imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

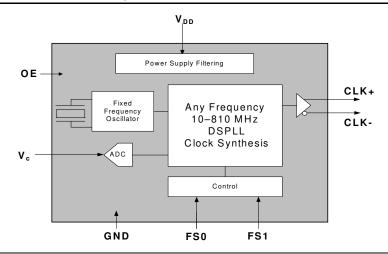
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

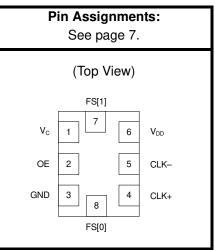
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Features

- Available with any-frequency output from 10 to 810 MHz
- 4 selectable output frequencies
- 3rd generation DSPLL[®] with superior iitter performance
- Internal fixed fundamental mode crystal frequency ensures high reliability and low aging
- Available CMOS, LVPECL, LVDS, and CML outputs
- 3.3, 2.5, and 1.8 V supply options
- Industry-standard 5 x 7 mm
- package and pinout Pb-free/RoHS-compliant
- -40 to +85 °C operating range


Applications

- SONET/SDH (OC-3/12/48) OTN
- Networking
- Clock recovery and jitter cleanup PLLs .
- SD/HD SDI/3G SDI video
- FPGA/ASIC clock generation


Description

The Si597 quad frequency VCXO utilizes Silicon Laboratories' advanced DSPLL[®] circuitry to provide a low-iitter clock for all output frequencies. The Si597 is available with one of four pin-selectable ouput frequencies from 10 to 810 MHz. Unlike traditional VCXOs, where a different crystal is required for each output frequency, the Si597 uses one fixed crystal to provide a wide range of output frequencies. This IC-based approach allows the crystal resonator to provide exceptional frequency stability and reliability. In addition, DSPLL clock synthesis provides supply noise rejection, simplifying the task of generating low-jitter clocks in noisy environments. The Si597 ICbased guad frequency VCXO is factory-configurable for a wide variety of user specifications including frequencies, supply voltage, output format, tuning slope, and absolute pull range (APR). Specific configurations are factory programmed at time of shipment, thereby eliminating the long lead times associated with custom oscillators.

Functional Block Diagram

Si597

TABLE OF CONTENTS

Section

<u>Page</u>

1. Electrical Specifications	
2. Pin Descriptions	
3. Ordering Information	
4. Outline Diagram and Suggested Pad Layout	
5. 8-Pin PCB Land Pattern	
6. Si597 Mark Specification	
Revision History	

1. Electrical Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supply Voltage ¹	V _{DD}	3.3 V option	2.97	3.3	3.63	V
		2.5 V option	2.25	2.5	2.75	V
		1.8 V option	1.71	1.8	1.89	V
Supply Current	I _{DD}	Output enabled				
		LVPECL	—	120	135	mA
		CML		110	120	mA
		LVDS		100	110	mA
		CMOS	_	90	100	mA
		Tristate mode		60	75	mA
Output Enable (OE) ² and		V _{IH}	$0.75 \times V_{DD}$			V
Frequency Select (FS[1:0])		V _{IL}	—		0.5	V
Operating Temperature Range	T _A		-40		85	°C
Notoo						

Notes:

1. Selectable parameter specified by part number. See 3. "Ordering Information" on page 8 for further details.

2. OE pin includes an internal 17 kΩ pullup resistor to V_{DD} for output enable active high or a 17 kΩ pull-down resistor to GND for output enable active low. See 3. "Ordering Information" on page 8. FS[1:0] includes internal 17 kΩ pull-up to VDD.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Control Voltage Tuning Slope ^{1,2,3}	K _V	10 to 90% of V _{DD}		45		ppm/V
				95	—	
			—	125	—	
				185	—	
			—	380	—	
Control Voltage Linearity ⁴	L _{VC}	BSL	-5	±1	+5	%
		Incremental	-10	±5	+10	%
Modulation Bandwidth	BW		9.3	10.0	10.7	kHz
V _C Input Impedance	Z _{VC}		500	—	—	kΩ
V _C Input Capacitance	C _{VC}		—	50	—	pF
Nominal Control Voltage	V _{CNOM}	@ f _O	_	V _{DD} /2	_	V
Control Voltage Tuning Range	V _C		0	—	V _{DD}	V

Notes:

1. Positive slope; selectable option by part number. See 3. "Ordering Information" on page 8.

For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.

3. K_V variation is ±10% of typical values.

BSL determined from deviation from best straight line fit with V_C ranging from 10 to 90% of V_{DD}. Incremental slope determined with V_C ranging from 10 to 90% of V_{DD}.

Table 3. CLK± Output Frequency Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Nominal Frequency ^{1,2,3}	f _O	LVDS/CML/LVPECL	10		810	MHz
		CMOS	10	_	160	MHz
Temperature Stability ^{1,4}		$T_{A} = -40 \text{ to } +85 \ ^{\circ}\text{C}$	-20 -50	_	+20 +50	ppm ppm
Absolute Pull Range ^{1,4}	APR	V _{DD} = 3.3 V	±15		±370	ppm
Power up Time ⁵	t _{osc}		—	—	10	ms

Notes:

1. See Section 3. "Ordering Information" on page 8 for further details.

2. Specified at time of order by part number.

3. Nominal output frequency set by $V_{CNOM} = V_{DD}/2$.

4. Selectable parameter specified by part number. See "Ordering Information".

5. Time from power up or tristate mode to f_O.

Table 4. CLK± Output Levels and Symmetry

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
LVPECL Output Option ¹	Vo	mid-level	V _{DD} – 1.42	_	V _{DD} – 1.25	V
	V _{OD}	$ \begin{array}{c c c c c c c c c c } & mid-level & V_{DD} - 1.42 \\ \hline & swing (diff) & 1.1 \\ \hline & swing (single-ended) & 0.55 \\ \hline & mid-level & 1.125 \\ \hline & swing (diff) & 0.5 \\ \hline & 2.5/3.3 V option mid-level & \\ \hline & 1.8 V option mid-level & \\ \hline & 1.8 V option swing (diff) & 1.10 \\ \hline & 1.8 V option swing (diff) & 0.35 \\ \hline & H & 0.8 \times V_{DD} \\ \hline & $		1.9	V_{PP}	
	V _{SE}	swing (single-ended)	0.55		0.95	V_{PP}
LVDS Output Option ²	V _O	mid-level	1.125	1.20	1.275	V
	V _{OD}	swing (diff)	0.5	0.7	0.9	V_{PP}
CML Output Option ²	V _O	2.5/3.3 V option mid-level	—	$V_{DD} - 1.30$		V
		1.8 V option mid-level	—	$V_{DD} - 0.36$	—	V_{PP}
	V _{OD}	2.5/3.3 V option swing (diff)	1.10	1.50	1.90	V
		1.8 V option swing (diff)	0.35	0.425	0.50	V_{PP}
CMOS Output Option ³	V _{OH}		0.8 x V _{DD}	_	V _{DD}	V
	V _{OL}		—	_	0.4	V
Rise/Fall time (20/80%)	t _{R,} t _F	LVPECL/LVDS/CML	—	_	350	ps
		CMOS with $C_L = 15 \text{ pF}$	—	2	—	ns
Symmetry (duty cycle)	SYM	LVPECL: V _{DD} - 1.3 V (diff) LVDS: 1.25 V (diff) CMOS: V _{DD} /2	45	_	55	%

lotes

1. 50 Ω to V_{DD} – 2.0 V. **2.** R_{term} = 100 Ω (differential). **3.** C_L = 15 pF. Sinking or sourcing 12 mA for V_{DD} = 3.3 V, 6 mA for V_{DD} = 2.5 V, 3 mA for V_{DD} = 1.8 V.

Table 5. CLK± Output Phase Jitter

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Phase Jitter (RMS) ^{1,2} for F_{OUT} of 50 MHz $\leq F_{OUT} \leq$	фј	Kv = 45 ppm/V 12 kHz to 20 MHz	—	0.5	_	ps
810 MHz		Kv = 95 ppm/V 12 kHz to 20 MHz	—	0.5	_	ps
		Kv = 125 ppm/V 12 kHz to 20 MHz	—	0.5	_	ps
		Kv = 185 ppm/V 12 kHz to 20 MHz	—	0.5	_	ps
		Kv = 380 ppm/V 12 kHz to 20 MHz	—	0.7	_	ps

Notes:

1. Differential Modes: LVPECL/LVDS/CML. Refer to AN256 and AN266 for further information.

2. For best jitter and phase noise performance, always choose the smallest K_V that meets the application's minimum APR requirements. See "AN266: VCXO Tuning Slope (K_V), Stability, and Absolute Pull Range (APR)" for more information.

Table 6. CLK± Output Period Jitter

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit		
Period Jitter*	J _{PER}	RMS		3	_	ps		
		Peak-to-Peak		35	_	ps		
*Note: Any output mode, including CMOS, LVPECL, LVDS, CML. N = 1000 cycles. Refer to AN279 for further information.								

Table 7. CLK± Output Phase Noise (Typical)

Offset Frequency	74.25 MHz 185 ppm/V LVPECL	148.5 MHz 185 ppm/V LVPECL	155.52 MHz 95 ppm/V LVPECL	Unit
100 Hz	-77	-68	-77	dBc/Hz
1 kHz	-101	-95	-101	dBc/Hz
10 kHz	-121	-116	-119	dBc/Hz
100 kHz	-134	-128	-127	dBc/Hz
1 MHz	-149	-144	-144	dBc/Hz
10 MHz	-151	-147	-147	dBc/Hz
20 MHz	–150	-148	-148	dBc/Hz

Table 8. Environmental Compliance and Package Information

Parameter	Conditions/Test Method
Mechanical Shock	MIL-STD-883, Method 2002
Mechanical Vibration	MIL-STD-883, Method 2007
Solderability	MIL-STD-883, Method 2003
Gross and Fine Leak	MIL-STD-883, Method 1014
Resistance to Solder Heat	MIL-STD-883, Method 2036
Moisture Sensitivity Level	J-STD-020, MSL1
Contact Pads	Gold over Nickel

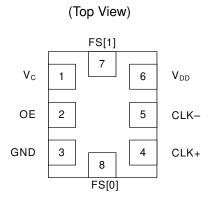
Table 9. Thermal Characteristics

(Typical values TA = 25 $^{\rm o}C, \, V_{DD}$ = 3.3 V)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Thermal Resistance Junction to Ambient	θ_{JA}	Still Air	—	84.6	_	°C/W
Thermal Resistance Junction to Case	θ_{JC}	Still Air	—	38.8	_	°C/W
Ambient Temperature	Τ _Α		-40	_	85	°C
Junction Temperature	Т _Ј		_	_	125	°C

Table 10. Absolute Maximum Ratings¹

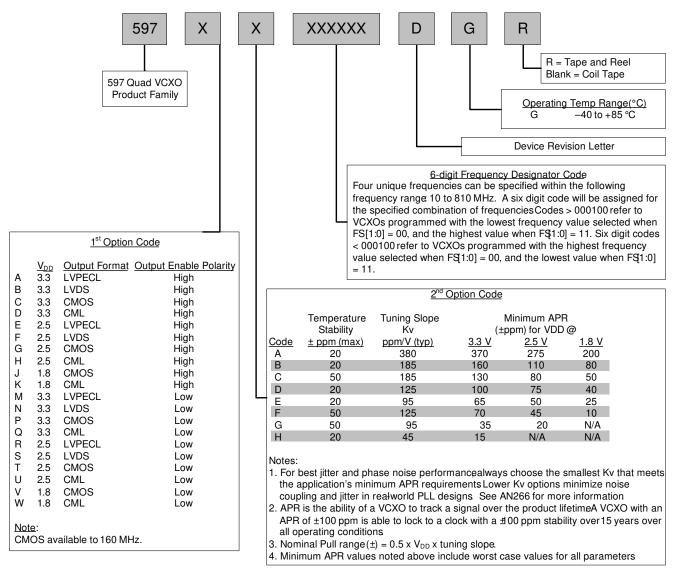
Parameter	Symbol	Rating	Unit
Maximum Operating Temperature	T _{AMAX}	85	₀C
Supply Voltage, 1.8 V Option	V _{DD}	-0.5 to +1.9	V
Supply Voltage, 2.5/3.3 V Option	V _{DD}	-0.5 to +3.8	V
Input Voltage (any input pin)	VI	-0.5 to V _{DD} + 0.3	V
Storage Temperature	Τ _S	-55 to +125	°C
ESD Sensitivity (HBM, per JESD22-A114)	ESD	2000	V
Soldering Temperature (Pb-free profile) ²	T _{PEAK}	260	₀C
Soldering Temperature Time @ T _{PEAK} (Pb-free profile) ²	t _P	20–40	seconds


Notes:

1. Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.

2. The device is compliant with JEDEC J-STD-020C. Refer to Si5xx Packaging FAQ available for download at www.silabs.com/VCXO for further information, including soldering profiles.

2. Pin Descriptions



Pin	Name	Туре	Function
1	V _C	Analog Input	Control Voltage
2	OE*	Input	Output Enable
3	GND	Ground	Electrical and Case Ground
4	CLK+	Output	Oscillator Output
5	CLK– (N/C for CMOS)	Output	Complementary Output (N/C for CMOS, do not make external connection)
6	V _{DD}	Power	Power Supply Voltage
7	FS[1]	Input	Frequency select. Internal 17 k\Omega pull-up to V_{DD} .
8	FS[0]	Input	Frequency select. Internal 17 k Ω pull-up to V _{DD} .
*Note: OE pin includes a 17 k Ω resistor to V _{DD} for OE active high option or 17 k Ω to GND for OE active low option. See 3. "Ordering Information" on page 8.			

3. Ordering Information

The Si597 supports a variety of options including frequency, temperature stability, tuning slope, output format, and V_{DD} . Specific device configurations are programmed into the Si597 at time of shipment. Configurations are specified using the Part Number Configuration chart shown below. Silicon Labs provides a web browser-based part number configuration utility to simplify this process. Refer to www.silabs.com/VCXOPartNumber to access this tool and for further ordering instructions. The Si597 VCXO series is supplied in an industry-standard, RoHS compliant, lead-free, 8-pad, 5 x 7 mm package. Tape and reel packaging is an ordering option.

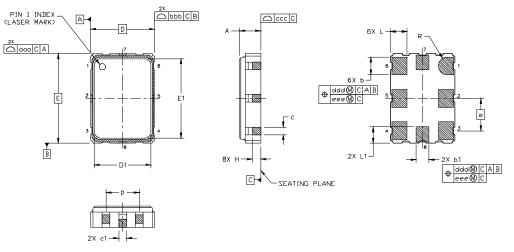


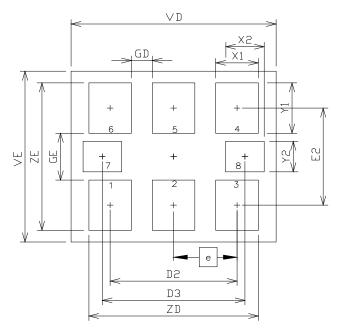
Figure 1. Part Number Convention

4. Outline Diagram and Suggested Pad Layout

Figure 2 illustrates the package details for the Si598/Si599. Table 12 lists the values for the dimensions shown in the illustration.

Figure 2. Si597 Outline Diagram

Table 12. Package Diagram Dimensions (mm)


Dimension	Min	Nom	Мах
А	1.50	1.65	1.80
b	1.30	1.40	1.50
b1	0.90	1.00	1.10
С	0.50	0.60	0.70
c1	0.30	—	0.60
D	5.00 BSC		
D1	4.30 4.40 4.50		
е	2.54 BSC		
E	7.00 BSC		
E1	6.10	6.20	6.30
Н	0.55	0.65	0.75
L	1.17	1.27	1.37
L1	1.07	1.17	1.27
р	1.80	_	2.60
R	0.70 REF		
aaa	— — 0.15		
bbb	— — 0.15		0.15
CCC		—	0.10
ddd		—	0.10
eee		—	0.05
Note: 1. All dimensions shown are in millimeters (mm) unless otherwise noted.			

All differencies shown are in minimeters (mm) differences ofference
 Dimensioning and Tolerancing per ANSI Y14.5M-1994.

5. 8-Pin PCB Land Pattern

Figure 3 illustrates the 8-pin PCB land pattern for the Si597. Table 13 lists the values for the dimensions shown in the illustration.

Table 13. PCB Land Pattern Dimensions (mm)

Dimension	Min	Max
D2	5.08 REF	
D3	5.705 REF	
е	2.54 BSC	
E2	4.20 REF	
GD	0.84	—
GE	2.00	—
VD	8.20 REF	
VE	7.30 REF	
X1	1.70 TYP	
X2	1.545 TYP	
Y1	2.15 REF	
Y2	1.3 REF	
ZD	—	6.78
ZE	—	6.30
Note: 1. Dimensioni	ng and tolerancing per the A	NSI Y14.5M-1994

- Dimensioning and tolerancing per the ANSI Y14.5M-1994 specification.
- 2. Land pattern design follows IPC-7351 guidelines.
- 3. All dimensions shown are at maximum material condition (MMC).
- 4. Controlling dimension is in millimeters (mm).

6. Si597 Mark Specification

Figure 4 illustrates the mark specification for the Si597. Table 14 lists the line information.

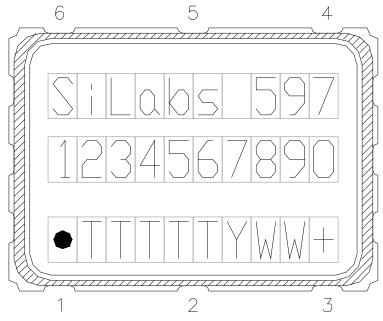


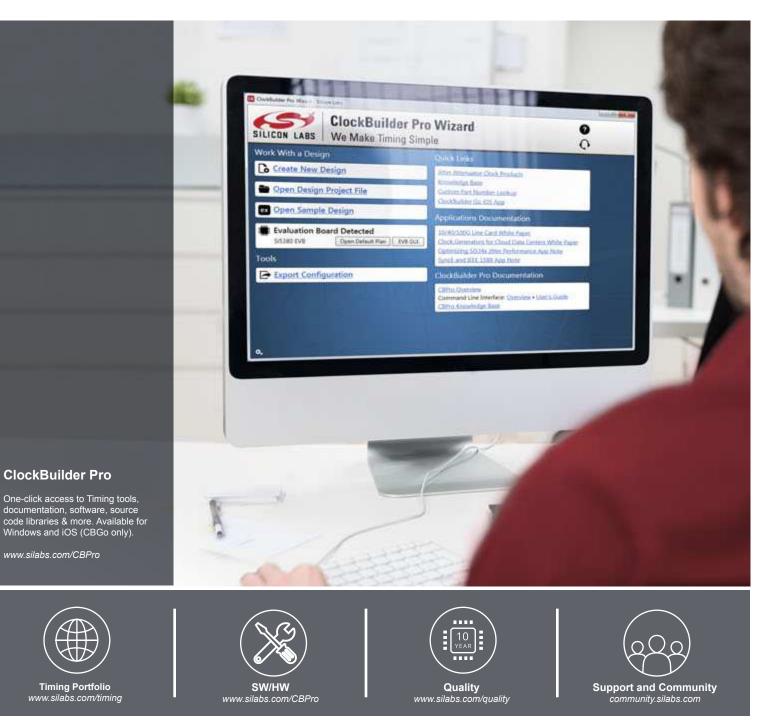
Figure 4. Mark Specification

Table 14. Si5xx Top Mark Description

Line	Position	Description
1	1–10	"SiLabs"+ Part Family Number, 597 (First 3 characters in part number)
2	1–10	Si597: Option1+Option2+Freq(6)+Temp
3	Trace Code	
	Position 1	Pin 1 orientation mark (dot)
	Position 2	Product Revision (D)
	Position 3–6	Tiny Trace Code (4 alphanumeric characters per assembly release instructions)
	Position 7	Year (least significant year digit), to be assigned by assembly site (ex: 2009 = 9)
	Position 8–9	Calendar Work Week number (1–53), to be assigned by assembly site
	Position 10	"+" to indicate Pb-Free and RoHS-compliant

REVISION HISTORY

Revision 1.1


June, 2018

• Changed "Trays" to "Coil Tape" in 3. "Ordering Information" on page 8.

Revision 1.0

- Changed frequency range to 10 to 810 MHz.
- Changed output frequencies in Description section on page 1.
- Updated functional block diagram on page 1.
- Corrected the mechanical drawing's pinout to match the device on page 1.
- Deleted frequency information from Note 2 in Table 3 on page 3.
- Changed CML output option table specs in Table 4 on page 3.
- Added Table 9 on page 6.
- Updated Figure 2 on page 9.
- Corrected marking information in Figure 4 on page 11.

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, EZRadio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

http://www.silabs.com