISSIPATION FACTOR:	0.001 (0.1%) max.	0.020 (2.0%) max.
AGING RATE:	None	<1.0% per decade
INSULATION RESISTANCE:	25°C IR >100GΩ or 1000 200°C IR >1ΩF or 100MΩ	ΩF (whichever 2 is less)
WITHSTANDING VOLTAGE:	2.5 X WVDC for ratings ≤ 1.5 X WVDC for ratings 20	200 VDC 01-500 VDC
TEST CONDITIONS:	C > 100 pF; 1kHz ±50Hz; C ≤ 100 pF; 1Mhz ±50kH;	1.0±0.2 VRMS z; 1.0±0.2 VRMS

X7B DIFLECTRIC

NP0 DIFLECTRIC

MECHANICAL	C HARACTERISTICS

IECHANICAL CHARACTERISTICS								
				VOLTAGE	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM
T07/0400		Inches	(mm)	25 VDC	10 pF	270 pF	100 pF	4700 pF
107/0402	L	$.040 \pm .004$ 020 ± 004	$(1.02 \pm .10)$ (0.51 ± 10)	50 VDC	10 pF	120 pF	100 pF	1500 pF
	Т	.025 Max.	(0.64)	100 VDC	10 pF	82 pF	10 pF	390 pF
	E/B	.008±.004	(.20±.10)	200 VDC	10 pF	50 pF	10 pF	100 pF
T4 4/0000		Inches	(mm)	25 VDC	10 pF	820 pF	1000 pF	0.022 µF
114/0603	L W	.063 ±.008 032 + 008	(1.60 ±.20) (0.81 + 20)	50 VDC	10 pF	330 pF	1000 pF	0.010 µF
	Т	.035 Max.	(0.89)	100 VDC	10 pF	220 pF	100 pF	2200 pF
	E/B	.010±.005	(.25±.13)	200 VDC	10 pF	120 pF	100 pF	560 pF
		Inches	(mm)	25 VDC	100 pF	2200 pF	1000 pF	0.100 µF
115/0805	L	.080 ±.010 050 ± 010	(2.03 ±.25) (1 27 + 25)	50 VDC	100 pF	1500 pF	1000 pF	0.033 µF
	Т	.055 Max.	(1.40)	100 VDC	100 pF	1000 pF	1000 pF	0.010 µF
	E/B	.020±.010	(0.51±.25)	200 VDC	10 pF	680 pF	100 pF	2200 pF

HIGH TEMPERATURE SURFACE MOUNT MLCCs 200°C

MECHANICAL CHARACTERISTICS				RATED	NP0 DIE	LECTRIC	X7R DIE	LECTRIC
				VOLIAGE	MINIMUM	MAXIMUM	MINIMUM	MAXIMUM
T10/1000		Inches	(mm)	25 VDC	100 pF	6800 pF	1000 pF	0.220 µF
118/1206	L W	L .125 ±.010 (3.17 ±.25) W .062 ±.010 (1.57 ±.25) T .067 Max (1.70)		50 VDC	100 pF	3300 pF	1000 pF	0.100 µF
	Т	.067 Max.	(1.70)	100 VDC	100 pF	2200 pF	1000 pF	0.022 µF
	E/B	.020±.010	(0.51±.25)	200 VDC	100 pF	1500 pF	1000 pF	5600 pF
T44 /4 04 0		Inches	(mm)	25 VDC	1000 pF	0.015 µF	0.047 µF	0.470 µF
141/1210	L W	.125 ±.010 095 ± 010	(3.18 ±.25) (2 41 + 25)	50 VDC	1000 pF	5600 pF	0.047 µF	0.220 µF
	Т	.090 Max.	(2.28)	100 VDC	100 pF	4700 pF	0.047 µF	0.056 µF
	E/B	.020±.010	(0.51±.25)	200 VDC	100 pF	3300 pF	0.0047 µF	0.015 µF
T40/4040		Inches	(mm)	25 VDC	1000 pF	0.033 µF	0.047 µF	1.000 µF
143/1812	L	$.175 \pm .010$ 125 ± 010	$(4.45 \pm .25)$ (3.17 + 25)	50 VDC	1000 pF	0.012 µF	0.047 µF	0.470 µF
	Т	.110 Max.	(2.80)	100 VDC	1000 pF	0.010 µF	0.047 µF	0.180 µF
	E/B	.025±.015	(0.64±.38)	200 VDC	1000 pF	8200 pF	0.047 µF	0.047 µF
T40/4005		Inches	(mm)	25 VDC	1000 pF	0.033 µF	0.10 µF	2.200 µF
149/1825	L	.180 ±.010 250 ± 010	(4.57 ±.25) (6.35 ± 25)	50 VDC	1000 pF	0.027 μF	0.10 µF	1.000 µF
	Т	.140 Max.	(3.56)	100 VDC	1000 pF	0.022 µF	0.10 µF	0.560 µF
	E/B	.025±.015	(0.64±.38)	200 VDC	1000 pF	0.018 µF	0.10 µF	0.150 µF
T40/0005		Inches	(mm)	25 VDC	1000 pF	0.100 µF	0.10 µF	3.300 µF
148/2225	L	.225 ±.010 255 ± 015	(5.72 ±.25) (6 48 + 38)	50 VDC	1000 pF	0.039 µF	0.10 µF	1.500 µF
	Ť	.160 Max.	(4.06)	100 VDC	1000 pF	0.033 µF	0.10 µF	0.820 µF
	E/B	.025±.015	(4.00)		1000 pF	0.022 µF	0.10 µF	0.220 µF

How to Order 200°C MLCCs

500	T14						E
VOLIAGE	SIZE	DIELECTRIC	CAPACITANCE	IULENANCE	TERIVIINATION	MARKING	PACKING
250 = 25 V 500 = 50 V	T07 = 0402 T14 = 0603	N = NP0 W = X7R	1st two digits are signifi- cant; third digit denotes	NP0 J = ± 5%	V = Ni Barrier w/ 100% Sn Plating (150°C)	4 = Unmarked (Not available)	E = Embossed 7" T = Punched 7"
101 = 100 V 201 = 200 V	T15 = 0805 T18 = 1206		number of zeros.	$K = \pm 10\%$	T = Ni Barrier w/		No code = bulk
	T41 = 1210		102 = 1000 pF 103 = 0.01 uF	X7R	95%Sn/5%Pb Plating (150 $^{\circ}$ C)		Tape specs.
	143 = 1812 T49 = 1825 T48 = 2225		$104 = 0.10 \mu\text{F}$	$K = \pm 10\%$ $M = \pm 20\%$	E = Ni Barrier w/ 100% Sn Plating (180°C)		per EIA RS481
					P = Palladium Silver Pd-Ag (200°C)		

www.johansondielectrics.com

P/N written: 500T14W103KV4E

TANCERAM® chip capacitors can replace tantalum capacitors in many applications and offer several key advantages over traditional tantalums. Because TANCERAM® capacitors exhibit extremely low ESR, equivalent circuit performance can often be achieved using considerably lower capacitance values. Low DC leakage reduces current drain, extending the battery life of portable products. TANCERAM® high DC breakdown voltage ratings offer improved reliability and eliminate large voltage de-rating common when designing with tantalums.

ADVANTAGES

- Low ESR
- Higher Surge Voltage
- Reduced CHIP Size
- Low DC Leakage
- Non-polarized Devices
- Improved Reliability

Typical Breakdown Voltage Comparison

1.0 µF / 16V TANCERAM ®

DC Breakdown Voltage

300

Part number written: 100R15X106MV4E

400

500

1.0 µF / 16V Tantalum

200

- Higher Insulation Resistance
 Higher Ripple Current

APPLICATIONS

- Switching Power Supply Smoothing (Input/Output)
- DC/DC Converter Smoothing (Input/Output)
- Backlighting Inverters
- General Digital Circuits

100%

75%

50%

25%

0%

n

100

Distribution

%

How to Order TANCERAM®

www.johansondielectrics.com

TANCERAM[®] CHIP CAPACITORS **See**

CASE SIZE

CAPACITANCE SELECTION

EIA / JDI		INCHES	(mm)	VDC	1.0	μF	2.2	μF	3.3	μF	4.7	μF	10	μF	22	μF	47	μF	100	μF
0402 - R07	L W T EB	.040 ±.004 .020 ±.004 .025 Max. .008 ±.004	(1.02 ±.10) (0.51 ±.10) (0.64) (0.20±.10)	16 10 6.3																
0603 • R14	L W T EB	.063 ±.008 .032 ±.008 .035 Max. .010±.005	(1.60 ±.20) (0.81 ±.20) (0.89) (.25±.13)	25 16 10 6.3																
0805 R15	L W T EB	.080 ±.010 .050 ±.010 .060 Max. .020±.010	(2.03 ±.25) (1.27 ±.25) (1.52) (0.51±.25)	50 25 16 10 6.3																
1206 R18	L W T EB	.125 ±.013 .062 ±.010 .070 Max. .020 +.015-0.01	(3.17 ±.35) (1.57 ±.25) (1.78) (0.51+.3825)	100 50 35 25 16 10 6.3																
1210 S41	L W T EB	.126 ±.016 .098 ±.012 .110 Max. .020 +.015010	(3.20 ±.40) (2.50 ±.30) (2.8) (0.51+.3825)	100 50 35 25 16 10 6.3																
1812 S43	L W T EB	.177 ±.016 .126 ±.015 .140 Max. .035 ±.020	(4.50 ±.40) (3.20 ±.38) (3.55) (0.89 ±0.51)	100 50 25 16 10 6.3																

ELECTRICAL CHARACTERISTICS

DIELECTRIC:	X7R	X5R
TEMPERATURE COEFFICIENT:	±15% (-55 to +125°C)	±15% (-55 to +85°C)
DISSIPATION FACTOR:	For \ge 50 VDC: 5% max. For \le 35 VDC: 10% max.	For \ge 50 VDC: 5% max. For \le 35 VDC: 10% max.
INSULATION RESISTANCE (MIN. @ 25°C, WVDC)	100 ΩF or 10 GΩ,	whichever is less
DIELECTRIC STRENGTH:	2.5 X WVDC, 25	5°C, 50mA max.
TEST CONDITIONS:	Capacitance values \leq 10 µF: Capacitance values > 10 µF: 1	1.0kHz±50Hz @ 1.0±0.2 Vrms 20Hz±10Hz @ 0.5V±0.1 Vrms
OTHER:	See page 70 for additiona	l dielectric specifications.

SURFACE MOUNT MLCCs 10 - 200 VDC

	CASE SIZ	Έ	age								A۱	/All	LA	BL	E (Ca	PA	СГ	TAI	VCI	E (Co	DE							
JDI	Inches	(mm)	Volt	0R5	XRX	100	120	150	180	220	270	330	390	470	560	680	820	101	121	151	181	221	271	331	391	471	561	681	821	102
R05	0201	(0603)																												
	L .024 ±.001	$(0.60 \pm .03)$	25V																											
-	T .012 ±.001	$(0.30 \pm .03)$ $(0.30 \pm .03)$	16V																											
	EB .006 ±.002	(0.15±.05)	10V																											
R07	0402	(1005)	50V																											
	L .040 ±.004 W .020 +.004	$(1.02 \pm .10)$ $(0.51 \pm .10)$	25V																											
-	T .025 Max.	(0.64)	16V	_																										
	EB .008 ±.004	(0.20±.10)	10V																											
R14	0603	(1608)	200V																											
	W .032 ±.008	$(1.60 \pm .20)$ $(0.81 \pm .20)$	100V					<u> </u>																						
	T .035 Max.	(0.89)	50V																											
	LD .010±.000	(.20±.10)	25V		-			-						-			-						-							
DIE		(0010)	100																											
R15	U8U5 L .080 +.010	(2012)	200V																											
	W .050 ±.010	$(1.27 \pm .25)$	50V					<u> </u>																						
	EB .020±.010	(1.27) (0.51±.25)	25V																											
			16V	-																										
D10	1000	(0.01.0)	200V																											
RIO	1206 L 125 + 010	(3216) (3.17 + 25)	100V																											
	W .062 ±.010	$(1.57 \pm .25)$	50V					<u> </u>																						
	EB .020 ±.010	(1.27) (0.51 ±.25)	25V																											
S41	1210	(3224)	200V																											
	L .125 ±.010	(3.18 ±.25)	100V																				I	NPO)					
	W .095 ±.010 T .065 Max.	(2.41 ±.25) (1.65)	50V							~													2	X7F	{					
	EB .020 ±.010	(0.51 ±.25)	25V					\checkmark	W		\geq			L									2	X5F	{					
			16V						<					`	\searrow	>	-													
S43	1812	(4532)	200V				T -	3/(Ĺ					\geq	1	~	E/B													
	L .175 ±.010	$(4.45 \pm .25)$	100V									Y																		
	T .085 Max.	(2.16)	50V																											
	EB .025 ±.015	(0.64 ±.38)	25V																											
				JR5	XH	100	120	150	180	220	270	330	390	470	560	380	820	101	121	151	181	221	271	331	391	471	561	381	821	102

How To ORDER - SURFACE MOUNT MLCC

100	R 07	W	104	Κ	V	4	Ε
VOLTAGE	SERIES/SIZE	DIELECTRIC	CAPACITANCE	TOLERANCE	TERMINATION	MARKING	PACKING
100 = 10 V DC 160 = 16 V DC 250 = 25 V DC 500 = 50 V DC 101 = 100 V DC 201 = 200 V DC	R05 = 0201 R07 = 0402 R14 = 0603 R15 = 0805 R18 = 1206 S41 = 1210 S43 = 1812	N = NP0 W = X7R X = X5R	1st two digits are significant; third digit denotes number of zeros, R = decimal. 5R6 = 5.6 pF 100 = 10 pF 102 = 1,000 pF 474 = 0.47 μ F	$\label{eq:states} \begin{array}{l} ^{*} B = \pm \ 0.10 \ pF \\ ^{*} C = \pm \ 0.25 \ pF \\ ^{*} D = \pm \ 0.50 \ pF \\ F = \pm \ 1 \ \% \\ G = \pm \ 2\% \\ J = \pm \ 5\% \\ K = \pm \ 10\% \\ M = \pm \ 20\% \\ \end{array}$ $\ensuremath{\mathbb{W}}$	V = Nickel Barrier with 100% Tin Plating (Matte) T = SnPb	3 = Special 4 = Unmarked 6 = EIA Code* *Not available on sizes ≤ 0402	E = Embossed 7" T = Punched 7" U = Embossed 13" R = Punched 13" No code = bulk Tape specifications on page 48. Not all tape styles are avail- able on all parts.

www.johansondielectrics.com

Part number written: 100R07W104KV4E

SURFACE MOUNT MLCCs 10 - 200 VDC

Available Capacitance Code										age	CASE																						
122	152	182	222	272	332	392	472	562	822	103	123	153	183	223	273	333	473	563	683	823	104	224	334	474	105	225	335	475	106	476	107	Volt	Size
																							NP	0								25V	0201
																							X7F	2								16V	R05
												_					_						X5F	≺								100	
								-	-		_		-																			500	0400
								<u> </u>			_														-							250	0402
\vdash	-										-		-						-				_									101	RU7
									-																1							2001/	
																																100V	
																																50V	0603
																																25V	R14
																																16V	
																																200V	
																									1							100V	0005
																																50V	
																									Se	e T	Tan	cer	am	Hig	gh	25V	RIS
																									С	apa	acita	anc	e S	Serie	es	16V	
																									f	or v	alu	es	≥ 1	.0µ	F	200V	
																																100V	1206
																																50V	R18
																																25V	
																																200V	
																																100V	1210
<u> </u>																																50V	S41
								-	-																							25V	_
<u> </u>																																2001	
-																																1001/	1812
-																																501/	6/2
																																25V	343
21	N	2	2	2	N	20	2	N	N	5	0	ŝ	ñ	ŝ	ς	εŭ	ŝ	ŝ	ñ	ŝ	4	4	4	4	5	2 2	ß	5	9	0	2		L
15	12	18	22	27	33	36	47	56	82	12	12	10	18	22	27	33	47	56	68	82	10	12	33	47	12	22	33	47	10	47	12		

ELECTRICAL CHARACTERISTICS

Please refer to page 78 of the catalog or www.johansondielectrics.com

STACKED SMPS CERAMIC CAPACITORS

Stacked Switch-Mode ceramic capacitors feature large capacitance values and exhibit low ESR (equivalent series resistance) and low ESL (equivalent series inductance) making them well suited for high power and high frequency applications where tantalum or aluminum electrolytic capacitors may not be suitable. The P-Series feature mechanical and pin-out configurations per DSCC 87106 and 88011 drawings while the E-Series feature mechanical and pin-out configurations more common in European design applications.

KEY FEATURES

- P-Series Approved to DSCC Drawings 87106 & 88011 MIL-PRF-49470
- New T-Series 200°C for downhole tools and aircraft engine control applications.
- E-Series Common European Lead Styles available to MIL-PRF-49470 requirements.
- NP0 & X7R Dielectrics, 50 to 500 VDC Ratings
- Low ESR / Low ESL, Ideal for SMPS Filtering Applications

Part number written: 201P03W275KJ4H

• Custom Sizes, Voltages, and Values Available

CASE SIZE

How to Order Stacked SMPS

W Κ J 201 P03 275 4 Н VOLTAGE SIZE DIELECTRIC CAPACITANCE TOLERANCE TERMINATION MARKING PACKING 500 = 50 V See Chart N = NP0J = "J" Leads 4 = Standard 1st two digits are $J = \pm 5\%$ T = Tape and Reel $K = \pm 10\%$ $L = \pm 15\%$ $M = \pm 20\%$ 101 = 100 V201 = 200 VB = BXW = X7Rsignificant; third digit (formed in) 3 = Specified H = High Reliability denotes number of K = "J" Leads with 501 = 500 V zeros. testing per customer reduced height of 101 = 100 pF 102 = 1000 pF 103 = 0.01 µF $N = \pm 30\%$ Z = +80% -20% requirements .045" ±.010" S = Special Part L = "L" Leads P = +100% -0% $105 = 1.00 \,\mu\text{F}$ (formed out) M = "L" Leads with reduced height of .045" ±.010" N = Straight Lead

www.johansondielectrics.com

STACKED SMPS CERAMIC CAPACITORS

CASE	CHIP	LEADS	MECHA	NICAL SIZE RAN	IGE (IN.))	(7R MAX CAP	ACITANCE (µF	5)
SIZE	LAYERS	/SIDE	LENGTH (D)	WIDTH (E)	TMAX (B)	50V	100V	200V	500V
P05	1	0	0.075	0.200	.185	3.0	2.2	1.0	0.50
P55	5	3	0.275	0.300	.715	15	11	5.0	2.5
P04	1	4	0.405	0.440	.185	9.0	6.5	3.0	1.5
P54	5	4	0.425	0.440	.715	45	32	15	7.5
P03	1	10	1.075	0.500	.185	28	20	9.5	4.7
P53	5		1.075	0.500	.715	140	100	47	23
P01	1	20	2.075	0.500	.185	50	40	19	9.4
P51	5	20	2.075	0.500	.715	250	200	95	46
P02	1	15	1 505	0.970	.185	75	55	25	14
P52	5	15	1.555	0.870	.715	370	270	125	70
P06	1	20	2.075	1 250	.185	160	110	50	25
P56	5	20	2.075	1.350	.715	800	550	250	125

P-SERIES DSCC STYLE X7R CAPACITANCE / VOLTAGE SELECTION

Please refer to our website for complete offering including NP0 & BX capacitance ranges.

NEW 200°C T-Series CAPACITANCE / VOLTAGE SELECTION

CASE	CHIP	LEADS	MECHA	NICAL SIZE RAN	IGE (IN.)	MAX CAPACITANCE (µF)					
SIZE	LAYERS	/SIDE	LENGTH (D)	WIDTH (E)	TMAX (B)	50V	100V	200V			
T05	1	0	0.075	0.200	.185	1.20	0.68	0.33			
T55	5	3	0.275	0.300	.715	5.60	3.30	1.50			
T04	1	1	0.405	0.440	.185	2.70	1.50	0.82			
T54	5	4	0.425	0.440	.715	15.0	8.20	3.90			
T03	1	10	1.075	0.500	.185	10.0	5.60	2.70			
T53	5		1.075	0.300	.715	47.0	27.0	12.0			

Please refer to our website for complete offering including NP0 capacitance ranges.

E-SERIES EUROPEAN STYLE X7R CAPACITANCE / VOLTAGE SELECTION

CASE	CHIP	LEADS	MECHAN	NICAL SIZE RAN	GE (MM)	>	(7R MAX CAP	ACITANCE (µF	-)
SIZE	LAYERS	/SIDE	LENGTH (D)	WIDTH (E)	TMAX (B)	50V	100V	200V	500V
E24	1	0	0.7	0.0	3.8	5.0	4.0	2.5	1.0
E54	4	3	0.7	9.2	14.8	20	16	10	4.0
E26	1	5	10.6	14.0	3.	16	12	7.5	3.3
E56	4	5	13.0	14.9	14.8	64	48	30	13
E21	1	6	16.6	01.6	3.8	30	22	14	6.0
E51	4	0	10.0	21.0	14.8	120	88	56	24
E28	1	1/	20.0	10.0	3.8	35	25	16	7.0
E58	4	14	30.2	12.0	14.8	140	100	64	28
E29	1	11	10.6	24.0	3.8	75	50	35	16
E59	4	14	40.0	24.0	14.8	300	200	140	64

Please refer to our website for complete offering including NP0 & BX capacitance ranges.

MINI-SWITCH-MODE® CAPACITORS

JDI's Mini Switch-Mode[®] ceramic capacitors combine the advantages of high capacitance found in tantalum capacitors with very low ESR performance of ceramic capacitors. The "J" and "L" lead configurations replace 1825 and 2225 SMT chips to provide stress relief and prevent cracking due to thermal cycling or mechanical board flexing. Another plus of the J-lead style is that this configuration allows use of the same solder lands as the SMT chips. See the Stacked Switch-Mode section for larger values. See also the Technical Notes on soldering and handling and suggested solder lands.

FEATURES

- High Capacitance, Small Size
- Low ESR/ESL
- Leadframe reduces thermal & mechanical stress due to board flexure and TCE mismatch

APPLICATIONS

- DC-DC Converters
- Power Supply Input & Output Filters

SIZE	EIA CHIP		NP0 Ma	ax Capacita	ance (uF)		X7R Max Capacitance (uF)							
CODE	SIZE	25V	50V	100V	200V	500V	25V	50V	100V	200V	500V			
P09	1825	0.056	0.047	0.039	0.027	0.018	1.5	1.2	0.75	0.56	0.27			
P29	1825	0.11	0.094	0.078	0.054	0.036	3.0	2.4	1.5	1.1	0.54			
P39	1825	0.16	0.14	0.11	0.081	0.054	4.5	3.6	2.2	1.6	0.81			
P49	1825	0.22	0.18	0.15	0.10	0.07	6.0	4.8	3.0	2.2	1.0			
P08	2225	0.068	0.056	0.047	0.033	0.027	2.7	2.2	1.5	1.2	0.39			
P28	2225	0.13	0.11	0.094	0.066	0.054	5.4	4.4	3.0	2.4	0.78			
P38	2225	0.20	0.16	0.14	0.10	0.081	8.1	6.6	4.5	3.6	1.1			
P48	2225	0.27	0.22	0.18	0.13	0.10	10	8.8	6.0	4.8	1.5			

CAPACITANCE SELECTION

MINI-SWITCH-MODE® CAPACITORS

DIMENSIONS APPLICABLE TO ALL SIZES:								W		_		W	<u>ل</u>			W		
	IN.	MM		W			T		\geq		T				Ť			
H ± .010	.070	1.78	T T		E CU				-	1 D			귀문	1 D	h		귀비	
C TYP.	.100	2.54			21		- Te				1 i				†e			
P ± .015	.065	1.65		L	r≈p.»				p, 1, 0	0			p ~ c)			r ₽	С
DIME	INSION	S	P	08	P)9	P	28	P	29	P	38	P	39	P	48	P	49
TO SPE	LICABLI CIFIC SI	= ZES:	IN.	MM	IN.	MM	IN.	MM	IN.	MM	IN.	MM	IN.	MM	IN.	MM	IN.	MM
L	MAX		.280	7.11	0.24	6.1	0.28	7.11	0.24	6.1	0.28	7.11	0.24	6.1	0.28	7.11	0.24	6.1
W MAX		.270	6.86	0.27	6.86	0.27	6.86	0.27	6.86	0.27	6.86	0.27	6.86	0.27	6.86	0.27	6.86	
T MAX		.095	2.41	0.095	2.41	0.19	4.83	0.19	4.83	0.285	7.24	0.285	7.24	0.38	9.65	0.38	9.65	

CASE SIZE

Note: J-Lead and L-Lead options are available on all sizes above

ELECTRICAL CHARACTERISTICS

DIELECTRIC:	NP0	X7R
TEMPERATURE COEFFICIENT:	0 ±30ppm/°C (-55 to +125°C)	±15% (-55 to +125°C)
DISSIPATION FACTOR:	0.1% max.	2.5% max.
AGING:	None	-2.5% per decade hour
INSULATION RESISTANCE (MIN. @ 25°C, WVDC)	1000 ΩF or 100 $G\Omega,$ whichever is less	500 ΩF or 50 G $\Omega,$ whichever is less
DIELECTRIC STRENGTH:	For 500V Ratings: 750VDC, 25°C, 50mA m For 200V Ratings: 2xWVDC, 25°C, 50mA For 25-100V Ratings: 2.5xWVDC, 25°C,	nax A max 50mA max
TEST CONDITIONS:	1kHz ±50Hz;1	.0±0.2 VRMS
OTHER:	See page 78 for additiona	al dielectric specifications.

How to Order - MINI SWITCHMODE®

Part number written: 500P28W395KJ4U

