

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Notice for TAIYO YUDEN Products

Please read this notice before using the TAIYO YUDEN products.

/!\ REMINDERS

Product information in this catalog is as of October 2017. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

- Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available.
- Please conduct validation and verification of our products in actual condition of mounting and operating environment before using our products.
- The products listed in this catalog are intended for use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and medical equipment classified as Class I or II by IMDRF. Please be sure to contact TAIYO YUDEN for further information before using the products for any equipment which may directly cause loss of human life or bodily injury (e.g., transportation equipment including, without limitation, automotive powertrain control system, train control system, and ship control system, traffic signal equipment, disaster prevention equipment, medical equipment classified as Class III by IMDRF, highly public information network equipment including, without limitation, telephone exchange, and base station).

Please do not incorporate our products into any equipment requiring high levels of safety and/or reliability (e.g., aerospace equipment, aviation equipment*, medical equipment classified as Class IV by IMDRF, nuclear control equipment, undersea equipment, military equipment).

*Note: There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.

When our products are used even for high safety and/or reliability-required devices or circuits of general electronic equipment, it is strongly recommended to perform a thorough safety evaluation prior to use of our products and to install a protection circuit as necessary.

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

- Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.
- Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a fault or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement.
- The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.
- Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

MULTILAYER CERAMIC CAPACITORS

WAVE

REFLOW

■PARTS NUMBER

J	М	Κ	3	1	6	Δ	В	J	1	0	6	М	L	_	Т	Δ
1	2	3		4		(5)	(6		7		8	9	10	11)	12

△=Blank space

3 D	
1)Rated	voltag

Code	Rated voltage[VDC]
Р	2.5
Α	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

3End terminatio	n
Code	

Code	End termination
K	Plated
S	Cu Internal Electrodes

4 Dimension (L × W)

O		
Туре	Dimensions (L×W)[mm]	EIA(inch)
021	0.25 × 0.125	008004
042	0.4 × 0.2	01005
063	0.6 × 0.3	0201
105	1.0 × 0.5	0402
105	0.52 × 1.0 ※	0204
107	1.6 × 0.8	0603
107	0.8 × 1.6 ※	0306
010	2.0 × 1.25	0805
212	1.25 × 2.0 💥	0508
316	3.2 × 1.6	1206
325	3.2 × 2.5	1210
432	4.5 × 3.2	1812
	/	

②Series name

E COLICO HAITIC	
Code	Series name
М	Multilayer ceramic capacitor
V	Multilayer ceramic capacitor for high frequency
W	LW reverse type multilayer capacitor

⑤Dimension tolerance

Code	Туре	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3±0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
				0.45±0.05
Α	212	2.0+0.15/-0.05	1.25 + 0.15 / -0.05	0.85±0.10
				1.25+0.15/-0.05
	216	2.2.1.2.20	101000	0.85±0.10
	316	3.2±0.20	1.6±0.20	1.6±0.20
	325	3.2±0.30	2.5±0.30	2.5±0.30
	063	0.6±0.09	0.3±0.09	0.3±0.09
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	101000/	0.0.1.0.00/	0.45±0.05
В	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В				0.45±0.05
	212	2.0+0.20/-0	1.25 + 0.20 / -0	0.85±0.10
				1.25+0.20/-0
	316	3.2±0.30	1.6±0.30	1.6±0.30
С	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0

Note: cf. STANDARD EXTERNAL DIMENSIONS

∆= Blank space

6Temperature characteristics code

■ High dielectric type (Excluding Super low distortion multilayer ceramic capacitor)

Code	Applicable standard		Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code	
	110	JIS B		-25~+ 85	20	±10%	±10%	K
BJ	010		-25 ~ + 85	20	± 10%	±20%	М	
БО	EIA	X5R	−55 ~ + 85	25	±15%	±10%	K	
		IA NJIN	-557-4-65		± 13%	±20%	М	
B7	EIA	X7R	-55~+125	25	±15%	±10%	K	
	Ľί	A/IN	33.4 1 123	25	±1370	±20%	М	
C6	EIA	X6S	-55~+105	25	±22%	±10%	K	
	LIA	703	-55/	20	1 22 %	±20%	М	
C7	EIA	X7S	-55~+125	25	±22%	±10%	K	
07	LIA	A/3	-55/-4 125	25	1 22 90	±20%	М	
1.0(\\)	F1.4	VED	FF. 1 0F	0.5	1.150/	±10%	K	
LD(※)	EIA :	EIA X5R	₹ -55~+ 85	25	±15%	±20%	М	

Note : %.LD Low distortion high value multilayer ceramic capacitor

 Δ = Blank space

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

■Temperature compensating type

Code	Applicable standard		Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
						±0.05pF	Α
						±0.1pF	В
CG	EIA	COG	−55∼+125	25	0±30ppm/°C	±0.25pF	С
						±0.5pF	D
						±5%	J
	JIS	UJ		20		±0.25pF	С
UJ	JIS	00	−55∼+125	20	$-750 \pm 120 \text{ppm/}^{\circ}\text{C}$	±0.5pF	D
	EIA	U2J		25		±5%	J
UK	JIS	UK	−55∼ +125	20	-750±250ppm/°C	±0.25pF	С
UK	EIA	U2K	-55 ~ +125	25	—/30±230ppm/ C	±0.25pr	C
SL	JIS	SL	-55~+125	20	+350~-1000ppm/°C	±5%	J

6Series code

·Super low distortion multilayer ceramic capacitor

_							
Ī	Code	Series code					
	SD	Standard					

• Medium-High Voltage Multilayer Ceramic Capacitor

Code	Series code
SD	Standard

7 Nominal capacitance

Code (example)	Nominal capacitance
0R5	0.5pF
010	1pF
100	10pF
101	100pF
102	1,000pF
103	10,000pF
104	0.1 <i>μ</i> F
105	1.0 <i>μ</i> F
106	10 <i>μ</i> F
107	100 μ F
N . D . D .	1

Note: R=Decimal point

8 Capacitance tolerance

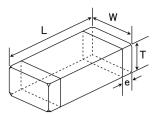
Code	Capacitance tolerance
Α	±0.05pF
В	±0.1pF
С	±0.25pF
D	±0.5pF
F	±1pF
G	±2%
J	±5%
K	±10%
М	±20%
Z	+80/-20%

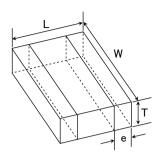
Thickness

Code	Thickness[mm]
K	0.125
Н	0.13
E	0.18
С	0.2
D	0.2
Р	0.3
Т	0.3
K	0.45(107type or more)
V	0.5
W	0.5
Α	0.8
D	0.85(212type or more)
F	1.15
G	1.25
L	1.6
N	1.9
Υ	2.0 max
М	2.5

®Special code

Code	Special code
_	Standard


11)Packaging


Code	Packaging						
F	ϕ 178mm Taping (2mm pitch)						
Т	φ178mm Taping (4mm pitch)						
Р	φ178mm Taping (4mm pitch, 1000 pcs/reel)						
Р	325 type (Thickness code M)						
0	ϕ 178mm Taping (2mm pitch)105type only						
R	(Thickness code E,H)						
W	\$\phi\$178mm Taping(1mm pitch)021/042type only						

12Internal code

Code	Internal code
Δ	Standard

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

LW reverse type

T (FIA)	Dimension [mm]									
Type(EIA)	L	W	Т	*1	е					
□MK021 (008004)	0.25±0.013	0.125±0.013	0.125±0.013	K	0.0675±0.0275					
□VS021 (008004)	0.25±0.013	0.125±0.013	0.125±0.013	K	0.0675±0.0275					
□MK042(01005)	0.4±0.02	0.2±0.02	0.2±0.02	С	0.1±0.03					
				D						
□VS042(01005)	0.4 ± 0.02	0.2±0.02	0.2±0.02	С	0.1±0.03					
□MK063(0201)	0.6±0.03	0.3±0.03	0.3±0.03	P	0.15±0.05					
				Т						
			0.13±0.02	Н						
			0.18±0.02	Е						
□MK105(0402)	1.0±0.05	0.5 ± 0.05	0.2±0.02	С	0.25±0.10					
			0.3 ± 0.03	Р						
			0.5 ± 0.05	V						
□VK105(0402)	1.0±0.05	0.5±0.05	0.5±0.05	W	0.25±0.10					
□WK105(0204)※	0.52±0.05	1.0±0.05	0.3±0.05	Р	0.18±0.08					
DM(107/0000)	1.0.1.0.10	0.8±0.10	0.45±0.05	K	0.05 0.05					
□MK107(0603)	1.6±0.10	0.8±0.10	0.8±0.10	Α	0.35±0.25					
□WK107(0306)※	0.8±0.10	1.6±0.10	0.5±0.05	٧	0.25±0.15					
			0.45±0.05	K						
□MK212(0805)	2.0±0.10	1.25±0.10	0.85±0.10	D	0.5±0.25					
			1.25±0.10	G						
□WK212(0508)※	1.25±0.15	2.0±0.15	0.85±0.10	D	0.3±0.2					
			0.85±0.10	D						
□MK316(1206)	3.2 ± 0.15	1.6±0.15	1.15±0.10	F	0.5+0.35/-0.25					
			1.6±0.20	L						
			0.85±0.10	D						
			1.15±0.10	F	0.6±0.3					
□MK325(1210)	3.2 ± 0.30	2.5±0.20	1.9±0.20	N						
			1.9+0.1/-0.2	Υ						
			2.5±0.20	М	1					
□MK432(1812)	4.5±0.40	3.2±0.30	2.5±0.20	М	0.9±0.6					

Note: X. LW reverse type, *1.Thickness code

■STANDARD QUANTITY

Т	EIA (inch)	Dime	nsion	Standard qu	uantity[pcs]	
Туре	EIA (Inch)	[mm]	Code	Paper tape	Embossed tape	
021	008004	0.125	K	_	50000	
042	01005	0.2	С		40000	
042	01005	0.2	D		40000	
063	0201	0.2	Р	15000	_	
003	0201	0.3	Т	13000	_	
		0.13	Н		20000	
		0.18	E	_	15000	
	0402	0.2	С	20000	_	
105	0402	0.3	Р	15000	_	
		0.5	V			
		0.5	W	10000	_	
	0204 ※	0.30	Р			
	0603	0.45	K	4000		
107	0003	0.8	Α	4000	_	
	0306 ※	0.50	V	_	4000	
		0.45	K	4000		
010	0805	0.85	D	4000	_	
212		1.25	0.3 P 15000 0.13 H — 0.18 E — 0.2 C 20000 0.3 P 15000 0.5 W 10000 0.30 P 10000 0.45 K 4000 0.8 A 4000 0.45 K 4000 0.80 V — 0.45 K 4000	_	3000	
	0508 ※	0.85	D		-	
		0.85	D	4000	-	
316	1206	1.15	F	_	3000	
		1.6	L	_	2000	
		0.85	D			
		1.15	F		2000	
325	1210	1.9	N] _	2000	
		2.0 max	Υ			
		2.5	М	_	1000	
432	1812	2.5	М	_	500	

 $\mathsf{Note}: \ \ \, \&.\mathsf{LW} \ \, \mathsf{Reverse} \ \, \mathsf{type}(\ \, \square \mathsf{WK})$

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Multilayer Ceramic Capacitors for High Frequency Applications (1GHz+)

021TYPE

[Temperature Characteristic CG : CG/C0G] 0.125mm thickness(K)

Temperature Charac	cteristic CG : CG/C	0G】 0.125m	ım thick	ness(K))					
Part number 1	Part number 2	Rated voltage [V]	Tempe charact		Capacitance [F]	Capacitance tolerance	Q (at 1GHz) (min)	HTLT Rated voltage x %	Thickness*3 [mm]	Soldering R:Reflow W:Wave
TVS021 CG0R2[K-W			CG	C0G	0.2 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG0R3[K-W			CG	COG	0.3 p	± 0.05 pF, ± 0.1 pF, ± 0.25 pF	260	200	0.125±0.013	R
TVS021 CG0R4[K-W			CG	COG	0.4 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG0R5[K-W			CG	COG	0.5 p	± 0.05 pF, ± 0.1 pF, ± 0.25 pF	260	200	0.125±0.013	R
TVS021 CG0R6 K-W			CG	C0G	0.6 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG0R7 K-W			CG	COG	0.7 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CGR75 K-W			CG	C0G C0G	0.75 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG0R8[K-W TVS021 CG0R9[K-W		-	CG	COG	0.8 p 0.9 p	±0.05pF, ±0.1pF, ±0.25pF	260 260	200 200	0.125±0.013 0.125±0.013	R R
TVS021 CG010[K-W		1	CG	COG	0.9 p	±0.05pF, ±0.1pF, ±0.25pF ±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG010 K W			CG	COG	1.1 p	±0.05pF, ±0.1pF, ±0.25pF	260	200	0.125±0.013	R
TVS021 CG1R2[K-W			CG	COG	1.1 p	±0.05pF, ±0.1pF, ±0.25pF	250	200	0.125±0.013	R
TVS021 CG1R3[K-W		1	CG	COG	1.3 p	±0.05pF, ±0.1pF, ±0.25pF	230	200	0.125±0.013	R
TVS021 CG1R4[K-W			CG	COG	1.4 p	±0.05pF, ±0.1pF, ±0.25pF	220	200	0.125±0.013	R
TVS021 CG1R5[K-W			CG	COG	1.5 p	±0.05pF, ±0.1pF, ±0.25pF	210	200	0.125±0.013	R
TVS021 CG1R6∏K-W			CG	COG	1.6 p	±0.05pF, ±0.1pF, ±0.25pF	190	200	0.125±0.013	R
TVS021 CG1R7[K-W			CG	COG	1.7 p	±0.05pF, ±0.1pF, ±0.25pF	190	200	0.125±0.013	R
TVS021 CG1R8[K-W			CG	COG	1.8 p	±0.05pF, ±0.1pF, ±0.25pF	180	200	0.125±0.013	R
TVS021 CG1R9[K-W			CG	C0G	1.9 p	± 0.05 pF, ± 0.1 pF, ± 0.25 pF	170	200	0.125±0.013	R
TVS021 CG020∏K-W			CG	COG	2 p	±0.05pF, ±0.1pF, ±0.25pF	160	200	0.125±0.013	R
TVS021 CG2R1 K-W			CG	C0G	2.1 p	± 0.05 pF, ± 0.1 pF, ± 0.25 pF	160	200	0.125±0.013	R
TVS021 CG2R2[K-W			CG	C0G	2.2 p	±0.05pF, ±0.1pF, ±0.25pF	150	200	0.125±0.013	R
TVS021 CG2R3 K-W		4 l	CG	C0G	2.3 p	±0.05pF, ±0.1pF, ±0.25pF	150	200	0.125±0.013	R
TVS021 CG2R4 K-W		- I	CG	C0G	2.4 p	±0.05pF, ±0.1pF, ±0.25pF	140	200	0.125±0.013	R
TVS021 CG2R5 K-W		25	CG	C0G	2.5 p	±0.05pF, ±0.1pF, ±0.25pF	140	200 200	0.125±0.013 0.125±0.013	R
TVS021 CG2R6[K-W TVS021 CG2R7[K-W		20	CG	C0G C0G	2.6 p 2.7 p	±0.05pF, ±0.1pF, ±0.25pF ±0.05pF, ±0.1pF, ±0.25pF	130 130	200	0.125±0.013 0.125±0.013	R R
TVS021 CG2R7[K-W		1	CG	COG	2.7 p 2.8 p	±0.05pF, ±0.1pF, ±0.25pF ±0.05pF, ±0.1pF, ±0.25pF	120	200	0.125±0.013 0.125±0.013	R
TVS021 CG2R8 K-W		1	CG	COG	2.8 p 2.9 p	±0.05pF, ±0.1pF, ±0.25pF ±0.05pF, ±0.1pF, ±0.25pF	120	200	0.125±0.013	R
TVS021 CG030 K-W			CG	COG	3 p	±0.1pF, ±0.25pF, ±0.5pF	120	200	0.125±0.013	R
TVS021 CG3R1[K-W			CG	COG	3.1 p	±0.1pF, ±0.25pF, ±0.5pF	110	200	0.125±0.013	R
TVS021 CG3R2∏K-W			CG	COG	3.2 p	±0.1pF, ±0.25pF, ±0.5pF	110	200	0.125±0.013	R
TVS021 CG3R3[K-W			CG	COG	3.3 p	±0.1pF, ±0.25pF, ±0.5pF	110	200	0.125±0.013	R
TVS021 CG3R4[K-W			CG	C0G	3.4 p	±0.1pF, ±0.25pF, ±0.5pF	110	200	0.125±0.013	R
TVS021 CG3R5[K-W			CG	COG	3.5 p	±0.1pF, ±0.25pF, ±0.5pF	100	200	0.125±0.013	R
TVS021 CG3R6∏K-W			CG	COG	3.6 p	±0.1pF, ±0.25pF, ±0.5pF	100	200	0.125±0.013	R
TVS021 CG3R7[K-W			CG	COG	3.7 p	±0.1pF, ±0.25pF, ±0.5pF	100	200	0.125±0.013	R
TVS021 CG3R8[K-W			CG	C0G	3.8 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	100	200	0.125±0.013	R
TVS021 CG3R9[K-W			CG	C0G	3.9 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	90	200	0.125±0.013	R
TVS021 CG040 K-W			CG	C0G	4 p	±0.1pF, ±0.25pF, ±0.5pF	90	200	0.125±0.013	R
TVS021 CG4R1∏K-W			CG	COG	4.1 p	±0.1pF, ±0.25pF, ±0.5pF	90	200	0.125±0.013	R
TVS021 CG4R2 K-W		-	CG	COG	4.2 p	±0.1pF, ±0.25pF, ±0.5pF	90 90	200 200	0.125±0.013	R R
TVS021 CG4R3[K-W TVS021 CG4R4[K-W			CG	C0G C0G	4.3 p 4.4 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	90	200	0.125±0.013 0.125±0.013	R
TVS021 CG4R5 K-W			CG	COG	4.4 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
TVS021 CG4R6 K-W			CG	COG	4.6 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
TVS021 CG4R7[K-W		1	CG	COG	4.7 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
TVS021 CG4R8[K-W			CG	COG	4.8 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
TVS021 CG4R9∏K-W			CG	COG	4.9 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
TVS021 CG050∏K-W			CG	C0G	5 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
TVS021 CG5R1[K-W			CG	COG	5.1 p	±0.1pF, ±0.25pF, ±0.5pF	80	200	0.125±0.013	R
EVS021 CG5R2[K-W			CG	COG	5.2 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG5R3[K-W			CG	C0G	5.3 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	70	200	0.125±0.013	R
EVS021 CG5R4[]K-W			CG	COG	5.4 p	$\pm 0.1 pF$, $\pm 0.25 pF$, $\pm 0.5 pF$	70	200	0.125±0.013	R
EVS021 CG5R5[K-W			CG	C0G	5.5 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG5R6[]K-W			CG	C0G	5.6 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG5R7 K-W			CG	COG	5.7 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG5R8∏K-W EVS021 CG5R9∏K-W		1	CG	C0G C0G	5.8 p 5.9 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	70 70	200 200	0.125±0.013 0.125±0.013	R R
EVS021 CG5R9[]K-W		1	CG	COG	5.9 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013 0.125±0.013	R
EVS021 CG060 K-W		1	CG	COG	6.1 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	70	200	0.125±0.013	R
EVS021 CG6R2∏K-W		†	CG	COG	6.2 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG6R3 K-W		1	CG	COG	6.3 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG6R4[K-W	İ	1	CG	COG	6.4 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG6R5∏K-W		1	CG	COG	6.5 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG6R6∏K-W]	CG	C0G	6.6 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG6R7∏K-W]	CG	C0G	6.7 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG6R8∏K-W		16	CG	C0G	6.8 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG6R9[K-W		'0	CG	C0G	6.9 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG070[K-W		1	CG	C0G	7 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R1 K-W		. I	CG	C0G	7.1 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R2 K-W		.	CG	COG	7.2 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R3 K-W		ļ.	CG	COG	7.3 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R4[K-W		- I	CG	COG	7.4 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R5[K-W		4 l	CG	COG	7.5 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R6[]K-W		-	CG	C0G	7.6 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.125±0.013	R
EVS021 CG7R7[K-W		-	CG	C0G	7.7 p	±0.1pF, ±0.25pF, ±0.5pF	50 50	200	0.125 ± 0.013	R
EVS021 CG7R8[]K-W EVS021 CG7R9[]K-W		 	CG	C0G C0G	7.8 p 7.9 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	50	200 200	0.125±0.013 0.125±0.013	R R
EVS021 CG/R9[]K-W		1	CG	COG	7.9 p 8 p	±0.1pF, ±0.25pF, ±0.5pF ±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013 0.125±0.013	R
EVS021 CG080 K-W		1	CG	COG	8.1 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG8R2 K-W		1	CG	COG	8.2 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG8R3[K-W		1	CG	COG	8.3 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG8R4[K-W		1	CG	COG	8.4 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG8R5□K-W		1	CG	COG	8.5 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
********	•									

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Part number 1	Part number 2	Rated voltage [V]		erature eristics	Capacitance [F]	Capacitance tolerance	Q (at 1GHz) (min)	HTLT Rated voltage x %	Thickness*3 [mm]	Soldering R:Reflow W:Wave
EVS021 CG8R6∏K-W			CG	COG	8.6 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG8R7[K-W			CG	COG	8.7 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG8R8[K-W			CG	COG	8.8 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG8R9[K-W			CG	COG	8.9 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	50	200	0.125 ± 0.013	R
EVS021 CG090∏K-W			CG	COG	9 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	50	200	0.125 ± 0.013	R
EVS021 CG9R1∏K-W			CG	COG	9.1 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	50	200	0.125 ± 0.013	R
EVS021 CG9R2[K-W			CG	COG	9.2 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	50	200	0.125 ± 0.013	R
EVS021 CG9R3[K-W		16	CG	COG	9.3 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	50	200	0.125 ± 0.013	R
EVS021 CG9R4[K-W			CG	COG	9.4 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG9R5[K-W			CG	COG	9.5 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG9R6[K-W			CG	COG	9.6 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG9R7[K-W			CG	COG	9.7 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.125±0.013	R
EVS021 CG9R8[K-W	•		CG	COG	9.8 p	±0.1pF, ±0.25pF, ±0.5pF	40	200	0.125±0.013	R
EVS021 CG9R9[K-W	•		CG	COG	9.9 p	±0.1pF, ±0.25pF, ±0.5pF	40	200	0.125±0.013	R
EVS021 CG100∏K-W			CG	COG	10 p	±2%, ±5%	50	200	0.125±0.013	R

●042TYPE

[Temperature Characteristic CG : CG/C0G] 0.2mm thickness(C)

Part number 1	Part number 2	Rated voltage [V]		erature teristics	Capacitance [F]	Capacitance tolerance	Q (at 1GHz) (min)	HTLT Rated voltage x %	Thickness*3 [mm]	Soldering R:Reflow W:Wave
TVS042 CG0R2[]C-W			CG	COG	0.2 p	± 0.05 pF, ± 0.1 pF, ± 0.25 pF	300	200	0.2±0.02	R
TVS042 CG0R3[]C-W			CG	C0G	0.3 p	± 0.05 pF, ± 0.1 pF, ± 0.25 pF	300	200	0.2 ± 0.02	R
TVS042 CG0R4[]C-W			CG	COG	0.4 p	± 0.05 pF, ± 0.1 pF, ± 0.25 pF	300	200	0.2 ± 0.02	R
TVS042 CG0R5[]C-W			CG	COG	0.5 p	± 0.05 pF, ± 0.1 pF, ± 0.25 pF	300	200	0.2 ± 0.02	R
TVS042 CG0R6[]C-W			CG	C0G	0.6 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2±0.02	R
TVS042 CG0R7[]C-W			CG	COG	0.7 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2 ± 0.02	R
TVS042 CGR75[]C-W			CG	COG	0.75 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2 ± 0.02	R
TVS042 CG0R8∏C-W			CG	COG	0.8 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2 ± 0.02	R
TVS042 CG0R9[]C-W			CG	COG	0.9 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2 ± 0.02	R
TVS042 CG010[]C-W			CG	COG	1 p	±0.05pF, ±0.1pF, ±0.25pF	300	200	0.2 ± 0.02	R
TVS042 CG1R1∏C-W			CG	COG	1.1 p	±0.05pF, ±0.1pF, ±0.25pF	280	200	0.2 ± 0.02	R
TVS042 CG1R2[]C-W			CG	C0G	1.2 p	±0.05pF, ±0.1pF, ±0.25pF	270	200	0.2 ± 0.02	R
TVS042 CG1R3[]C-W			CG	C0G	1.3 p	± 0.05 pF, ± 0.1 pF, ± 0.25 pF	260	200	0.2 ± 0.02	R
TVS042 CG1R4[]C-W			CG	COG	1.4 p	±0.05pF, ±0.1pF, ±0.25pF	250	200	0.2 ± 0.02	R
TVS042 CG1R5[]C-W			CG	COG	1.5 p	±0.05pF, ±0.1pF, ±0.25pF	240	200	0.2 ± 0.02	R
TVS042 CG1R6[]C-W			CG	COG	1.6 p	±0.05pF, ±0.1pF, ±0.25pF	230	200	0.2 ± 0.02	R
TVS042 CG1R7[]C-W			CG	COG	1.7 p	±0.05pF, ±0.1pF, ±0.25pF	220	200	0.2 ± 0.02	R
TVS042 CG1R8[]C-W			CG	COG	1.8 p	±0.05pF, ±0.1pF, ±0.25pF	210	200	0.2 ± 0.02	R
TVS042 CG1R9[]C-W]	CG	C0G	1.9 p	±0.05pF, ±0.1pF, ±0.25pF	200	200	0.2±0.02	R
TVS042 CG020[]C-W]	CG	C0G	2 p	±0.05pF, ±0.1pF, ±0.25pF	190	200	0.2±0.02	R
TVS042 CG2R1∏C-W]	CG	COG	2.1 p	±0.05pF, ±0.1pF, ±0.25pF	185	200	0.2±0.02	R
TVS042 CG2R2[]C-W		1 !	CG	COG	2.2 p	±0.05pF, ±0.1pF, ±0.25pF	180	200	0.2±0.02	R
TVS042 CG2R3[]C-W		1 !	CG	COG	2.3 p	±0.05pF, ±0.1pF, ±0.25pF	175	200	0.2±0.02	R
TVS042 CG2R4[]C-W		1	CG	COG	2.4 p	±0.05pF, ±0.1pF, ±0.25pF	170	200	0.2±0.02	R
TVS042 CG2R5[]C-W			CG	COG	2.5 p	±0.05pF, ±0.1pF, ±0.25pF	160	200	0.2±0.02	R
TVS042 CG2R6∏C-W			CG	COG	2.6 p	±0.05pF, ±0.1pF, ±0.25pF	155	200	0.2±0.02	R
TVS042 CG2R7[]C-W			CG	COG	2.7 p	±0.05pF, ±0.1pF, ±0.25pF	150	200	0.2±0.02	R
TVS042 CG2R8[]C-W			CG	COG	2.8 p	±0.05pF, ±0.1pF, ±0.25pF	140	200	0.2±0.02	R
TVS042 CG2R9[]C-W			CG	COG	2.9 p	±0.05pF, ±0.1pF, ±0.25pF	135	200	0.2±0.02	R
TVS042 CG030 C-W		1	CG	COG	3 p	±0.05pF, ±0.1pF, ±0.25pF	130	200	0.2±0.02	R
TVS042 CG3R1[]C-W		1	CG	COG	3.1 p	±0.1pF, ±0.25pF	125	200	0.2±0.02	R
TVS042 CG3R2[]C-W			CG	COG	3.2 p	±0.1pF, ±0.25pF	125	200	0.2±0.02	R
TVS042 CG3R3[]C-W			CG	COG	3.3 p	±0.1pF, ±0.25pF	120	200	0.2±0.02	R
TVS042 CG3R4∏C-W		25	CG	COG	3.4 p	±0.1pF, ±0.25pF	120	200	0.2±0.02	R
TVS042 CG3R5[]C-W		- 20	CG	COG	3.5 p	±0.1pF, ±0.25pF	110	200	0.2±0.02	R
TVS042 CG3R6[]C-W			CG	COG	3.6 p	±0.1pF, ±0.25pF	110	200	0.2±0.02	R
TVS042 CG3R0[]C W		1	CG	COG	3.0 p	±0.1pF, ±0.25pF	110	200	0.2±0.02	R
TVS042 CG3R7[]C-W		1	CG	COG	3.7 p	±0.1pF, ±0.25pF	100	200	0.2±0.02	R
TVS042 CG3R9[]C-W		1	CG	COG	3.0 p	±0.1pF, ±0.25pF ±0.1pF, ±0.25pF	100	200	0.2±0.02	R
TVS042 CG3R9[]C-W		1	CG	COG			90	200	0.2±0.02	R
		1	CG	COG	4 p	±0.1pF, ±0.25pF	90	200		R
TVS042 CG4R1 C-W			CG		4.1 p	±0.1pF, ±0.25pF	90 85		0.2±0.02	
TVS042 CG4R2[]C-W			CG	COG	4.2 p	±0.1pF, ±0.25pF		200	0.2±0.02	R
TVS042 CG4R3[]C-W				COG	4.3 p	±0.1pF, ±0.25pF	85	200	0.2±0.02	R
TVS042 CG4R4[]C-W			CG	COG	4.4 p	±0.1pF, ±0.25pF	85	200	0.2±0.02	R
TVS042 CG4R5[]C-W			CG	COG	4.5 p	±0.1pF, ±0.25pF	85	200	0.2±0.02	R
TVS042 CG4R6[]C-W		1	CG	COG	4.6 p	±0.1pF, ±0.25pF	85	200	0.2±0.02	R
TVS042 CG4R7[]C-W		4	CG	COG	4.7 p	±0.1pF, ±0.25pF	85	200	0.2±0.02	R
TVS042 CG4R8[]C-W		4	CG	C0G	4.8 p	±0.1pF, ±0.25pF	80	200	0.2±0.02	R
TVS042 CG4R9[]C-W		4	CG	COG	4.9 p	±0.1pF, ±0.25pF	80	200	0.2±0.02	R
TVS042 CG050 C-W		4	CG	C0G	5 p	±0.1pF, ±0.25pF	80	200	0.2±0.02	R
TVS042 CG5R1 C-W		1 1	CG	C0G	5.1 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	75	200	0.2±0.02	R
TVS042 CG5R2[]C-W		1	CG	C0G	5.2 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	75	200	0.2±0.02	R
TVS042 CG5R3[]C-W		1	CG	C0G	5.3 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	75	200	0.2 ± 0.02	R
TVS042 CG5R4[]C-W]	CG	C0G	5.4 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	70	200	0.2 ± 0.02	R
TVS042 CG5R5[]C-W]	CG	COG	5.5 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.2±0.02	R
TVS042 CG5R6∏C-W]	CG	C0G	5.6 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	70	200	0.2±0.02	R
TVS042 CG5R7[]C-W]	CG	C0G	5.7 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	70	200	0.2±0.02	R
TVS042 CG5R8[]C-W]	CG	COG	5.8 p	±0.1pF, ±0.25pF, ±0.5pF	70	200	0.2±0.02	R
TVS042 CG5R9∏C-W]	CG	C0G	5.9 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2±0.02	R
TVS042 CG060∏C-W]	CG	C0G	6 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2±0.02	R
TVS042 CG6R1[]C-W]	CG	C0G	6.1 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2±0.02	R
TVS042 CG6R2[]C-W		1 !	CG	COG	6.2 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2±0.02	R
TVS042 CG6R3[]C-W		1	CG	COG	6.3 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2±0.02	R
TVS042 CG6R4[]C-W		1 !	CG	COG	6.4 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2±0.02	R
TVS042 CG6R5[]C-W		1 !	CG	COG	6.5 p	±0.1pF, ±0.25pF, ±0.5pF	65	200	0.2±0.02	R
TVS042 CG6R6 C-W		1 !	CG	COG	6.6 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.2±0.02	R
TVS042 CG6R7[]C-W		1	CG	COG	6.7 p	±0.1pF, ±0.25pF, ±0.5pF	60	200	0.2±0.02	R

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

		Rated voltage	Tempe	erature	Capacitance		Q (at 1GHz)	HTLT	*2	Soldering
Part number 1	Part number 2	[V]		teristics	[F]			Rated voltage x %	Thickness*3 [mm]	R:Reflow W:Wave
VS042 CG6R8∏C-W			CG	C0G	6.8 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	60	200	0.2 ± 0.02	R
VS042 CG6R9∏C-W			CG	COG	6.9 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	60	200	0.2 ± 0.02	R
VS042 CG070∏C-W			CG	COG	7 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	60	200	0.2 ± 0.02	R
VS042 CG7R1∏C-W			CG	COG	7.1 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	60	200	0.2 ± 0.02	R
VS042 CG7R2[]C-W			CG	COG	7.2 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	60	200	0.2 ± 0.02	R
VS042 CG7R3∏C-W			CG	C0G	7.3 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	55	200	0.2 ± 0.02	R
VS042 CG7R4[]C-W			CG	COG	7.4 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	55	200	0.2 ± 0.02	R
VS042 CG7R5[]C-W			CG	COG	7.5 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	55	200	0.2 ± 0.02	R
VS042 CG7R6∏C-W			CG	C0G	7.6 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	55	200	0.2 ± 0.02	R
VS042 CG7R7∏C-W			CG	C0G	7.7 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	55	200	0.2 ± 0.02	R
VS042 CG7R8[]C-W			CG	C0G	7.8 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	55	200	0.2 ± 0.02	R
VS042 CG7R9∏C-W			CG	C0G	7.9 p	± 0.1 pF, ± 0.25 pF, ± 0.5 pF	55	200	0.2 ± 0.02	R
VS042 CG080∏C-W			CG	C0G	8 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2 ± 0.02	R
VS042 CG8R1∏C-W			CG	C0G	8.1 p	±0.1pF, ±0.25pF, ±0.5pF	55	200	0.2 ± 0.02	R
VS042 CG8R2∏C-W			CG	C0G	8.2 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2 ± 0.02	R
VS042 CG8R3∏C-W			CG	C0G	8.3 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2 ± 0.02	R
√S042 CG8R4∏C-W			CG	C0G	8.4 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2 ± 0.02	R
VS042 CG8R5∏C-W			CG	C0G	8.5 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2 ± 0.02	R
VS042 CG8R6∏C-W			CG	COG	8.6 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2 ± 0.02	R
VS042 CG8R7∏C-W		25	CG	COG	8.7 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2 ± 0.02	R
VS042 CG8R8∏C-W		25	CG	COG	8.8 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2 ± 0.02	R
VS042 CG8R9∏C-W			CG	COG	8.9 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2 ± 0.02	R
VS042 CG090∏C-W			CG	COG	9 p	±0.1pF, ±0.25pF, ±0.5pF	50	200	0.2 ± 0.02	R
VS042 CG9R1∏C-W			CG	COG	9.1 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
VS042 CG9R2∏C-W			CG	COG	9.2 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
VS042 CG9R3∏C-W			CG	COG	9.3 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
VS042 CG9R4∏C-W			CG	COG	9.4 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
VS042 CG9R5∏C-W			CG	COG	9.5 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
VS042 CG9R6∏C-W			CG	COG	9.6 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
VS042 CG9R7∏C-W			CG	COG	9.7 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
VS042 CG9R8∏C-W			CG	COG	9.8 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
VS042 CG9R9∏C-W			CG	COG	9.9 p	±0.1pF, ±0.25pF, ±0.5pF	45	200	0.2 ± 0.02	R
VS042 CG100∏C-W			CG	COG	10 p	±2%. ±5%	45	200	0.2±0.02	R
VS042 CG110JC-W			CG	COG	11 p	±5%	40	200	0.2±0.02	R
VS042 CG120JC-W		╡	CG	COG	12 p	±5%	40	200	0.2±0.02	R
VS042 CG130JC-W		╡	CG	COG	13 p	±5%	40	200	0.2±0.02	R
VS042 CG150JC-W		┥ !	CG	COG	15 p	±5%	40	200	0.2±0.02	R
VS042 CG160JC-W		┥ !	CG	COG	16 p	±5%	40	200	0.2±0.02	R
VS042 CG180JC-W		┥ !	CG	COG	18 p	±5%	40	200	0.2±0.02	R
VS042 CG220JC-W		┪	CG	COG	22 p	±5%	30	200	0.2±0.02	R

●105TYPE

[Temperature Characteristic CG : CG/C0G] 0.5mm thickness(W)

Part number 1	Part number 2	Rated voltage [V]	Tempe charact		Capacitance [F]	Capacitance tolerance	Q (at 1GHz) (min)	HTLT Rated voltage x %	Thickness*3 [mm]	Soldering R:Reflow W:Wave
EVK105 CG0R3BW-F			CG	COG	0.3 p	±0.1pF	300	200	0.5 ± 0.05	R
EVK105 CG0R4BW-F			CG	COG	0.4 p	±0.1pF	300	200	0.5 ± 0.05	R
EVK105 CG0R5BW-F			CG	COG	0.5 p	±0.1pF	300	200	0.5 ± 0.05	R
EVK105 CG0R6BW-F			CG	COG	0.6 p	±0.1pF	300	200	0.5 ± 0.05	R
EVK105 CG0R7BW-F			CG	COG	0.7 p	±0.1pF	300	200	0.5 ± 0.05	R
EVK105 CG0R8BW-F			CG	COG	0.8 p	±0.1pF	300	200	0.5 ± 0.05	R
EVK105 CG0R9BW-F			CG	COG	0.9 p	±0.1pF	300	200	0.5 ± 0.05	R
EVK105 CG010BW-F			CG	COG	1 p	±0.1pF	300	200	0.5±0.05	R
EVK105 CG1R1BW-F			CG	COG	1.1 p	±0.1pF	280	200	0.5 ± 0.05	R
EVK105 CG1R2BW-F			CG	COG	1.2 p	±0.1pF	270	200	0.5 ± 0.05	R
EVK105 CG1R3BW-F			CG	COG	1.3 p	±0.1pF	260	200	0.5 ± 0.05	R
EVK105 CG1R5BW-F			CG	COG	1.5 p	±0.1pF	240	200	0.5 ± 0.05	R
EVK105 CG1R6BW-F		16	CG	COG	1.6 p	±0.1pF	230	200	0.5 ± 0.05	R
EVK105 CG1R8BW-F			CG	COG	1.8 p	±0.1pF	210	200	0.5 ± 0.05	R
EVK105 CG020BW-F			CG	COG	2 p	±0.1pF	190	200	0.5 ± 0.05	R
EVK105 CG2R2JW-F			CG	COG	2.2 p	±5%	180	200	0.5 ± 0.05	R
EVK105 CG2R4JW-F			CG	C0G	2.4 p	±5%	170	200	0.5±0.05	R
EVK105 CG2R7JW-F			CG	COG	2.7 p	±5%	150	200	0.5±0.05	R
EVK105 CG030JW-F			CG	C0G	3 p	±5%	130	200	0.5±0.05	R
EVK105 CG3R3JW-F			CG	COG	3.3 p	±5%	120	200	0.5 ± 0.05	R
EVK105 CG3R6JW-F			CG	COG	3.6 p	±5%	110	200	0.5 ± 0.05	R
EVK105 CG3R9JW-F			CG	COG	3.9 p	±5%	99	200	0.5 ± 0.05	R
EVK105 CG4R3JW-F			CG	COG	4.3 p	±5%	84	200	0.5 ± 0.05	R
EVK105 CG4R7JW-F			CG	COG	4.7 p	±5%	84	200	0.5 ± 0.05	R
EVK105 CG5R1JW-F			CG	C0G	5.1 p	±5%	84	200	0.5±0.05	R

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

[Temperature Characteristic CG : CG/C0G] 0.5mm thickness(W)

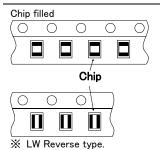
Part number 1	Part number 2	Rated voltage [V]	Tempe		Capacitance [F]	Capacitance tolerance	Q (at 1GHz)	HTLT Rated voltage x %	Thickness*3 [mm]	Soldering R:Reflow
		143					(111117)			W:Wave
UVK105 CG0R3BW-F			CG	COG	0.3 p	±0.1pF	300	200	0.5 ± 0.05	R
UVK105 CG0R4BW-F			CG	COG	0.4 p	±0.1pF	300	200	0.5±0.05	R
UVK105 CG0R5BW-F			CG	C0G	0.5 p	±0.1pF	300	200	0.5±0.05	R
UVK105 CG0R6BW-F			CG	C0G	0.6 p	±0.1pF	300	200	0.5±0.05	R
UVK105 CG0R7BW-F			CG	COG	0.7 p	±0.1pF	300	200	0.5 ± 0.05	R
UVK105 CG0R8BW-F			CG	COG	0.8 p	±0.1pF	300	200	0.5 ± 0.05	R
UVK105 CG0R9BW-F			CG	C0G	0.9 p	±0.1pF	300	200	0.5 ± 0.05	R
UVK105 CG010BW-F			CG	COG	1 p	±0.1pF	300	200	0.5 ± 0.05	R
UVK105 CG1R1BW-F			CG	COG	1.1 p	±0.1pF	280	200	0.5±0.05	R
UVK105 CG1R2BW-F			CG	COG	1.2 p	±0.1pF	270	200	0.5±0.05	R
UVK105 CG1R3BW-F			CG	COG	1.3 p	±0.1pF	260	200	0.5±0.05	R
UVK105 CG1R5BW-F			CG	COG	1.5 p	±0.1pF	240	200	0.5±0.05	R
UVK105 CG1R6BW-F		50	CG	COG	1.6 p	±0.1pF	230	200	0.5±0.05	R
UVK105 CG1R8BW-F			CG	COG	1.8 p	±0.1pF	210	200	0.5 ± 0.05	R
UVK105 CG020BW-F			CG	COG	2 p	±0.1pF	190	200	0.5 ± 0.05	R
UVK105 CG2R2JW-F			CG	COG	2.2 p	±5%	180	200	0.5 ± 0.05	R
UVK105 CG2R4JW-F			CG	COG	2.4 p	±5%	170	200	0.5 ± 0.05	R
UVK105 CG2R7JW-F			CG	COG	2.7 p	±5%	150	200	0.5 ± 0.05	R
UVK105 CG030JW-F			CG	COG	3 р	±5%	130	200	0.5±0.05	R
UVK105 CG3R3JW-F			CG	COG	3.3 p	±5%	120	200	0.5±0.05	R
UVK105 CG3R6JW-F			CG	COG	3.6 p	±5%	110	200	0.5±0.05	R
UVK105 CG3R9JW-F			CG	COG	3.9 p	±5%	99	200	0.5±0.05	R
UVK105 CG4R3JW-F			CG	COG	4.3 p	±5%	84	200	0.5±0.05	R
UVK105 CG4R7JW-F			CG	COG	4.7 p	±5%	84	200	0.5±0.05	R
UVK105 CG5R1JW-F			CG	C0G	5.1 p	±5%	84	200	0.5±0.05	R

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

Multilayer Ceramic Capacitors

■PACKAGING

1)Minimum Quantity


Taped package				
Type(EIA)	Thick	ness	Standard o	quantity [pcs]
Type(LIA)	mm	code	Paper tape	Embossed tape
☐MK021(008004)	0.125	K	_	50000
□VS021(008004)	0.123	K		30000
☐MK042(01005)	0.2	C, D	_	40000
□VS042(01005)	0.2	С		40000
☐MK063(0201)	0.3	P,T	15000	_
□WK105(0204) ※	0.3	Р	10000	_
	0.13	Н	_	20000
F144405(0400)	0.18	E	_	15000
☐MK105(0402)	0.2	С	20000	_
□MF105(0402)	0.3	Р	15000	_
	0.5	V	10000	_
□VK105(0402)	0.5	W	10000	_
□MK107(0603)	0.45	K	4000	_
□WK107(0306) ※	0.5	V	_	4000
□MF107(0603)	0.8	Α	4000	_
□VS107(0603)	0.7	С	4000	_
□MJ107(0603)	0.8	Α	3000	3000
□MK212(0805)	0.45	K	4000	
□WK212(0508) ※	0.85	D	4000	_
□MF212(0805)	1.25	G	_	3000
□VS212(0805)	0.85	D	4000	_
	0.85	D	4000	_
□MJ212(0805)	1.25	G	_	2000
	0.85	D	4000	_
□MK316(1206)	1.15	F	_	3000
□MF316(1206)	1.6	L	_	2000
	1.15	F	_	3000
□MJ316(1206)	1.6	L	_	2000
	0.85	D		
☐MK325(1210)	1.15	F	7	
	1.9	N	╡ –	2000
□MF325(1210)	2.0max.	Υ	7	
-	2.5	М	_	1000
	1.9	N	_	2000
				+
□MJ325(1210)	2.5	М	_	500(T), 1000(P)

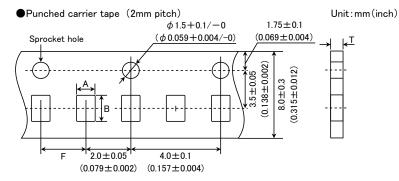
Note:

K LW Reverse type.

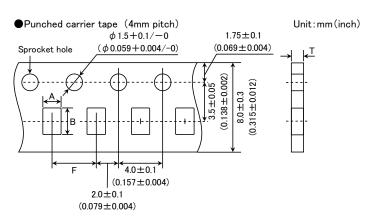
**No bottom tape for pressed carrier tape Card board carrier tape Top tape Base tape Sprocket hole Chip cavity Base tape Chip cavity

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

3 Representative taping dimensions


 (0.079 ± 0.002)

Paper Tape (8mm wide) Pressed carrier tape (2mm pitch) Unit: mm(inch) Sprocket hole $(\phi 0.059 + 0.004/-0)$ (0.069 ± 0.004)
Type(EIA)	Chip	Chip Cavity		Tape Th	nickness
Type(EIA)	Α	В	F	Т	T1
☐MK063(0201)	0.37	0.67		0.45max.	0.42max.
□WK105(0204) ※			2.0±0.05	0.45max.	0.42max.
□MK105(0402) (*1 C)	0.65	1.15	2.0 ± 0.05	0.4max.	0.3max.
□MK105(0402) (*1 P)				0.45max.	0.42max.


Note *1 Thickness, C:0.2mm ,P:0.3mm. * LW Reverse type.

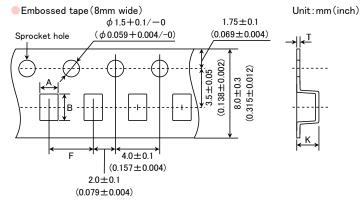
 (0.157 ± 0.004)

Unit:mm

Type(EIA)	Chip	Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	Α	В	F	Т
☐MK105 (0402)				
☐MF105 (0402)	0.65	1.15	2.0 ± 0.05	0.8max.
□VK105 (0402)				
	•			Unit:mm

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

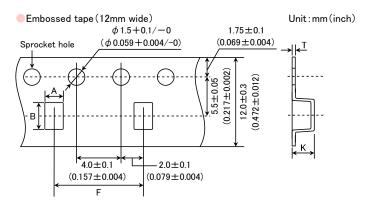
Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	Α	В	F	Т
☐MK107(0603)				
□WK107(0306) ※	1.0	1.8		1.1max.
☐MF107(0603)			40+01	
☐MK212(0805)	1.65	0.4	4.0±0.1	
□WK212(0508) ※	1.65	2.4		1.1max.
☐MK316(1206)	2.0	3.6		


Note: Taping size might be different depending on the size of the product. X LW Reverse type.

Unit:mm

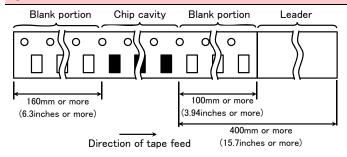
Embossed tape (4mm wide)			Unit:mm(inch)
	ϕ 0.8 \pm 0.04	0.9 ± 0.05	
Sprocket hole	$(\phi 0.031 \pm 0.002)$	(0.035 ± 0.002)	$\rightarrow \mathbb{I}^{\top}$
·	2.0±0.04 079±0.002)	(0.071±0.001) 4.0±0.05 (0.157±0.002)	K

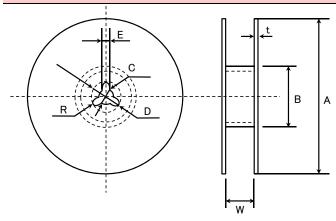
Type(EIA)	Chip Cavity		Insertion Pitch	Tape Ti	nickness
Type(EIA)	Α	В	F	K	Т
☐MK021(008004)	0.135	0.27			
□VS021(008004)	0.133	0.27	1.0±0.02	0.5max.	0.25max.
☐MK042(01005)	0.23	0.43	1.0 ± 0.02	o.omax.	0.25max.
□VS042(01005)	0.23	0.43			


Unit:mm

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Th	nickness
Type(EIA)	Α	В	F	K	Т
☐MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1
□WK107(0306) ※	1.0	1.8		1.3max.	0.25±0.1
☐MK212(0805) ☐MF212(0805)	1.65	2.4			
☐MK316(1206) ☐MF316(1206)	2.0	3.6	4.0±0.1	3.4max.	0.6max.
□MK325(1210) □MF325(1210)	2.8	3.6			

Note: ※ LW Reverse type. Unit:mm

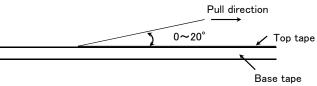

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).


Type(EIA)	Chip Cavity		Insertion Pitch	Tape Th	nickness
Type(EIA)	Α	В	F	K	Т
☐MK325(1210)	3.1	4.0	8.0±0.1	4.0max.	0.6max.
☐MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.

Unit:mm

4 Trailer and Leader

⑤Reel size


Α	В	С	D	Е	R
ϕ 178 ± 2.0	ϕ 50min.	ϕ 13.0 \pm 0.2	ϕ 21.0 ± 0.8	2.0±0.5	1.0

	Т	W
4mm wide tape	1.5max.	5±1.0
8mm wide tape	2.5max.	10±1.5
12mm wide tape	2.5max.	14±1.5

Unit:mm

6Top Tape Strength

The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Multilayer Ceramic Capacitors

■RELIABILITY DATA

	Temperature Range		T				
	Temperature	Standard	_55+0 -	L 125°C			
	Compensating(Class1)	High Frequency Type	−55 to +125°C				
				Specification	Temperature Range		
		BJ	В	−25 to +85°C			
Specified					−55 to +85°C		
Value	Hint Dameitti ita (Olasa)	`	B7	X7R	−55 to +125°C		
	High Permittivity (Class2)	C6	X6S	−55 to +105°C		
			C7	X7S	−55 to +125°C		
					−55 to +85°C		
		Note: >	KLD Low distortion hi	gh value multilayer ceramic ca			
2. Storage Co	Temperature	0: 1 1					
	•	Standard	−55 to +125°C				
	Compensating(Class1)	High Eugenranes Trees					
	Compensating(Class1)	High Frequency Type		T =			
	Compensating (Class1)	High Frequency Type		Specification	Temperature Range		
Specified	Compensating(Class1)	High Frequency Type	BJ	В	−25 to +85°C		
•	Compensating(Class1)	High Frequency Type		B X5R	-25 to +85°C -55 to +85°C		
•	Compensating (Class 1) High Permittivity (Class 2		B7	B X5R X7R	-25 to +85°C -55 to +85°C -55 to +125°C		
Specified Value			B7 C6	B X5R X7R X6S	-25 to +85°C -55 to +85°C -55 to +125°C -55 to +105°C		
•			B7 C6 C7	B X5R X7R X6S X7S	-25 to +85°C -55 to +85°C -55 to +125°C -55 to +105°C -55 to +125°C		
•			B7 C6 C7 LD(※)	B X5R X7R X6S X7S X5R	-25 to +85°C -55 to +85°C -55 to +125°C -55 to +105°C		
•			B7 C6 C7 LD(※)	B X5R X7R X6S X7S X5R	-25 to +85°C -55 to +85°C -55 to +125°C -55 to +105°C -55 to +125°C -55 to +85°C		
•	High Permittivity(Class2		B7 C6 C7 LD(※)	B X5R X7R X6S X7S X5R	-25 to +85°C -55 to +85°C -55 to +125°C -55 to +105°C -55 to +125°C -55 to +85°C		
Value 3. Rated Volt	High Permittivity(Class2		B7 C6 C7 LD(%) Note: %	B X5R X7R X6S X7S X5R	-25 to +85°C -55 to +85°C -55 to +125°C -55 to +105°C -55 to +125°C -55 to +85°C		
'alue	High Permittivity (Class2		B7 C6 C7 LD(%) Note: 3	B X5R X7R X6S X7S X5R KLD Low distortion hi	-25 to +85°C -55 to +85°C -55 to +125°C -55 to +105°C -55 to +125°C -55 to +85°C		

4. Withstanding	Voltage (Between terminal	s)					
Specified Value	Temperature	Standard					
	Compensating(Class1)	High F	requency Type	No breakdown o	No breakdown or damage		
Value	High Permittivity (Class2)						
T4			Cla	ıss 1	Class 2		
Test Methods and	Applied voltage	Rated v		Rated voltage × 3 Rated voltage × 2.5			
Remarks	Duration			1 to 5 sec.			
Remarks	Charge/discharge currer	nt		50mA	max.		

5. Insulation Re	5. Insulation Resistance						
	Temperature	Standard	10000 MΩmin.				
Specified	Compensating(Class1)	High Frequency Type	TOOOD MISS MIN.				
Value	High Permittivity (Class2)	Note 1	C ≤ 0.047 μ F : 10000 M Ω min. C > 0.047 μ F : 500M Ω • μ F				
Test	Applied voltage	: Rated voltage					
Methods and	Duration	: 60±5 sec.					
Remarks	Charge/discharge current	: 50mA max.					

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Capacitance (Tolerance)								
Specified	Temperature Compensating(Class1)	Standard	C U SL	0.2pF≦C≦5pF 0.2pF≦C≦10pF C>10pF	: ±0.25pF : ±0.5pF : ±5% or ±10%			
Value	Compensating (Class I)	High Frequency Type	CG	0.2pF≦C≦2pF C>2pF	: ±0.1pF : ±5%			
	High Permittivity (Class2)	±10%	or ±20%					
			Clas	ss 1	Cla	ass 2		
- .		Standar	Standard High Frequency Type		C≦10 <i>µ</i> F	C>10 µF		
Test	Preconditioning		None		Thermal treatment (at 150°C for 1hr) Note 2			
Methods and Remarks	Measuring frequency		1MHz±10%		1kHz±10%	120±10Hz		
Remarks	Measuring voltage Nte		0.5 to	5Vrms	1±0.2Vrms	0.5±0.1Vrms		
	Bias application				None			

Specified Value	Temperature		Standard $C < 30pF : Q \ge 400 + 20C$ $C \ge 30pF : Q \ge 1000$ (C:Noi			ominal capacitance)	
	Compensating(Class1)	High Frequency Type		Refer	to detailed specification		
	High Permittivity (Class2) Note 1			BJ, B	7, C6, C7:2.5% max.		
				Class 1		Class 2	
	St		Standard	Standard High Frequency Type		C≦10 <i>µ</i> F	C>10 µF
	Preconditioning			None		Thermal treatment (at	150°C for 1hr) Note 2
Test	Measuring frequency		1MHz±10%		1GHz	1kHz±10%	120±10Hz
Methods and	Measuring voltage Note 1			0.5 to 5Vrms 1±0.2Vrms 0.5±0.1Vrms			0.5±0.1Vrms
Remarks	Bias application			None			
	High Frequency Type						
	Measuring equipment	: HP	4291A				
	Measuring jig	: HP	16192A				

			Tem	Temperature Characteristic [ppm/°C] Tolerance [ppm/°C]				
			C□:	0	CG		G: ±30	
	Temperature	Standard	U□ :	— 750	UJ, UK		J:±120 K:±250	
	Compensating(Class1)		SL :	+350 to −100	00			
		High Engagean Type	Tem	perature Charac	cteristic [ppm/°	C] Tole	rance [ppm/°C]	
		High Frequency Type	C□:	0	CG		G: ±30	
Specified	·			Specification	Capacitance	Reference	Tomporatura Panga	
Value				Specification	change	temperature	Temperature Range	
			BJ	В	±10%	20°C	−25 to +85°C	
			BJ	X5R	±15%	25°C	−55 to +85°C	
	High Permittivity (Class2)		В7	X7R	±15%	25°C	−55 to +125°C	
			C6	XS	±22%	25°C	−55 to +105°C	
			C7	X7S	±22%	25°C	-55 to +125°C	
			LD(※)	X5R	±15%	25°C	-55 to +85°C	

 $\text{Capacitance at 20}^{\circ}\text{C} \text{ and } 85^{\circ}\text{C} \text{ shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the description of the calculated from the description of the calculated from the description of the description of the calculated from the description of the d$ following equation.

$$\frac{(C_{85}\!-\!C_{20})}{C_{20}\!\times\!\Delta T} \times 10^6 (ppm/^{\circ}\!C) \qquad \Delta T\!=\!65$$

Test Methods and Remarks

Capacitance at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

Step	В	X5R, X7R, X6S, X7S				
1	Minimum operating temperature					
2	20°C	25°C				
3	Maximum operating temperature					

 $(C-\underline{C_2})$ C : Capacitance in Step 1 or Step 3 × 100 (%) C₂ : Capacitance in Step 2

Finis catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

9. Deflection : No abnormality Appearance Standard : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger. Capacitance change Temperature ${\sf Compensating}({\sf Class1})$ Specified : No abnormality Appearance High Frequency Type Value Capacitance change : Within ± 0.5 pF Appearance : No abnormality High Permittivity (Class2) Capacitance change : Within ±12.5% Multilayer Ceramic Capacitors 021, 042, 063, *105 Type The other types Board Glass epoxy-resin substrate Test Thickness 0.8mm 1.6mm Methods and Warp 1mm Remarks 10 sec. Duration *105 Type thickness, C: 0.2mm ,P: 0.3mm. Capacitance measurement shall be conducted with the board bent

10. Body Stren	10. Body Strength						
	Temperature	Standard	1				
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.				
- Valido	High Permittivity (Class2))	1				
Test Methods and Remarks	High Frequency 105Type Applied force : 5N Duraton : 10 sec.	Pres Pres	R0.5 Pressing Jig Chip O.6A A				

11. Adhesive S	11. Adhesive Strength of Terminal Electrodes								
0 '5 '	Temperature	Standard							
Specified Value	Compensating(Class1) High Frequency Typ	e No terminal separat	No terminal separation or its indication.					
	High Permittivity (Class2)								
		Multilayer Cera	mic Capacitors	Hooked jig					
Test		021, 042, 063 Type	105 Type or more						
Methods and	Applied force	2N	5N	R=05 Doard					
Remarks	Duration	30±5	sec.] The Chip /					
				Chip Chip					

12. Solderability	/						
	Temperature	Standard					
Specified Value	Compensating(Class1)	High Frequency Type	At least 95% of terminal electrode is covered b		by new solder.		
Value	High Permittivity (Class2))					
- .		Eutectic so	older	Lead-free solder			
Test Methods and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu			
Remarks	Solder temperature	230±5°	С	245±3°C			
Remarks	Duration		4±1	sec.			
•	<u> </u>			<u> </u>			

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

3. Resistance	to Soldering				
Specified Value	Temperature	Standard	Appearance Capacitance change Q Insulation resistance Withstanding voltage	: No abnormality : Within ±2.5% or ±0 : Initial value : Initial value (between terminals)	0.25pF, whichever is larger. : No abnormality
	Compensating(Class	High Frequency Type	Appearance Capacitance change Q Insulation resistance Withstanding voltage	: No abnormality : Within ±2.5% : Initial value : Initial value (between terminals)	: No abnormality
	High Permittivity (Class2) Note 1		Appearance Capacitance change Dissipation factor Insulation resistance Withstanding voltage	: No abnormality : Within ±7.5% : Initial value : Initial value (between terminals)	: No abnormality
			Class 1		
		021, 042, 063 Type		105 Type	
	Preconditioning		None		
	Preheating	150°C, 1 to 2 min.		00°C, 2 to 5 min. 00°C, 2 to 5 min.	
	Solder temp.		270±5°C		
	Duration		3±0.5 sec.		
est	Recovery	6 to 24 hrs	(Standard condition)	Note 5	
Methods and Remarks				Class 2	
		021, 042, 063 Type	105,	107, 212 Type	316, 325, 432 Type
	Preconditioning		Thermal treatment	(at 150°C for 1 hr) No	ote 2
	Preheating	150°C, 1 to 2 min.		00°C, 2 to 5 min. 100°C, 2 to 5 min.	80 to 100°C, 5 to 10 min. 150 to 200°C, 5 to 10 min.
	Solder temp.			270±5°C	
	Duration		3	±0.5 sec.	
	Recovery		21+2 hrs (Sta	ndard condition) Note	5

14. Temperatur	re Cycle (Thermal Shock)				
	Temperature	Standard	Capacitance change : Wi Q : Ini Insulation resistance : Ini	No abnormality Within $\pm 2.5\%$ or ± 0.25 pF, whichever is larger. Initial value Initial value (between terminals): No abnormality	
Specified Value	Compensating(Class1)	High Frequency Type	Capacitance change : Wi Q : Ini Insulation resistance : Ini	o abnormality ithin ±0.25pF itial value itial value etween terminals): No	o abnormality
	High Permittivity (Class2) Note 1	Capacitance change : Wi Dissipation factor : Ini Insulation resistance : Ini	o abnormality thin ±7.5% itial value itial value itween terminals): No	o abnormality
		(Class 1		Class 2
	Preconditioning		None	Thermal treat	ment (at 150°C for 1 hr) Note 2
Test Methods and Remarks	1 cycle	Step 1 2 3 4	Temperature Minimum operating to Normal tempe Maximum operating Normal tempe	temperature erature temperature erature	Time (min.) 30±3 2 to 3 30±3 2 to 3
	Number of cycles	6 to 04 bus (Ct		imes	tandard condition) Note 5
	Recovery	o to 24 nrs (Star	ndard condition)Note 5	Z4±Z nrs (S	tandard condition)Note 5

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

15. Humidity (Steady State)					
Specified Value	Temperature Compensating(Class1)	Standard	Capacitance change Q	: Withir : C<1 10≦ C≧:	pronormality n $\pm 5\%$ or ± 0.5 pF, whichever is larger. 0pF: Q \geq 200+10C \leq C $<$ 30pF: Q \geq 275+2.5C 30pF:Q \geq 350(C:Nominal capacitance) M Ω min.	
		High Frequency Type	Capacitance change	ce change : Within ±0.5pF,		
	High Permittivity (Class2) Note 1		$ \begin{array}{llllllllllllllllllllllllllllllllllll$		in ±12.5% max.	
			ass 1		Class 2	
		Standard	High Frequency Type		All items	
Test	Preconditioning	N	lone		Thermal treatment (at 150°C for 1 hr) Note 2	
Methods and Remarks	Temperature	40±2°C	60±2°C		40±2°C	
	Humidity	90 to	95%RH		90 to 95%RH	
	Duration	500+2	24/-0 hrs		500+24/-0 hrs	
	Recovery	6 to 24 hrs (Stand	ard condition)Note 5		24±2 hrs (Standard condition) Note 5	

16. Humidity Lo	pading					
Specified Value	Temperature	Standard	Appearance Capacitance change Q Insulation resistance	: Wit : C < C≧	abnormality thin $\pm 7.5\%$ or ± 0.75 pF, whichever is larger. <30 pF: $Q \ge 100+10$ C/3 ≥ 30 pF: $Q \ge 200$ (C:Nominal capacitance) 0 M Ω min.	
	Compensating (Class1)	High Frequency Type	Appearance Capacitance change Insulation resistance	: C≦ C>	abnormality ≦2pF:Within ±0.4 pF >2pF:Within ±0.75 pF (C:Nominal capacitance) 0 MΩmin.	
	High Permittivity (Class2) Note 1		Appearance Capacitance change Dissipation factor Insulation resistance	: Wit : 5.0	abnormality thin $\pm 12.5\%$ max. M $\Omega\mu F$ or 500 M Ω whichever is smaller.	
					Class 2	
		Standard	High Frequency Ty	ре	All items	
	Preconditioning		None		Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3	
Test	Temperature	40±2°C	60±2°C		40±2°C	
Methods and	Humidity	90 t	to 95%RH		90 to 95%RH	
Remarks	Duration	500+	-24/-0 hrs		500+24/-0 hrs	
	Applied voltage	Rate	ed voltage		Rated voltage	
	Charge/discharge current	50r	mA max.		50mA max.	
	Recovery	6 to 24 hrs (Standard condition) Note 5			24±2 hrs(Standard condition) Note 5	

17. High Tempe	erature Loading					
	Temperature Compensating(Class1)	Standard	Appearance Capacitance change Q Insulation resistance	: $C < 10pF$: $Q \ge 200 + 10C$ $10 \le C < 30pF$: $Q \ge 275 + 2.5C$ $C \ge 30pF$: $Q \ge 350$ (C:Nominal capacitance)		
Specified Value		Appearance : No abnormality High Frequency Type Capacitance change : Within ±3% or ±0.3pF, whichever is larger. Insulation resistance : 1000 M Ω min.				
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance	: 5.0% max.		
		Class		Class 2		
		Standard H	High Frequency Type	BJ, LD(<u>*</u>) C6 B7, C7		
	Preconditioning	Nor	ne	Voltage treatment (Twice the rated voltage shall be applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4		
Test	Temperature	Maximum operating temperature		Maximum operating temperature		
Methods and	Duration	1000+48	/-0 hrs	1000 + 48 / -0 hrs		
Remarks	Applied voltage	Rated voltage	×2 Note 4	Rated voltage × 2 Note 4		
	Charge/discharge current	50mA	max.	50mA max.		
	Recovery	6 to 24hr (Standard	condition) Note 5	24±2 hrs(Standard condition)Note 5		
			Note:	: %LD Low distortion high value multilayer ceramic capacitor		

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

- Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150 \pm 0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.
- Note 3 Voltage treatment: Initial value shall be measured after test sample is voltage-treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.
- Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.
- Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.

Temperature: $20\pm2^{\circ}$ C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Precautions on the use of Multilayer Ceramic Capacitors

PRECAUTIONS

1. Circuit Design

- ◆Verification of operating environment, electrical rating and performance
- 1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.

Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.

Precautions

- ◆Operating Voltage (Verification of Rated voltage)
- 1. The operating voltage for capacitors must always be their rated voltage or less.
 - If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
 - For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
- 2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit.

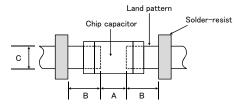
2. PCB Design

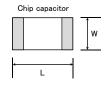
Precautions

- ◆Pattern configurations (Design of Land-patterns)
- 1. When capacitors are mounted on PCBs, the amount of solder used (size of fillet) can directly affect the capacitor performance. Therefore, the following items must be carefully considered in the design of land patterns:
 - (1) Excessive solder applied can cause mechanical stresses which lead to chip breaking or cracking. Therefore, please consider appropriate land-patterns for proper amount of solder.
 - (2) When more than one component are jointly soldered onto the same land, each component's soldering point shall be separated by solder-resist.
- ◆Pattern configurations (Capacitor layout on PCBs)

After capacitors are mounted on boards, they can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering of the boards, etc.). For this reason, land pattern configurations and positions of capacitors shall be carefully considered to minimize stresses.

◆Pattern configurations (Design of Land-patterns)


The following diagrams and tables show some examples of recommended land patterns to prevent excessive solder amounts.

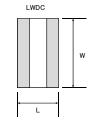

- (1) Recommended land dimensions for typical chip capacitors
- Multilayer Ceramic Capacitors : Recommended land dimensions (unit: mm)

Wave-soldering

эе	107	212	316	325
L	1.6	2.0	3.2	3.2
W	8.0	1.25	1.6	2.5
	0.8 to 1.0	1.0 to 1.4	1.8 to 2.5	1.8 to 2.5
	0.5 to 0.8	0.8 to 1.5	0.8 to 1.7	0.8 to 1.7
;	0.6 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5
	L	L 1.6 W 0.8 0.8 to 1.0 0.5 to 0.8	L 1.6 2.0 W 0.8 1.25 0.8 to 1.0 1.0 to 1.4 0.5 to 0.8 0.8 to 1.5	L 1.6 2.0 3.2 W 0.8 1.25 1.6 0.8 to 1.0 1.0 to 1.4 1.8 to 2.5 0.5 to 0.8 0.8 to 1.5 0.8 to 1.7

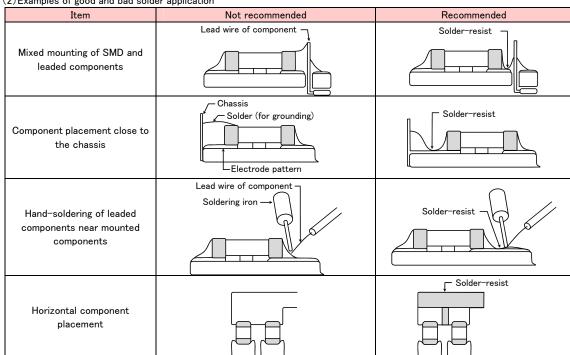
Land patterns for PCBs

Technical considerations


Reflow-soldering

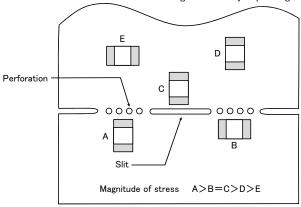
	5110 W	oldering								
Т	уре	021	042	063	105	107	212	316	325	432
Size	L	0.25	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
Size	W	0.125	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2
	Α	0.095~0.135	0.15~0.25	0.20~0.30	0.45~0.55	0.8~1.0	0.8~1.2	1.8~2.5	1.8~2.5	2.5~3.5
	В	0.085~0.125	0.15~0.20	0.20~0.30	0.40~0.50	0.6~0.8	0.8~1.2	1.0~1.5	1.0~1.5	1.5~1.8
	С	0.110~0.150	0.15~0.30	0.25~0.40	0.45~0.55	0.6~0.8	0.9~1.6	1.2~2.0	1.8~3.2	2.3~3.5

Note: Recommended land size might be different according to the allowance of the size of the product.


●LWDC: Recommended land dimensions for reflow-soldering (unit: mm)

· · · · · · · · · · · · · · · · · · ·						
Type		105	107	212		
C:-a L		0.52	0.8	1.25		
Size	W	1.0	1.6	2.0		
À		0.18~0.22	0.25~0.3	0.5~0.7		
В		0.2~0.25	0.3~0.4	0.4~0.5		
С		0.9~1.1	1.5~1.7	1.9~2.1		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

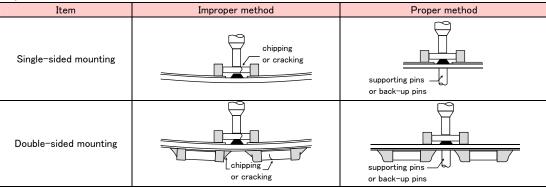

(2) Examples of good and bad solder application

- ◆Pattern configurations (Capacitor layout on PCBs)
 - 1-1. The following is examples of good and bad capacitor layouts; capacitors shall be located to minimize any possible mechanical stresses from board warp or deflection.

Items Not recommended		Recommended				
Deflection of board		Place the product at a right angle to the direction of the anticipated mechanical stress.				

1-2. The amount of mechanical stresses given will vary depending on capacitor layout. Please refer to diagram below.

1-3. When PCB is split, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, please consider the PCB, split methods as well as chip location.


3. Mounting

- ◆Adjustment of mounting machine
 - 1. When capacitors are mounted on PCB, excessive impact load shall not be imposed on them.
 - 2. Maintenance and inspection of mounting machines shall be conducted periodically.
- ◆Selection of Adhesives Precautions
 - 1. When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked: size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

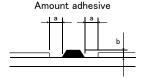
◆Adjustment of mounting machine

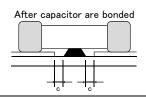
- 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable.
 - (1) The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection.
 - (2) The pressure of nozzle shall be adjusted between 1 and 3 N static loads.
 - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement:

Technical considerations

2. As the alignment pin is worn out, adjustment of the nozzle height can cause chipping or cracking of capacitors because of mechanical impact on the capacitors.

To avoid this, the monitoring of the width between the alignment pins in the stopped position, maintenance, check and replacement of the pin shall be conducted periodically.


◆Selection of Adhesives


Some adhesives may cause IR deterioration. The different shrinkage percentage of between the adhesive and the capacitors may result in stresses on the capacitors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect components. Therefore, the following precautions shall be noted in the application of adhesives.

- (1) Required adhesive characteristics
 - a. The adhesive shall be strong enough to hold parts on the board during the mounting & solder process.
 - b. The adhesive shall have sufficient strength at high temperatures.
 - c. The adhesive shall have good coating and thickness consistency.
 - d. The adhesive shall be used during its prescribed shelf life.
 - e. The adhesive shall harden rapidly.
 - f. The adhesive shall have corrosion resistance.
 - g. The adhesive shall have excellent insulation characteristics.
 - h. The adhesive shall have no emission of toxic gasses and no effect on the human body.
- (2) The recommended amount of adhesives is as follows;

[Recommended condition]

Figure	212/316 case sizes as examples
а	0.3mm min
b	100 to 120 μm
С	Adhesives shall not contact land

4. Soldering

Precautions

Technical

considerations

◆Selection of Flux

Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use;

- (1) Flux used shall be less than or equal to 0.1 wt%(in CI equivalent) of halogenated content. Flux having a strong acidity content shall not be applied.
- (2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level.
- (3) When water-soluble flux is used, special care shall be taken to properly clean the boards.

♦Soldering

Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions.

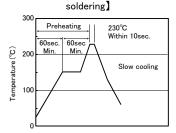
Sn-Zn solder paste can adversely affect MLCC reliability.

Please contact us prior to usage of Sn-Zn solder.

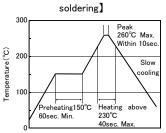
◆Selection of Flux

- 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors.
- 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
- 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.

For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

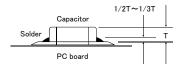

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification.

♦Soldering

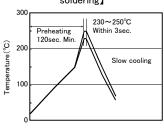

- · Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling.
- · Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal shock
- Preheating: Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 130°C.
- · Cooling: The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.

[Reflow soldering]

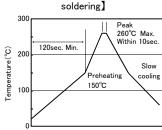
[Recommended conditions for eutectic



[Recommended condition for Pb-free

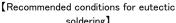

Caution

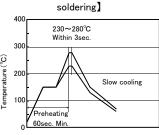
- 1The ideal condition is to have solder mass(fillet)controlled to 1/2 to 1/3 of the thickness of a capacitor.
- ②Because excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible. soldering for 2 times.



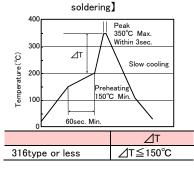
[Wave soldering]

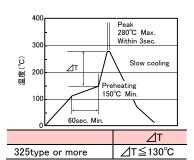
【Recommended conditions for eutectic soldering】


[Recommended condition for Pb-free



Caution


①Wave soldering must not be applied to capacitors designated as for reflow soldering only. soldering for 1 times.


[Hand soldering]

[Recommended condition for Pb-free

Caution

- ①Use a 50W soldering iron with a maximum tip diameter of 1.0 mm.
- 2The soldering iron shall not directly touch capacitors. soldering for 1 times.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

5. Cleaning Cleaning conditions 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use Precautions of the cleaning. (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics. 1. The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of Technical considerations capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked: 40 kHz or less Ultrasonic output: 20 W/Q or les Ultrasonic frequency: Ultrasonic washing period: 5 min. or less

6. Resin coating and mold

Precautions

- 1. With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the capacitor's performance.
- 2. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors.

1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board.

The use of such resins, molding materials etc. is not recommended.

7. Handling

♦Splitting of PCB

Precautions

2. Board separation shall not be done manually, but by using the appropriate devices.

◆Mechanical considerations

Be careful not to subject capacitors to excessive mechanical shocks.

- (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used.
- (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage conditions

♦Storage

- 1. To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible.
 - Recommended conditions

Precautions

Ambient temperature : Below 30°C Humidity : Below 70% RH

The ambient temperature must be kept below 40° C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery.

- ·Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air.
- 2. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1hour.

Technical considerations

If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.

**RCR-2335B(Safety Application Guide for fixed ceramic capacitors for use in electronic equipment) is published by JEITA.

Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).