

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

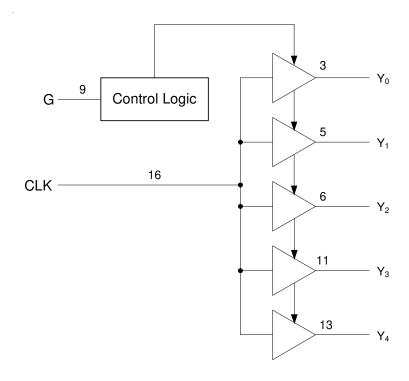
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2.5V TO 3.3V HIGH PERFORMANCE CLOCK BUFFER

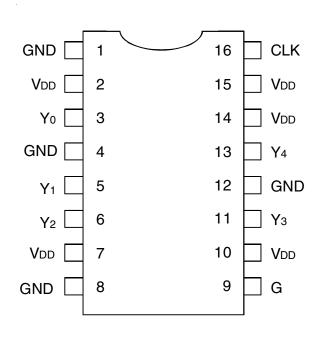
IDT5V2305

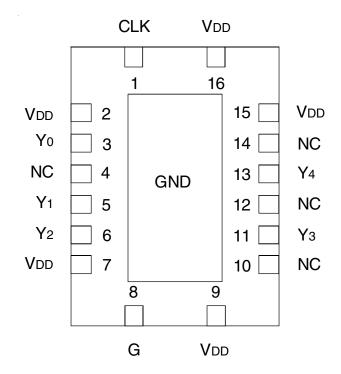
FEATURES:


- High performance 1:5 clock driver for general purpose applications
- Operates up to 170MHz at VDD = 2.5V
- Operates up to 200MHz at VDD = 3.3V
- Pin-to-pin skew < 75ps at 3.3V operation
- VDD range: 2.3V to 3.6V
- Output enable glitch suppression
- · Available in TSSOP and VFQFPN packages

DESCRIPTION:

The IDT5V2305 is a high performance, low skew clock buffer that operates up to 200MHz. One bank of five outputs provides low skew copies of CLK. Through the use of control pin G, the outputs of bank Y(0:4) can be placed in a low state regardless of CLK input. The device operates in 2.5V and 3.3V environments. The built-in output enable glitch suppression ensures a synchronized output enable sequence to distribute full period clock signals.


The IDT5V2305 is characterized for operation from -40°C to +85°C.


FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

PIN CONFIGURATION

TSSOP TOP VIEW

VFQFPN TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VDD	Power Supply Voltage	-0.5 to +4.6	>
Vı	Input Voltage ⁽²⁾	-0.5 to VDD +0.5	٧
Vo	Output Voltage ⁽²⁾	-0.5 to VDD +0.5	٧
lıĸ	Input Clamp Current VI < 0 or VI > VDD	±50	mA
Іок	Output Clamp Current Vo < 0 or Vo > VDD	±50	mA
lo	Continuous Total Output Current Vo < 0 to VDD	±50	mA
Тѕтс	Storage Temperature	-65 to +150	°C

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Not to exceed 4.6V.

CAPACITANCE (TA = +25°C, f = 1MHz, VIN = 0V)

Parameter	Description	Min.	Тур.	Max.	Unit
CIN	Input Capacitance	_	2.5	_	рF
	$V_I = 0V \text{ or } V_{DD}$				

FUNCTION TABLE(1)

In	outs	Output
G	CLK	Y(0:4)
L	Х	L
Н	Н	Н

NOTE:

- H = HIGH Voltage Level
 L = LOW Voltage Level
 - X = Don't Care

PIN DESCRIPTION

TERMINAL		
Symbol	1/0	Description
		Output Enable Control for Y(0:4) Outputs. This output enable is active HIGH. If this pin is Logic HIGH, the Y(0:4) clock outputs will follow the input clock (CLK). If this pin is logic LOW, the Y(0:4) outputs will drive low independent of the state of CLK.
Y(0:4)	0	Buffered Output Clocks
CLK	I	Input Reference Frequency
GND	·	Ground
V _{DD}	PWR	DC Power Supply, 2.3V to 3.6V

RECOMMENDED OPERATING RANGE

Symbol	Description		Min.	Тур.	Max.	Unit
VDD	Internal Power Supply Voltage		2.3	2.5		V
				3.3	3.6	
VIL	Input Voltage LOW	VDD = 3V to 3.6V			0.8	V
		VDD = 2.3V to 2.7V			0.7	
VIH	Input Voltage HIGH	VDD = 3V to 3.6V	2			V
		VDD = 2.3V to 2.7V	1.7			
Vı	Input Voltage		0		VDD	V
Юн	Output Current HIGH	VDD = 3V to 3.6V			-12	mA
		VDD = 2.3V to 2.7V			-6	
loL	Output Current LOW	VDD = 3V to 3.6V			12	mA
		VDD = 2.3V to 2.7V			6	
TA	Ambient Operating Temperature		-40		+85	°C

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Unit
Vık	Input Voltage	$V_{DD} = 3V$, $I_{IN} = -18mA$			- 1.2	V
lin	Input Current	$V_I = 0V$ or V_{DD}			±5	μΑ
loo	Static Device Current(1)	CLK = 0V or VDD, lo = 0mA, VDD = 3.3V			25	μΑ

NOTE:

DC ELECTRICAL CHARACTERISTICS - VDD = 3.3V ± 0.3V

Symbol	Parameter	Test Cor	nditions	Min.	Typ. ⁽¹⁾	Max	Unit
		V _{DD} = Min. to Max.	Іон = -100μΑ	V _{DD} - 0.2			
Vон	HIGH level Output Voltage	VDD = 3V	Iон = -12mA	2.1			V
			Iон = -6mA	2.4			
		VDD = Min. to Max.	Іон = 100μΑ			0.2	
Vol	LOW level Output Voltage	VDD = 3V	Iон = 12mA			0.8	V
			Iон = 6mA			0.55	
		VDD = 3V	Vo = 1V	-28			
Іон	HIGH level Output Current	VDD = 3.3V	Vo = 1.65V		-36		mA
		VDD = 3.6V	Vo = 3.135V			-14	
		VDD = 3V	Vo = 1.95V	28			
lol	LOW level Output Current	VDD = 3.3V	Vo = 1.65V		36		mA
		VDD = 3.6V	Vo = 0.4V			14	

NOTE

^{1.} For IDD over frequency, see TEST CIRCUIT AND WAVEFORMS.

^{1.} All typical values are at respective nominal VDD.

DC ELECTRICAL CHARACTERISTICS - VDD = 2.5V ± 0.2V

Symbol	Parameter	Test Cor	ditions	Min.	Typ. ⁽¹⁾	Max	Unit
Vон	HIGH level Output Voltage	V _{DD} = Min. to Max.	Іон = -100μΑ	V _{DD} - 0.2			V
		VDD = 2.3V	Iон = -6mA	1.8			
Vol	LOW level Output Voltage	VDD = Min. to Max.	Іон = 100μΑ			0.2	V
		VDD = 2.3V	Iон = 6mA			0.55	
		VDD = 2.3V	Vo = 1V	-17			
Іон	HIGH level Output Current	VDD = 2.5V	Vo = 1.25V		-25		mA
		VDD = 2.7V	Vo = 2.375V			-10	
		VDD = 2.3V	Vo = 1.2V	17			
lol	LOW level Output Current	VDD = 2.5V	Vo = 1.25V		25		mA
		VDD = 2.7V	Vo = 0.3V			10	

NOTE:

1. All typical values are at respective nominal VDD.

TIMING REQUIREMENTS OVER RECOMMENDED RANGE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Unit
fclk	Clock Frequency	$V_{DD} = 3V \text{ to } 3.6V$	0		200	MHz
		V _{DD} = 2.3V to 2.7V	0		170	

SWITCHING CHARACTERISTICS OVER OPERATING RANGE -

 $V_{DD} = 3.3V \pm 0.3V^{(1)}$

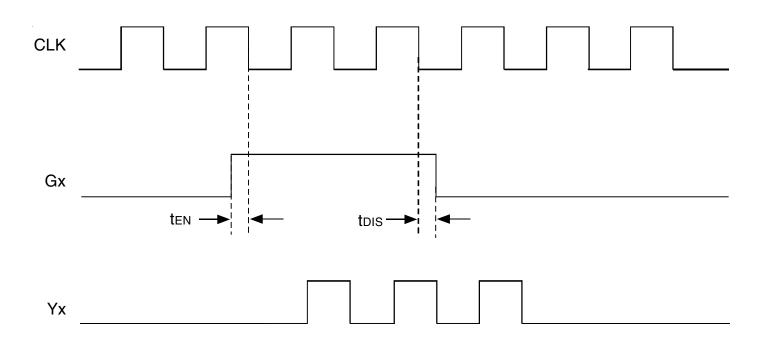
Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max	Unit
tplh	CLK to Yx	f = 0MHz to 200MHz, CL = 25pF	1.3		2.6	ns
t PHL						
tsk(o) ⁽²⁾	Output Skew, Yx to Yx				75	ps
tsk(p)	Pulse Skew				200	ps
tsk(pp)	Part-to-Part Skew				500	ps
t⊓	Rise Time	Vo = 0.4V to 2V ⁽³⁾	1.0		2.3	V/ns
t⊧	FallTime	Vo = 2V to 0.4V ⁽³⁾	1.0		2.3	V/ns
tsu	G before CLK↓	V(THRESHOLD) = VDD/2	0.1			ns
tн	G after CLK↓		0.4			

NOTES:

- 1. All typical values are at respective nominal VDD.
- 2. This specification is only valid for equal loading of all outputs.
- 3. Measured at 100MHz.

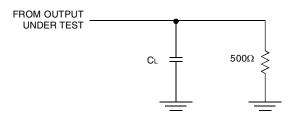
SWITCHING CHARACTERISTICS OVER OPERATING RANGE -

 $V_{DD} = 2.5V \pm 0.2V^{(1)}$


Symbol	Parameter	Test Conditions	Min.	Typ. ⁽¹⁾	Max	Unit
tpLH	CLK to Yx	f = 0MHz to 170MHz, CL = 25pF	1.5		3	ns
t PHL						
tsk(o) ⁽²⁾	Output Skew, Yx to Yx				100	ps
tsk(p)	Pulse Skew				350	ps
tsk(PP)	Part-to-Part Skew				600	ps
t⊓	RiseTime	Vo = 0.4V to 1.7V ⁽³⁾	0.4		1.625	V/ns
t=	FallTime	$Vo = 1.7V \text{ to } 0.4V^{(3)}$	0.4		1.625	V/ns
tsu	G before CLK↓	V(THRESHOLD) = VDD/2	0.1			ns
tн	G after CLK↓		0.4			1

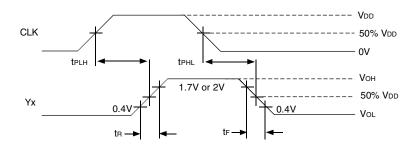
NOTES:

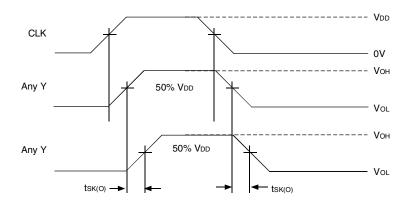
- 1. All typical values are at respective nominal $\ensuremath{\mathsf{V}}\xspace \mathsf{DD}$.
- 2. This specification is only valid for equal loading of all outputs.
- 3. Measured at 100MHz.


OUTPUT ENABLE GLITCH SUPPRESSION CIRCUIT

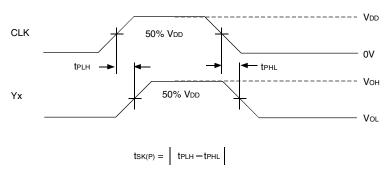
The purpose of the glitch suppression circuitry is to ensure the output enable sequence is synchronized with the clock input such that the output buffer will be enabled on the next full period of the input clock (negative edge triggered by the input clock). The G input must be stable one ten-time prior to the falling edge of the CLK for predictable operation.

G (ten, tois) Relative to CLK↓

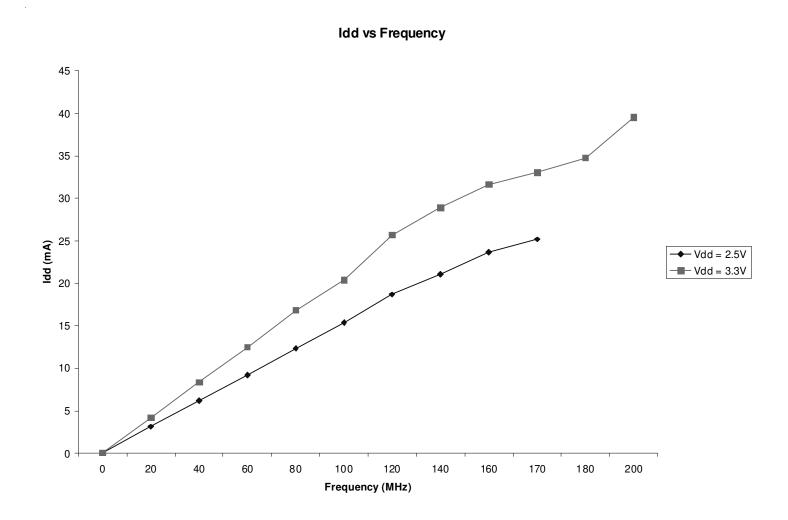

TEST CIRCUITS AND WAVEFORMS


NOTES:

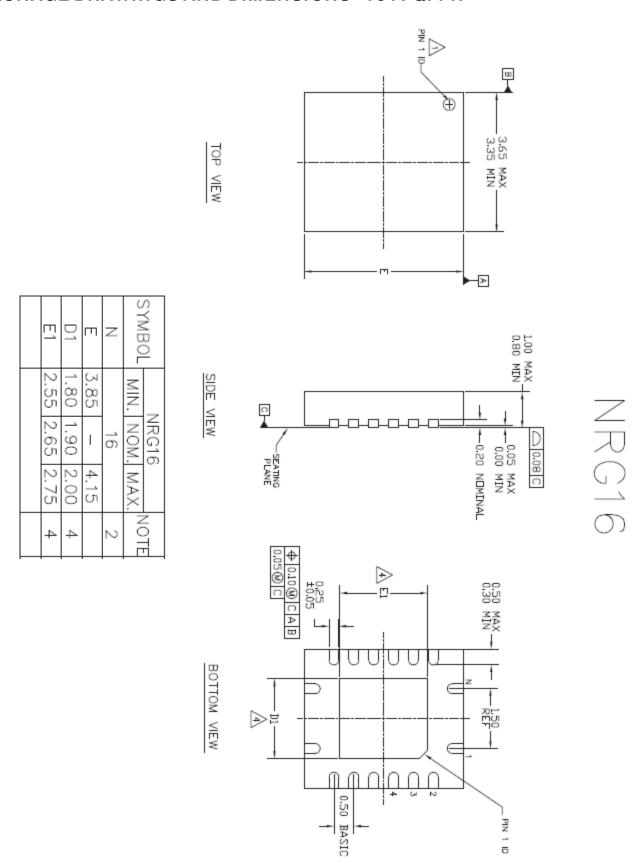
- 1. C_L includes probe and jig capacitance.
- 2. All input pulses are supplied by generators having the following characteristics: PRR \leq 200MHz; Zo = 50Ω ; tR < 1.2ns; tF < 1.2ns.


Test Load Circuit

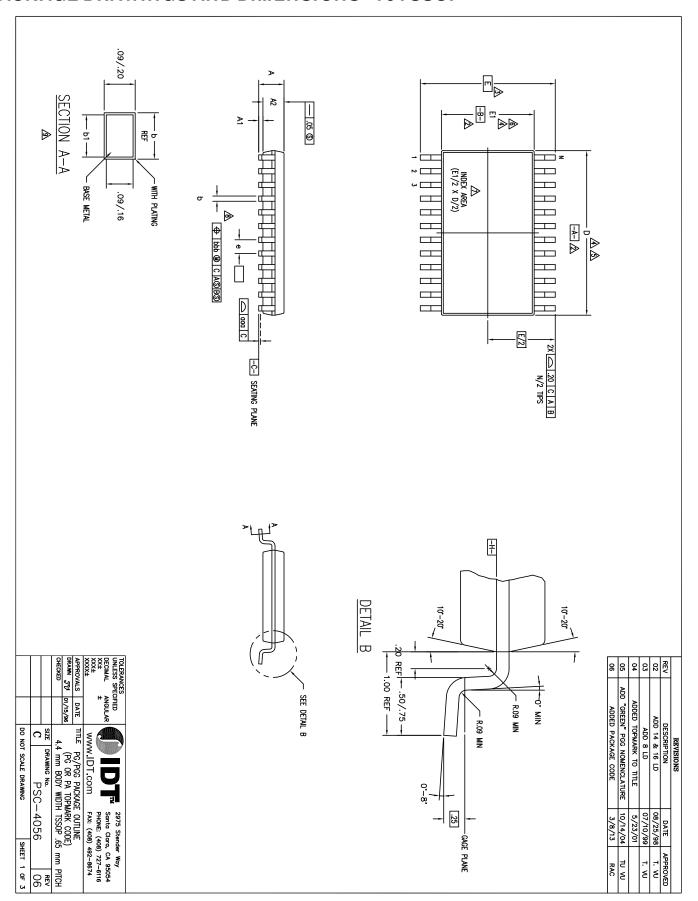
Voltage Waveforms Propagation Delay Times



Output Skew

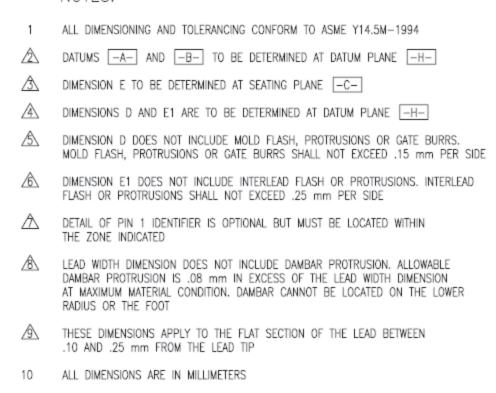


Pulse Skew


TEST CIRCUITS AND WAVEFORMS (cont.)

PACKAGE DRAWINGS AND DIMENSIONS - 16 VFQFPN

PACKAGE DRAWINGS AND DIMENSIONS - 16TSSOP

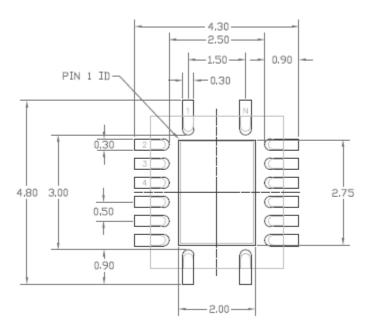


PACKAGE DRAWINGS AND DIMENSIONS - 16TSSOP (cont.)

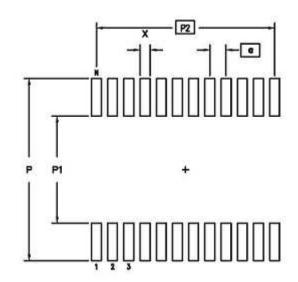
	PG/PGG16						
S M B L	JEDE	C VARIAT	ION	N			
B		AB		N T E			
L .	MIN	NOM	MAX	Ė			
Α	_	-	1.20				
A1	.05	-	.15				
A2	.80	1.00	1.05				
D	4.90	5.00	5.10	4,5			
Ε		6.40 BSC	,	3			
E1	4.30	4.40	4.50	4,6			
е		.65 BSC					
Ь	.19	-	.30				
Ь1	.19	.22	.25				
aaa	-	-	.10				
bbb	-	-	.10				
N		16					

NOTES:

11



THIS OUTLINE CONFORMS TO JEDEC PUBLICATION 95 REGISTRATION MO-153,


VARIATION AA, AB-1, AB, AC, AD & AE

RECOMMENDED LANDING PATTERNS

NOTE: All dimensions are in millimeters.

NR 16 pin

	MIN	MAX	
P	7.20	7.40	
PI	4.20	4.40	
P2	4.55 BSC		
X	.30	.50	
e	.65 BSC		
N	16		

16 TSSOP

ORDERING INFORMATION

Part/Order Number	Shipping Packaging	Package	Temperature
5V2305PGGI	Tubes	16-pin TSSOP	-40° to +85°C
5V2305PGGI8	Tape and Reel	16-pin TSSOP	-40° to +85°C
5V2305NRGI	Tubes	16-pin VFQFPN	-40° to +85°C
5V2305NRGI8	Tape and Reel	16-pin VFQFPN	-40° to +85°C

[&]quot;G" suffix to the part number denotes Pb-free configuration, RoHS compliant.

REVISION HISTORY

August 11, 2014 September 25, 2014 Pg. 5; Changed Rise/Fall Time minimum specs in 3.3V Swtiching Characteristics table from 0.7V/ns to 1.0V/ns Added 16TSSOP landing pattern and 16VFQFPN/TSSOP package drawings

