: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

1N5719, 1N5767, 5082-3001, 5082-3039,
 5082-3077, 5082-3080/81,5082-3188, 5082-3379

Data Sheet

Description/Applications

These general purpose switching diodes are intended for low power switching applications such as RF duplexers, antenna switching matrices, digital phase shifters, and time multiplex filters. The 5082-3188 is optimized for VHF/UHF bandswitching.

The RF resistance of a PIN diode is a function of the current flowing in the diode. These current controlled resistors are specified for use in control applications such as variable RF attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF limiters.

Outline 15 diodes are available on tape and reel. The tape and reel specification is patterned after RS-296-D.
Maximum RatingsJunction Operating andStorage Temperature Range$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation $25^{\circ} \mathrm{C}$ 250 mW
(Derate linearly to zero at $150^{\circ} \mathrm{C}$)
Peak Inverse Voltage (PIV)

\qquad
same as V_{BR} Maximum Soldering Temperature $260^{\circ} \mathrm{C}$ for 5 sec

Features

- Low Harmonic Distortion
- Large Dynamic Range
- Low Series Resistance
- Low Capacitance

Outline 15

DIMENSIONS IN MILLIMETERS AND (INCHES)

Mechanical Specifications

The Avago Outline 15 package has a glass hermetic seal with dumet leads. The lead finish is 95-5 tin-lead (SnPb) for all PIN diodes. The leads on the Outline 15 package should be restricted sothat the bendstarts at least $1 / 16$ inch (1.6 mm)
from the glass body. Typical package inductance and capacitance are 2.5 nH and 0.13 pF , respectively. Marking is by digital coding with a cathode band.

General Purpose Diodes

Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Part Number $\mathbf{5 0 8 2 -}$	Maximum Total Capacitance $\mathbf{C}_{\mathrm{T}}(\mathbf{p F})$	Minimum Breakdown Voltage $\mathbf{V}_{\mathrm{BR}}(\mathbf{V})$	Maximum Residual Series Resistance $\mathbf{R}_{\mathrm{s}}(\Omega)$	Effective Carrier Lifetime $\tau(\mathbf{n s})$	Reverse Recovery Time \mathbf{t}_{m} (ns)
General Purpose Switching and Attenuating 3001		0.25	200	1.0	100 (min.)

Notes:

Typical CW power switching capability for a shunt switch in a 50Ω system is 2.5 W .

RF Current Controlled Resistor Diodes

Electrical Specifications at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Part Number	Effective Carrier Lifetime τ (ns)	Min. Breakdown Voltage $V_{B R}(V)$	Max. Residual Series Resistance $\mathrm{R}_{5}(\Omega)$	Max. Total Capacitance $C_{T}(\mathrm{pF})$	High Resistance Limit, $\mathrm{R}_{\mathrm{H}}(\Omega)$		Low Resistance Limit, $\mathbf{R}_{\mathbf{L}}(\Omega)$		Max. Difference in Resistance vs. Bias Slope, Dc
					Min.	Max.	Min.	Max.	
5082-3080	1300 (typ.)	100	2.5	0.4	1000			8**	
1N5767*	1300 (typ.)	100	2.5	0.4	1000			8**	
5082-3379	1300 (typ.)	50		0.4				8**	
5082-3081	2500 (typ.)	100	3.5	0.4	1500			8**	
Test Conditions	$\begin{gathered} I_{F}=50 \mathrm{~mA} \\ I_{R}=250 \mathrm{~mA} \end{gathered}$	$V_{R}=V_{B R^{\prime}}$ Measure $\mathrm{I}_{\mathrm{R}} \leq 10 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$	$\begin{gathered} V_{R}=50 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & I_{F}=0 . \\ & f=10 \end{aligned}$	$\begin{aligned} & 1 \mathrm{~mA} \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & I_{F}=1 . \\ & I_{F}=20 \\ & f=10 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~mA} \\ & \mathrm{~mA} \mathrm{~A}^{* *} \\ & \mathrm{MHz} \end{aligned}$	Batch Matched at $\mathrm{I}_{\mathrm{F}}=0.01 \mathrm{~mA}$ and 1.0 mA $\mathrm{f}=100 \mathrm{MHz}$

*The 1 N5767 has the additional specifications: $\tau=1.0 \mathrm{msec}$ minimum
$\mathrm{I}_{\mathrm{R}}=1 \mu \mathrm{~A}$ maximum at $\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{F}}=1 \mathrm{~V}$ maximum at $\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$.

Typical Parameters at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }}$ (unless otherwise noted)

Figure 1. Forward Current vs. Forward Voltage.

Figure 4. Typical Capacitance vs. Reverse Voltage.

Figure 7. Typical Second Order Intermodulation Distortion.

Figure 2. Typical RF Resistance vs. Forward Bias Current.

Figure 5. Typical Capacitance vs. Reverse Voltage.

Figure 8. Typical Cross Intermodulation Distortion.

Figure 3. Typical RF Resistance vs. Forward Bias Current.

Figure 6. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages.

Diode Package Marking

1N5xxx 5082-xxxx
would be marked:

1 Nx	xx
$x x x$	$x x$
YWW	YWW

where xxxx are the last four digits of the 1Nxxxx or the 5082-xxxx part number. Y is the last digit of the calendar year. WW is the work week of manufacture.

Examples of diodes manufactured during workweek 45 of 1999:

1N5712	$5082-3080$
would be marked:	
1N5	30
712	80
945	945

Part Number Ordering Information

Part Number	No. of devices	Container
5082-3xxx\#T25/1N57xx\#T25	2500	Tape \& Reel
5082-3xxx\#T50/ 1N57xx\#T50	5000	Tape \& Reel
5082-3xxx/ 1N57xx	100	Antistatic bag

