Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # 2.5V Differential 1:5 Clock Buffer Terabuffer™ DATA SHEET ## **FEATURES:** - Guaranteed Low Skew < 60ps (max) - Very low duty cycle distortion < 300ps (max) - High speed propagation delay < 2ns (max) - · Up to 250MHz operation - Very low CMOS power levels - Hot insertable and over-voltage tolerant inputs - · 3-level inputs for selectable interface - Selectable HSTL, eHSTL, 1.8V / 2.5V LVTTL, or LVEPECL input interface - · Selectable differential or single-ended inputs and five differential outputs - 2.5V VDD - Available in TSSOP package ## **APPLICATIONS:** · Clock and signal distribution ## **DESCRIPTION:** The 5T915 2.5V differential (DDR) clock buffer is a user-selectable single-ended or differential input to five differential outputs built on advanced metal CMOS technology. The differential clock buffer fanout from a single or differential input to five differential or single-ended outputs reduces loading on the preceding driver and provides an efficient clock distribution network. The 5T915 can act as a translator from a differential HSTL, eHSTL, 1.8V/2.5V LVTTL, LVEPECL, or single-ended 1.8V/2.5V LVTTL input to HSTL, eHSTL, 1.8V/2.5V LVTTL outputs. Selectable interface is controlled by 3-level input signals that may be hard-wired to appropriate high-mid-low levels. The 5T915 true or complementary outputs can be asynchronously enabled/disabled. Multiple power and grounds reduce noise. ## **FUNCTIONAL BLOCK DIAGRAM** 1 ## PIN CONFIGURATION TSSOP TOP VIEW ## ABSOLUTE MAXIMUM RATINGS(1) | Symbol | Description | Max | Unit | |--------|-----------------------|-------------------|------| | VDD | Power Supply Voltage® | -0.5 to +3.6 | V | | VDDQ | Output Power Supply® | -0.5 to +3.6 | V | | Vı | Input Voltage | -0.5 to +3.6 | V | | Vo | Output Voltage® | -0.5 to VDDQ +0.5 | V | | VREF | Reference Voltage | -0.5 to +3.6 | V | | Tstg | Storage Temperature | -65 to +165 | °C | | TJ | Junction Temperature | 150 | °C | #### NOTES: - Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. - 2. VDDQ and VDD internally operate independently. No power sequencing requirements need to be met. - 3. Not to exceed 3.6V. # **CAPACITANCE**(1,2) (TA = +25°C, F = 1.0MHz) | Symbol | Parameter | Min | Typ. | Max. | Unit | |--------|-------------------|-----|------|------|------| | CIN | Input Capacitance | _ | 3.5 | _ | pF | #### NOTES: - 1. This parameter is measured at characterization but not tested. - 2. Capacitance applies to all inputs except RxS and TxS. ## RECOMMENDED OPERATING RANGE | Symbol | Description | Min. | Tvp. | Max. | Unit | |-----------------|----------------------------------------------------------|------|--------|------|------| | TA | Ambient Operating Temperature | -40 | +25 | +85 | °C | | $V_{DD^{(1)}}$ | Internal Power Supply Voltage | 2.4 | 2.5 | 2.6 | V | | | HSTL Output Power Supply Voltage | 1.4 | 1.5 | 1.6 | V | | $V_{DDQ^{(1)}}$ | Extended HSTL and 1.8V LVTTL Output Power Supply Voltage | 1.65 | 1.8 | 1.95 | V | | | 2.5V LVTTL Output Power Supply Voltage | | VDD | | V | | VT | Termination Voltage | | VDDQ/2 | | V | ^{1.} All power supplies should operate in tandem. If VDD or VDDQ is at maximum, then VDDQ or VDD (respectively) should be at maximum, and vice-versa. ## PIN DESCRIPTION | Symbol | I/O | Type | Description | |-------------|-----|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | A | | Adjustable ⁽¹⁾ | Clock input. A is the "true" side of the differential clock input. If operating in single-ended mode, A is the clock input. | | Ā/Vref | I | Adjustable ⁽¹⁾ | Complementary clock input. \overline{A}/V_{REF} is the "complementary" side of A if the input is in differential mode. If operating in single-ended mode, \overline{A}/V_{REF} is connected to GND. For single-ended operation in differential mode, \overline{A}/V_{REF} should be set to the desired toggle voltage for A: | | | | | 2.5V LVTTL VREF = 1250mV | | | | | 1.8V LVTTL, eHSTL VREF = 900mV | | | | | HSTL VREF = 750mV | | | | | LVEPECL VREF = 1082mV | | <u>G(+)</u> | I | LVTTL ⁽⁵⁾ | Gate control for "true", Qn, outputs. When $\overline{G(+)}$ is LOW, the "true" outputs are enabled. When $\overline{G(+)}$ is HIGH, the "true" outputs are asynchronously disabled to the level designated by $GL^{(4)}$. | | <u>G(-)</u> | Ι | LVTTL ⁽⁵⁾ | Gate control for "complementary", \overline{Qn} , outputs. When $\overline{G(-)}$ is LOW, the "complementary" outputs are enabled. When $\overline{G(-)}$ is HIGH, the "complementary" outputs are asynchronously disabled to the opposite level as $GL^{(4)}$. | | GL | Ι | LVTTL ⁽⁵⁾ | Specifies output disable level. If HIGH, "true" outputs disable HIGH and "complementary" outputs disable LOW. If LOW, "true" outputs disable LOW and "complementary" outputs disable HIGH. | | Qn | 0 | Adjustable ⁽²⁾ | Clock outputs | | Qn | 0 | Adiustable ⁽²⁾ | Complementary clock outputs | | RxS | | 3 Level ⁽³⁾ | Selects single-ended 2.5V LVTTL (HIGH), 1.8V LVTTL (MID) clock input or differential (LOW) clock input | | TxS | Ι | 3 Level ⁽³⁾ | Sets the drive strength of the output drivers to be 2.5V LVTTL (HIGH), 1.8V LVTTL (MID) or HSTL (LOW) compatible. Used in conjuction with VDDQ to set the interface levels. | | VDD | | PWR | Power supply for the device core and inputs | | VDDQ | | PWR | Power supply for the device outputs. When utilizing 2.5V LVTTL outputs, VDDQ should be connected to VDD. | | GND | | PWR | Power supply return for all power | #### NOTES: 1. Inputs are capable of translating the following interface standards. User can select between: Single-ended 2.5V LVTTL levels Single-ended 1.8V LVTTL levels or Differential 2.5V/1.8V LVTTL levels Differential HSTL and eHSTL levels Differential LVEPECL levels - 2. Outputs are user selectable to drive 2.5V, 1.8V LVTTL, eHSTL, or HSTL interface levels when used with the appropriate VDDQ voltage. - 3. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are not hot-insertable or over voltage tolerant. - 4. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt pulses or be able to tolerate them in down stream circuitry. - 5. Pins listed as LVTTL inputs will accept 2.5V signals when RxS = HIGH or 1.8V signals when RxS = LOW or MID. ## INPUT/OUTPUT SELECTION(1) | INTOT/OUT OF SELECTION | | | | | |------------------------|------------|--|--|--| | Input | Output | | | | | 2.5V LVTTL SE | 2.5V LVTTL | | | | | 1.8V LVTTL SE | | | | | | 2.5V LVTTL DSE | | | | | | 1.8V LVTTL DSE | | | | | | LVEPECL DSE | | | | | | eHSTL DSE | | | | | | HSTL DSE | | | | | | 2.5V LVTTL DIF | | | | | | 1.8V LVTTL DIF | | | | | | LVEPECL DIF | | | | | | eHSTL DIF | | | | | | HSTL DIF | | | | | | 2.5V LVTTL SE | 1.8V LVTTL | | | | | 1.8V LVTTL SE | | | | | | 2.5V LVTTL DSE | | | | | | 1.8V LVTTL DSE | | | | | | LVEPECL DSE | | | | | | eHSTL DSE | | | | | | HSTL DSE | | | | | | 2.5V LVTTL DIF | | | | | | 1.8V LVTTL DIF | | | | | | LVEPECL DIF | | | | | | eHSTL DIF | | | | | | HSTL DIF | | | | | | Input | Output | |----------------|--------| | 2.5V LVTTL SE | eHSTL | | 1.8V LVTTL SE | | | 2.5V LVTTL DSE |] | | 1.8V LVTTL DSE |] | | LVEPECL DSE |] | | eHSTL DSE | | | HSTL DSE | | | 2.5V LVTTL DIF | | | 1.8V LVTTL DIF |] | | LVEPECL DIF |] | | eHSTL DIF | | | HSTL DIF | | | 2.5V LVTTL SE | HSTL | | 1.8V LVTTL SE | | | 2.5V LVTTL DSE | | | 1.8V LVTTL DSE | | | LVEPECL DSE |] | | eHSTL DSE |] | | HSTL DSE |] | | 2.5V LVTTL DIF |] | | 1.8V LVTTL DIF |] | | LVEPECL DIF |] | | eHSTL DIF |] | | HSTL DIF | | #### NOTE: DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE | | <u> LOTTITOAL OTTATIAOT</u> | | V EIL OI EILAIII G | <u>IIAII ME</u> | | | |--------|-------------------------------------|-----------------------|--------------------|--------------------------|--------------------------|------| | Symbol | Parameter | Test Conditions | | Min. | Max | Unit | | VIHH | Input HIGH Voltage Level(1) | 3-Level Inputs Only | | V _{DD} – 0.4 | _ | V | | Vімм | Input MID Voltage Level(1) | 3-Level Inputs Only | | V _{DD} /2 - 0.2 | V _{DD} /2 + 0.2 | V | | VILL | Input LOW Voltage Level(1) | 3-Level Inputs Only | | _ | 0.4 | V | | | | VIN = VDD | HIGH Level | _ | 200 | | | l3 | 3-Level Input DC Current (RxS, TxS) | VIN = VDD/2 | MID Level | -50 | +50 | μΑ | | | | V _{IN} = GND | LOW Level | -200 | _ | · · | ^{1.} The INPUT/OUTPUT SELECTION Table describes the total possible combinations of input and output interfaces. Single-Ended (SE) inputs in a single-ended mode require the AVREF pin to be connected to GND. Differential Single-Ended (DSE) is for single-ended operation in differential mode, requiring a VREF. Differential (DIF) inputs are used only in differential mode. ^{1.} These inputs are normally wired to VDD, GND, or left floating. Internal termination resistors bias unconnected inputs to VDD/2. DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR HSTL(1) | Symbol | Parameter | Test Conditions | | Min. | Typ. ⁽⁷⁾ | Max | Unit | |-------------|-------------------------------------------------|-------------------------------------------|---------------|------------------------|---------------------|------------|------| | Input Chara | cteristics | | | | | | | | Іш | Input HIGH Current ⁽⁹⁾ | V _{DD} = 2.6V | VI = VDDQ/GND | _ | _ | ±5 | цΑ | | lıL | Input LOW Current ⁽⁹⁾ | V _{DD} = 2.6V | VI = GND/VDDQ | | _ | ±5 | | | Vik | Clamp Diode Voltage | V _{DD} = 2.4V, I _{IN} = | -18mA | | - 0.7 | - 1.2 | V | | Vin | DC Input Voltage | | | - 0.3 | | +3.6 | V | | VDIF | DC Differential Voltage ^(2,8) | | | 0.2 | | | V | | Vсм | DC Common Mode Input Voltage(3,8) | | | 680 | 750 | 900 | mV | | ViH | DC Input HIGH(4,5,8) | | | VREF + 100 | | _ | mV | | VIL | DC Input LOW ^(4,6,8) | | | | | VREF - 100 | mV | | VREF | Single-Ended Reference Voltage ^(4,8) | | | _ | 750 | _ | mV | | Output Cha | racteristics | | | | | | | | Vон | Output HIGH Voltage | Іон = -8mA | | VDDQ - 0.4 | | | V | | | | Іон = -100иА | | V _{DDQ} - 0.1 | | _ | V | | Vol | Output LOW Voltage | loL = 8mA | | _ | | 0.4 | V | | | | IoL = 100μA | | _ | | 0.1 | V | #### NOTES: - 1. See RECOMMENDED OPERATING RANGE table. - 2. Voir specifies the minimum input differential voltage (VTR VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state - 3. Vcm specifies the maximum allowable range of (VTR + VcP) /2. Differential mode only. - 4. For single-ended operation, in differential mode, AVREF is tied to the DC voltage VREF. - 5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode. - 6. Voltage required to maintain a logic LOW, single-ended operation in differential mode. - 7. Typical values are at VDD = 2.5V, VDDQ = 1.5V, $+25^{\circ}C$ ambient. - 8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced. - 9. For differential mode (RxS = LOW), A and \overline{A}/V_{REF} must be at the opposite rail. ## POWER SUPPLY CHARACTERISTICS FOR HSTL OUTPUTS(1) | Symbol | Parameter | Test Conditions ⁽²⁾ | Typ. | Max | Unit | |--------|-------------------------------------|---------------------------------------------------|------|-----|--------| | IDDQ | Quiescent VDD Power Supply Current | VDDQ = Max., Reference Clock = LOW ⁽³⁾ | 20 | 30 | mA | | | | Outputs enabled, All outputs unloaded | | | | | Iddqq | Quiescent VDDQ Power Supply Current | VDDQ = Max., Reference Clock = LOW(3) | 0.1 | 0.3 | mA | | | | Outputs enabled. All outputs unloaded | | | | | IDDD | Dynamic Vdd Power Supply | VDD = Max., VDDQ = Max., CL = 0pF | 20 | 30 | μA/MHz | | | Current per Output | | | | | | DDDQ | Dynamic VDDQ Power Supply | VDD = Max., VDDQ = Max., CL = 0pF | 30 | 50 | μΑ/MHz | | | Current per Output | · | | | · | | Ітот | Total Power VDD Supply Current | VDDQ = 1.5V, FREFERENCE CLOCK = 100MHz, CL = 15pF | 20 | 40 | mA | | | | VDDQ = 1.5V, FREFERENCE CLOCK = 250MHz, CL = 15pF | 35 | 50 | | | Ітото | Total Power VDDQ Supply Current | VDDQ = 1.5V, FREFERENCE CLOCK = 100MHz, CL = 15pF | 35 | 70 | mA | | | | VDDQ = 1.5V, FREFERENCE CLOCK = 250MHz, CL = 15pF | 60 | 120 | | - 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations. - 2. The termination resistors are excluded from these measurements. - 3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH. ## DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL | Symbol | Parameter | Value | Units | |--------|---------------------------------------------------------|----------------|-------| | VDIF | Input Signal Swing(1) | 1 | V | | Vx | Differential Input Signal Crossing Point ⁽²⁾ | 750 | mV | | VTHI | Input Timing Measurement Reference Level(3) | Crossina Point | V | | tr, tr | Input Signal Edge Rate ⁽⁴⁾ | 1 | V/ns | #### NOTES: - 1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VDIF (AC) specification under actual use conditions. - 2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Vx specification under actual use conditions. - 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals. - 4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. ## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR eHSTL(1) | Symbol | Parameter | Test Conditions | | Min. | Typ. ⁽⁷⁾ | Max | Unit | |-------------|-------------------------------------------------|------------------|---------------|-----------------------------------------|---------------------|------------------------|------| | Input Chara | octeristics | | | | | | | | lıн | Input HIGH Current ⁽⁹⁾ | VDD = 2.6V | VI = VDDQ/GND | | _ | ±5 | uА | | lıL | Input LOW Current ⁽⁹⁾ | VDD = 2.6V | Vi = GND/Vddq | | | ±5 | | | Vik | Clamp Diode Voltage | VDD = 2.4V, In = | -18mA | | - 0.7 | - 1.2 | V | | Vin | DC Input Voltage | | | - 0.3 | | +3.6 | V | | VDIF | DC Differential Voltage(2,8) | | | 0.2 | | | V | | Vсм | DC Common Mode Input Voltage(3,8) | | | 800 | 900 | 1000 | mV | | ViH | DC Input HIGH(4,5,8) | | | V _{REF} + 100 | | | mV | | VIL | DC Input LOW ^(4,6,8) | | | | | V _{REF} - 100 | mV | | VREF | Single-Ended Reference Voltage ^(4,8) | | | - | 900 | _ | mV | | Output Cha | racteristics | | | ======================================= | | = | | | Vон | Output HIGH Voltage | Iон = -8mA | | VDDQ - 0.4 | | _ | V | | | | Іон = -100μΑ | | V _{DDQ} - 0.1 | | _ | V | | Vol | Output LOW Voltage | lo∟ = 8mA | | | | 0.4 | V | | | | IoL = 100μA | | _ | | 0.1 | V | - 1. See RECOMMENDED OPERATING RANGE table. - 2. VDIF specifies the minimum input differential voltage (VTR VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state. - 3. Vcm specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only. - 4. For single-ended operation, in a differential mode, $\overline{\text{A}}/\text{VREF}$ is tied to the DC voltage VREF. - 5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode. - 6. Voltage required to maintain a logic LOW, single-ended operation in differential mode. - 7. Typical values are at VDD = 2.5V, VDDQ = 1.8V, +25°C ambient. - 8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced. - 9. For differential mode (RxS = LOW), A and AVREF must be at the opposite rail. ## POWER SUPPLY CHARACTERISTICS FOR eHSTL OUTPUTS(1) | Symbol | Parameter | Test Conditions ⁽²⁾ | Typ. | Max | Unit | |--------|-------------------------------------|---------------------------------------------------|------|-----|--------| | IDDQ | Quiescent Vdd Power Supply Current | VDDQ = Max., Reference Clock = LOW(3) | 20 | 30 | mA | | | | Outputs enabled, All outputs unloaded | | | | | Iddqq | Quiescent VDDQ Power Supply Current | VDDQ = Max., Reference Clock = LOW(3) | 0.1 | 0.3 | mA | | | | Outputs enabled, All outputs unloaded | | | | | lodd | Dynamic VDD Power Supply | VDD = Max., VDDQ = Max., CL = 0pF | 20 | 30 | μA/MHz | | | Current per Output | | | | | | Idddq | Dynamic VDDQ Power Supply | VDD = Max., VDDQ = Max., CL = 0pF | 40 | 60 | μA/MHz | | | Current per Output | · | | | , | | Ітот | Total Power VDD Supply Current | VDDQ = 1.8V, FREFERENCE CLOCK = 100MHz, CL = 15pF | 20 | 40 | mA | | | | VDDQ = 1.8V. FREFERENCE CLOCK = 250MHz. CL = 15pF | 35 | 50 | | | Ιτοτα | Total Power VDDQ Supply Current | VDDQ = 1.8V, FREFERENCE CLOCK = 100MHz, CL = 15pF | 40 | 80 | mA | | | | VDDQ = 1.8V, FREFERENCE CLOCK = 250MHz, CL = 15pF | 80 | 160 | | #### NOTES: - 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations. - 2. The termination resistors are excluded from these measurements. - 3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH. ## DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL | Symbol | Parameter | Value | Units | |------------------|---------------------------------------------------------|----------------|-------| | VDIF | Input Signal Swing(1) | 1 | V | | Vx | Differential Input Signal Crossing Point ⁽²⁾ | 900 | mV | | V _{THI} | Input Timing Measurement Reference Level(3) | Crossing Point | V | | tr, tr | Input Signal Edge Rate ⁽⁴⁾ | 1 | V/ns | #### NOTES: - 1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VDIF (AC) specification under actual use conditions. - 2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Vx specification under actual use conditions. - 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals. - 4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. # DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR LVEPECL(1) | Symbol | Parameter | Test Co | nditions | Min. | Typ. ⁽²⁾ | Max | Unit | |-------------|-------------------------------------|------------------------|---------------|-------|---------------------|-------|------| | Input Chara | cteristics | | | | | | | | Іін | Input HIGH Current ⁽⁶⁾ | V _{DD} = 2.6V | VI = VDDQ/GND | _ | | ±5 | uА | | lı∟ | Input LOW Current ⁽⁶⁾ | VDD = 2.6V | VI = GND/VDDQ | _ | | ±5 | | | Vık | Clamp Diode Voltage | VDD = 2.4V, IIN = | -18mA | _ | - 0.7 | - 1.2 | V | | Vin | DC Input Voltage | | | - 0.3 | | 3.6 | V | | Vсм | DC Common Mode Input Voltage(3,5) | | | 915 | 1082 | 1248 | mV | | VREF | Single-Ended Reference Voltage(4,5) | | | _ | 1082 | _ | mV | | ViH | DC Input HIGH | | | 1275 | _ | 1620 | mV | | VIL | DC Input LOW | | | 555 | _ | 875 | mV | - 1. See RECOMMENDED OPERATING RANGE table. - 2. Typical values are at $V_{DD} = 2.5V$, $+25^{\circ}C$ ambient. - 3. Vcm specifies the maximum allowable range of (VTR + VcP) /2. Differential mode only. - 4. For single-ended operation while in differential mode, A/VREF is tied to the DC Voltage VREF. - 5. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced. - 6. For differential mode (RxS = LOW), A and $\overline{A}/VREF$ must be at the opposite rail. ## DIFFERENTIAL INPUT AC TEST CONDITIONS FOR LVEPECL | Symbol | Parameter | Value | Units | |--------|---------------------------------------------------------|----------------|-------| | VDIF | Input Signal Swing(1) | 732 | mV | | Vx | Differential Input Signal Crossing Point ⁽²⁾ | 1082 | mV | | VTHI | Input Timing Measurement Reference Level(3) | Crossina Point | V | | tr, tr | Input Signal Edge Rate ⁽⁴⁾ | 1 | V/ns | #### NOTES: - The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VDIF (AC) specification under actual use conditions. - 2. A 1082mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Vx specification under actual use conditions. - 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals. - 4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. # DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR 2.5V | Symbol | Parameter | Test Co | onditions | Min. | Typ. ⁽⁸⁾ | Max | Unit | |--------------|-------------------------------------------------|------------------------|---------------------|------------|---------------------|------------|------| | Input Chara | acteristics | | | - | | | | | Іін | Input HIGH Current(10) | V _{DD} = 2.6V | $V_I = V_{DDQ}/GND$ | _ | | ±5 | uА | | lı∟ | Input LOW Current(10) | V _{DD} = 2.6V | $V_I = GND/V_{DDQ}$ | | | ±5 | | | Vık | Clamp Diode Voltage | VDD = 2.4V, In = | -18mA | | - 0.7 | - 1.2 | V | | Vin | DC Input Voltage | | | - 0.3 | | +3.6 | V | | Single-End | ed Inputs ⁽²⁾ | | | | | | | | Vih | DC Input HIGH | | | 1.7 | | _ | V | | VIL | DC Input LOW | | | | | 0.7 | V | | Differential | Inputs | | | | | | | | VDIF | DC Differential Voltage(3,9) | | | 0.2 | | _ | V | | Vсм | DC Common Mode Input Voltage(4,9) | | | 1150 | 1250 | 1350 | mV | | VIH | DC Input HIGH(5,6,9) | | | VREF + 100 | | | mV | | VIL | DC Input LOW ^(5,7,9) | | | | | VREF - 100 | mV | | VREF | Single-Ended Reference Voltage ^(5,9) | | | _ | 1250 | _ | mV | | Output Cha | racteristics | | | | | | | | Voн | Output HIGH Voltage | Iон = -12mA | | VDDQ - 0.4 | | _ | V | | | | Іон = -100μΑ | | VDDQ - 0.1 | | | V | | Vol | Output LOW Voltage | loL = 12mA | | | | 0.4 | V | | | | IoL = 100μA | | | | 0.1 | V | - 1. See RECOMMENDED OPERATING RANGE table. - 2. For 2.5V LVTTL single-ended operation, the RxS pin is tied HIGH and $\overline{\text{A}}/\text{VREF}$ is tied to GND. - 3. VDIF specifies the minimum input differential voltage (VTR VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state. - 4. Vcm specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only. - 5. For single-ended operation, in differential mode, AVREF is tied to the DC voltage VREF. - 6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode. - 7. Voltage required to maintain a logic LOW, single-ended operation in differential mode. - 8. Typical values are at VDD = 2.5V, VDDQ = VDD, +25°C ambient. - 9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced. - 10. For differential mode (RxS = LOW), A and \overline{A}/V_{REF} must be at the opposite rail. POWER SUPPLY CHARACTERISTICS FOR 2.5V LVTTL OUTPUTS(1) | Symbol | Parameter | Test Conditions ⁽²⁾ | Typ. | Max | Unit | |--------|-------------------------------------|----------------------------------------------------|------|-----|--------| | IDDQ | Quiescent VDD Power Supply Current | VDDQ = Max., Reference Clock = LOW(3) | 20 | 30 | mA | | | | Outputs enabled, All outputs unloaded | | | | | IDDQQ | Quiescent VDDQ Power Supply Current | VDDQ = Max., Reference Clock = LOW ⁽³⁾ | 0.1 | 0.3 | mA | | | | Outputs enabled, All outputs unloaded | | | | | IDDD | Dynamic Vdd Power Supply | VDD = Max., VDDQ = Max., CL = 0pF | 25 | 40 | μΑ/MHz | | | Current per Output | · | | | · | | IDDDQ | Dynamic VDDQ Power Supply | VDD = Max., VDDQ = Max., CL = 0pF | 45 | 70 | μΑ/MHz | | | Current per Output | · | | | · | | Ітот | Total Power VDD Supply Current | VDDQ = 2.5V., FREFERENCE CLOCK = 100MHz, CL = 15pF | 25 | 40 | mA | | | | VDDQ = 2.5V., FREFERENCE CLOCK = 200MHz, CL = 15pF | 45 | 70 | | | Ітото | Total Power VDDQ Supply Current | VDDQ = 2.5V., FREFERENCE CLOCK = 100MHz, CL = 15pF | 40 | 80 | mA | | | | VDDQ = 2.5V., FREFERENCE CLOCK = 200MHz, CL = 15pF | 100 | 200 | | #### NOTES: - 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations. - 2. The termination resistors are excluded from these measurements. - 3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH. ## DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 2.5V LVTTL | Symbol | Parameter | Value | Units | |--------|---------------------------------------------------------|--------------------|-------| | VDIF | Input Signal Swing(1) | V _{DD} | V | | Vx | Differential Input Signal Crossing Point ⁽²⁾ | V _{DD} /2 | V | | VTHI | Input Timing Measurement Reference Level ⁽³⁾ | Crossina Point | V | | tr, tr | Input Signal Edge Rate ⁽⁴⁾ | 2.5 | V/ns | #### NOTES: - 1. A nominal 2.5V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Voir (AC) specification under actual use conditions. - 2. A nominal 1.25V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Vx specification under actual use conditions. - 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals. - 4. The input signal edge rate of 2.5V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. # SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 2.5V LVTTL | Symbol | Parameter | Value | Units | |--------|---------------------------------------------|-------|-------| | ViH | Input HIGH Voltage | VDD | V | | VIL | Input LOW Voltage | 0 | V | | VTHI | Input Timing Measurement Reference Level(1) | Vpp/2 | V | | tr, tr | Input Signal Edge Rate ⁽²⁾ | 2 | V/ns | - 1. A nominal 1.25V timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment. - $2. \ \, \text{The input signal edge rate of 2V/ns or greater is to be maintained in the 10\% to 90\% range of the input waveform.}$ # DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE FOR 1.8V | Symbol | Parameter | Test Co | nditions | Min. | Typ. ⁽⁸⁾ | Max | Unit | |-------------|-------------------------------------------------|------------------|---------------|------------|---------------------|------------------------|------| | nput Chara | acteristics | | | | | | | | Іін | Input HIGH Current ⁽¹²⁾ | VDD = 2.6V | VI = VDDQ/GND | _ | | ±5 | uА | | lıL | Input LOW Current ⁽¹²⁾ | VDD = 2.6V | VI = GND/VDDQ | | | ±5 | | | Vık | Clamp Diode Voltage | VDD = 2.4V, IN = | -18mA | | - 0.7 | - 1.2 | V | | Vin | DC Input Voltage | | | - 0.3 | | V _{DDQ} + 0.3 | V | | ingle-Ende | ed Inputs(2) | | | | | | | | VIH | DC Input HIGH | | | 1.073(11) | | _ | V | | VIL | DC Input LOW | | | _ | | 0.683(11) | V | | ifferential | Inputs | | | | | | | | VDIF | DC Differential Voltage(3,9) | | | 0.2 | | _ | V | | Vсм | DC Common Mode Input Voltage(4,9) | | | 825 | 900 | 975 | mV | | ViH | DC Input HIGH(5,6,9) | | | VREF + 100 | | | mV | | VIL | DC Input LOW ^(5,7,9) | | | | | VREF - 100 | mV | | VREF | Single-Ended Reference Voltage ^(5,9) | | | | 900 | | mV | | utput Cha | racteristics | | | | | | | | Vон | Output HIGH Voltage | Iон = -6mA | | VDDQ - 0.4 | | | V | | | | Іон = -100μΑ | | VDDQ - 0.1 | | | V | | Vol | Output LOW Voltage | IoL = 6mA | | | | 0.4 | V | | | | IoL = 100μA | | _ | | 0.1 | V | - 1. See RECOMMENDED OPERATING RANGE table. - 2. For 1.8V LVTTL single-ended operation, the RxS pin is allowed to float or tied to VDD/2 and AVREF is tied to GND. - 3. VDIF specifies the minimum input differential voltage (VTR VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state. - 4. Vcm specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only. - 5. For single-ended operation in differential mode, AVREF is tied to the DC voltage VREF. The input is guaranteed to toggle within ±200mV of VREF when VREF is constrained within +600mV and VDDI-600mV, where VDDI is the nominal 1.8V power supply of the device driving the A input. To guarantee switching in voltage range specified in the JEDEC 1.8V LVTTL interface specification, VREF must be maintained at 900mV with appropriate tolerances. - 6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode. - 7. Voltage required to maintain a logic LOW, single-ended operation in differential mode. - 8. Typical values are at VDD = 2.5V, VDDQ = 1.8V, +25°C ambient. - 9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced. - 10. This value is the worst case minimum V_{IH} over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is V_{IH} = 0.65 V_{DD} where V_{DD} is 1.8V ± 0.15V. However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value (V_{IH} = 0.65 [1.8 0.15V]) rather than reference against a nominal 1.8V supply. - 11. This value is the worst case maximum V_{IL} over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is V_{IL} = 0.35 V_{DD} where V_{DD} is 1.8V ± 0.15V. However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value (V_{IL} = 0.35 [1.8 + 0.15V]) rather than reference against a nominal 1.8V supply. - 12. For differential mode (RxS = LOW), A and A/VREF must be at the opposite rail. ## POWER SUPPLY CHARACTERISTICS FOR 1.8V LVTTL OUTPUTS(1) | Symbol | Parameter | Test Conditions ⁽²⁾ | Typ. | Max | Unit | |--------|-------------------------------------|----------------------------------------------------|------|-----|--------| | IDDQ | Quiescent VDD Power Supply Current | VDDQ = Max., Reference Clock = LOW(3) | 20 | 30 | mA | | | | Outputs enabled, All outputs unloaded | | | | | Iddqq | Quiescent VDDQ Power Supply Current | VDDQ = Max., Reference Clock = LOW(3) | 0.1 | 0.3 | mA | | | | Outputs enabled, All outputs unloaded | | | | | IDDD | Dynamic Vdd Power Supply | VDD = Max., VDDQ = Max., CL = 0pF | 20 | 40 | μΑ/MHz | | | Current per Output | | | | | | IDDDQ | Dynamic VDDQ Power Supply | VDD = Max., VDDQ = Max., CL = 0pF | 55 | 80 | μΑ/MHz | | | Current per Output | | | | · | | Ітот | Total Power VDD Supply Current | VDDQ = 1.8V., FREFERENCE CLOCK = 100MHz, CL = 15pF | 25 | 40 | mA | | | , | VDDQ = 1.8V FREFERENCE CLOCK = 200MHz. CL = 15pF | 40 | 60 | | | Ιτοτα | Total Power VDDQ Supply Current | VDDQ = 1.8V., FREFERENCE CLOCK = 100MHz, CL = 15pF | 50 | 100 | mA | | | | VDDQ = 1.8V., FREFERENCE CLOCK = 200MHz, CL = 15pF | 120 | 240 |] | #### NOTES: - 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations. - 2. The termination resistors are excluded from these measurements. - 3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH. ## DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 1.8V LVTTL | Symbol | Parameter | Value | Units | |------------------|---------------------------------------------------------|----------------|-------| | VDIF | Input Signal Swing(1) | Vddi | V | | Vx | Differential Input Signal Crossing Point ⁽²⁾ | VDDI/2 | mV | | V _{THI} | Input Timing Measurement Reference Level ⁽³⁾ | Crossing Point | V | | ts. ts | Input Signal Edge Rate ⁽⁴⁾ | 1.8 | V/ns | #### NOTES: - 1. VDDI is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input. A nominal 1.8V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VDIF (AC) specification under actual use conditions. - 2. A nominal 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the Vx specification under actual use conditions. - 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals. - 4. The input signal edge rate of 1.8V/ns or greater is to be maintained in the 20% to 80% range of the input waveform. ## SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 1.8V LVTTL | Symbol | Parameter | Value | Units | |--------|---------------------------------------------------------|---------------------|-------| | VIH | Input HIGH Voltage ⁽¹⁾ | Vddi | V | | VIL | Input LOW Voltage | 0 | V | | VTHI | Input Timing Measurement Reference Level ⁽²⁾ | V _{DDI} /2 | mV | | tr, tr | Input Signal Edge Rate ⁽³⁾ | 2 | V/ns | - 1. VDDI is the nominal 1.8V supply (1.8V \pm 0.15V) of the part or source driving the input. - 2. A nominal 900mV timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment. - 3. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform. | AC ELECTBICAL CU | HARACTERISTICS OVER | ODEDATING DANGE(5) | |---------------------------|----------------------|--------------------| | A(, F F(, B (, A (, F | 1464C.IEBI3IIC3 CVEB | CIPEBALING BANGE | | Symbol | Parameter | | | Тур. | Max | Unit | |------------------|----------------------------------------------------------------------------------|-----------------------------------------|---------------------------|---------------------|---------------------------|------| | kew Parameters | | | | | | | | tsk(o) | Same Device Output Pin-to-Pin Skew(1) | Single-Ended and Differential Modes | _ | _ | 60 | ps | | | | Single-Ended in Differential Mode (DSE) | _ | 60 | | | | tsk(INV) | Inverting Skew ⁽²⁾ | Single-Ended and Differential Modes | _ | | 300 | ps | | | | Single-Ended in Differential Mode (DSE) | _ | 300 | | | | tsk(p) | Pulse Skew ⁽³⁾ | Single-Ended and Differential Modes | | | 300 | ps | | | | Single-Ended in Differential Mode (DSE) | _ | 300 | | | | tsk(PP) | Part-to-Part Skew ⁽⁴⁾ | Single-Ended and Differential Modes | _ | _ | 300 | ps | | | | Single-Ended in Differential Mode (DSE) | _ | 300 | | | | Vox | HSTL and eHSTL Differential True and Complementary Output Crossing Voltage Level | | V _{DDQ} /2 - 200 | V _{DDQ} /2 | V _{DDQ} /2 + 200 | mV | | ropagation Delay | | | | | | | | tplH | Propagation Delay A to Qn/Qn | 2.5V / 1.8V LVTTL Outputs | _ | _ | 2.5 | ns | | t _{PHL} | | HSTL / eHSTL Outputs | _ | _ | 2 | | | tr | Output Rise Time (20% to 80%) | 2.5V / 1.8V LVTTL Outputs | 350 | _ | 1050 | ps | | | · · · · · · · · | HSTL / eHSTL Outputs | 350 | _ | 1350 | · | | tF | Output Fall Time (20% to 80%) | 2.5V / 1.8V LVTTL Outputs | 350 | _ | 1050 | ps | | | | HSTL / eHSTL Outputs | 350 | _ | 1350 | · | | fo | Frequency Range (HSTL/eHSTL outputs) | | _ | _ | 250 | MHz | | | Frequency Range (2.5V/1.8V LVTTL outputs) | | _ | _ | 200 | | | utput Gate Enab | ole/Disable Delay | • | | | | | | tpge | Output Gate Enable to Qn/Qn | | _ | _ | 3.5 | ns | | tpgp | Output Gate Enable to Qn/Qn Driven to GL Designated Level | | | _ | 3 | ns | - 1. Skew measured between all outputs or output pairs under identical input and output interfaces, transitions and load conditions on any one device. For single ended and differential LVTTL outputs, this measurement is made when each output voltage passes through VDDQ/2. For differential LVTTL outputs, the true outputs are compared only with other true outputs and the complementary outputs are compared only with other complementary outputs. For differential HSTL outputs, the measurement takes place at the crossing point of the true and complementary signals. - 2. For operating with either 1.8V or 2.5V LVTTL output interfaces with both true and complementary outputs enabled. Inverting skew is the skew between true and complementary outputs switching in opposite directions under identical input and output interfaces, transitions and load conditions on any one device. - 3. Skew measured is the difference between propagation delay times tehl and telh of any output or output pair under identical input and output interfaces, transitions and load conditions on any one device. For single ended and differential LVTTL outputs, this measurement is made when each output voltage passes through VDDO/2. The measurement applies to both true and complementary signals. For differential HSTL outputs, the measurement takes place at the crossing point of the true and complementary signals. - 4. Skew measured is the magnitude of the difference in propagation times between any outputs or output pairs of two devices, given identical transitions and load conditions at identical VDD/VDDO levels and temperature. - 5. Guaranteed by design. AC DIFFERENTIAL INPUT SPECIFICATIONS(1) | Symbol | Parameter | Min. | Tvp. | Max | Unit | | |----------------------------------|------------------------------------------------------------------------|----------|------|----------|-----------------|--| | t w | Reference Clock Pulse Width HIGH or LOW (HSTL/eHSTL outputs)(2) | 1.73 | _ | _ | ns | | | | Reference Clock Pulse Width HIGH or LOW (2.5V / 1.8V LVTTL outputs)(2) | 2.17 | _ | _ | | | | HSTL/eHSTL/1.8V LVTTL/2.5V LVTTL | | | | | | | | VDIF | AC Differential Voltage ⁽³⁾ | 400 | _ | _ | mV | | | Vih | AC Input HIGH ^(4,5) | Vx + 200 | _ | _ | mV | | | VIL | AC Input LOW ^(4,6) | _ | _ | Vx - 200 | mV | | | LVEPECL | | | | | | | | Vdif | AC Differential Voltage ⁽³⁾ | 400 | _ | _ | mV | | | ViH | AC Input HIGH ⁽⁴⁾ | 1275 | _ | _ | mV | | | VIL | AC Input LOW ⁽⁴⁾ | _ | _ | 875 | l _{mV} | | - 1. For differential input mode, RxS is tied to GND. - 2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and the voltage range defined by VDIF has been met or exceeded. - 3. Differential mode only. VDIF specifies the minimum input voltage (VTR VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The AC differential voltage must be achieved to guarantee switching to a new state. - 4. For single-ended operation, AVREF is tied to DC voltage (VREF). Refer to each input interface's DC specification for the correct VREF range. - 5. Voltage required to switch to a logic HIGH, single-ended operation only. - 6. Voltage required to switch to a logic LOW, single-ended operation only. ## DIFFERENTIAL AC TIMING WAVEFORMS HSTL and eHSTL Output Propagation and Skew Waveforms 1.8V or 2.5V LVTTL Output Propagation and Skew Waveforms #### NOTES: - 1. For the HSTL and eHSTL outputs, the and the are measured from the input passing through VTHI or input pair crossing to the crossing point of each Qn and \(\overline{Q} \)n. - 2. For 1.8V and 2.5V LVTTL outputs, tehl and tell are measured from the input passing through VTHI or input pair crossing to the slower of Qn or \overline{Q} n passing through VTHO. - $\ensuremath{\mathsf{3}}.$ Pulse skew is calculated using the following expression: tsk(P) = |tPHL - tPLH| where tphl and tplh are measured on the controlled edges of any one output from the rising and falling edges of a single pulse. Note that the tphl and tplh shown above are not valid measurements for this calculation because they are not taken from the same pulse. Differential Gate Disable/Enable Showing Runt Pulse Generation - 1. The waveforms shown only gate "true" output, Qn. - 2. As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time their Gx signals to avoid this problem. ## **SDR AC TIMING WAVEFORMS** ### Propagation and Skew Waveforms ### NOTES: - 1. tpнL and tpLH signals are measured from the input passing through VтнI or input pair crossing to Qn passing through Vтно. - 2. Pulse Skew is calculated using the following expression: where tphl and tplh are measured on the controlled edges of any one output from rising and falling edges of a single pulse. Please note that the tphl and tplh shown are not valid measurements for this calculation because they are not taken from the same pulse. SDR Gate Disable/Enable Showing Runt Pulse Generation NOTE: As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time their Gx signals to avoid this problem. ## **TEST CIRCUITS AND CONDITIONS** Test Circuit for Differential Input(1) ## **DIFFERENTIAL INPUT TEST CONDITIONS** | Symbol | $V_{DD} = 2.5V \pm 0.1V$ | Unit | |--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------| | R1 | 100 | Ω | | R2 | 100 | Ω | | Vddi | Vcm*2 | V | | Vтні | HSTL: Crossing of A and \overline{A} eHSTL: Crossing of A and \overline{A} LVEPECL: Crossing of A and \overline{A} 1.8V LVTTL: VDDI/2 2.5V LVTTL: VDD/2 | V | This input configuration is used for all input interfaces. For single-ended testing, the V_{IN} input is tied to GND. For testing single-ended in differential input mode, the V_{IN} is left floating. Test Circuit for SDR Outputs **Test Circuit for Differential Outputs** ## **SDR OUTPUT TEST CONDITIONS** | Symbol | $V_{DD} = 2.5V \pm 0.1V$ | Unit | |--------|----------------------------|------| | | VDDQ = Interface Specified | | | CL | 15 | pF | | R1 | 100 | Ω | | R2 | 100 | Ω | | Vтно | VDDQ/2 | V | # DIFFERENTIAL OUTPUT TEST CONDITIONS | Symbol | $V_{DD} = 2.5V \pm 0.1V$ | Unit | |--------|----------------------------------------------|------| | | VDDQ = Interface Specified | | | CL | 15 | pF | | R1 | 100 | Ω | | R2 | 100 | Ω | | Vox | HSTL: Crossing of Qn and $\overline{\rm Qn}$ | V | | | eHSTL: Crossing of Qn and Qn | | | Vтно | 1.8V LVTTL: VDDQ/2 | V | | | 2.5V LVTTL: VDDQ/2 | | ## ORDERING INFORMATION # **REVISION HISTORY** | Rev | Table | Page | Discription of Change | Date | |-----|-------|------|------------------------------------------------------------------------------------------------------------------|---------| | А | | 1 | NRND - Not Recommended for New Designs | 5/5/13 | | А | | 1 | Product Discontinuation Notice - Last time buy expires November 2, 2016. PDN# CQ-15-05 Updated data sheet format | 11/3/15 | **Corporate Headquarters** 6024 Silver Creek Valley Road San Jose, California 95138 Sales 800-345-7015 or +408-284-8200 Fax: 408-284-2775 www.IDT.com Technical Support email: clocks@idt.com DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners. Copyright 2015. All rights reserved.