imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Model 637 Very Low Jitter LVPECL or LVDS Clock

Features

- Ceramic Surface Mount Package
- Very Low Phase Jitter Performance, 500fs Maximum
- Fundamental or 3rd Overtone Crystal Design
- Frequency Range 10 320MHz *
- +2.5V or +3.3V Operation
- Output Enable Standard
- Tape and Reel Packaging, EIA-418

Applications

- SerDes
- Storage Area Networking
- Broadband Access
- SONET/SDH/DWDM
- PON
- Ethernet/GbE/SyncE
- Fiber Channel
- Test and Measurement

Standard Frequencies

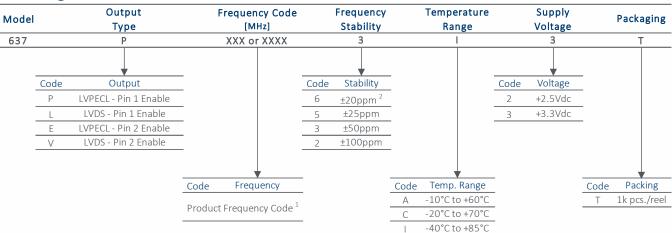
- 25.00MHz - 125.00MHz - 187.50MHz - 50.00MHz - 150.00MHz - 200.00MHz - 74.1758MHz - 155.52MHz - 212.50MHz - 74.25MHz - 156.25MHz - 250.00MHz

Part Dimensions

7.0 × 5.0 × 2.0mm • 178.462mg

Connect

- 100.00MHz - 161.1328MHz - 312.50MHz


* See Page 9 for additional developed frequencies.

Check with factory for availability of frequencies not listed.

Description

CTS Model 637 is a low cost, high performance clock oscillator supporting differential LVPECL or LVDS outputs. Employing the latest IC technology, M637 has excellent stability and low jitter/phase noise performance.

Ordering Information

Notes:

1] Refer to document 016-1454-0, Frequency Code Tables. 3-digits for frequencies <100MHz, 4-digits for frequencies 100MHz or greater.

2] Consult factory for availability of 6I Stability/Temperature combination.

Not all performance combinations and frequencies may be available. Contact your local CTS Representative or CTS Customer Service for availability.

This product is specified for use only in standard commercial applications. Supplier disclaims all express and implied warranties and liability in connection with any use of this product in any non-commercial applications or in any application that may expose the product to conditions that are outside of the tolerances provided in its specification.

DOC#008-0453-0 Rev. C

www.ctscorp.com

Page 1 of 9

Operating Conditions

SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT
V _{CC}	-	-0.5	-	5.0	V
		2.375	2.5	2.625	V
V _{CC}	±5%	3.135	3.3	3.465	
I _{CC}	Maximum Load	-	55	88	
		-	45	66	mA
т	-	-20	125	+70	°C
IA		-40	τZD	+85	Ĺ
T _{STG}	-	-40	-	+125	°C
	V _{cc} V _{cc} I _{cc} T _A	V _{CC} - V _{CC} ±5% I _{CC} Maximum Load T _A -	$\begin{array}{ccc} V_{CC} & - & -0.5 \\ & & & & & & \\ V_{CC} & \pm 5\% & & & & \\ & & & & & & \\ I_{CC} & Maximum Load & & & & \\ & & & & & & \\ I_{CC} & & & & & & \\ & & & & & & \\ & & & & & $	$ \begin{array}{cccc} & & - & & -0.5 & - \\ & & & & & & & \\ V_{CC} & \pm 5\% & & & & & \\ & & & & & & & \\ I_{CC} & Maximum Load & & & & & \\ & & & & & & & \\ I_{CC} & Maximum Load & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ I_{CC} & & & & & & & \\ & & & & & & & & \\ I_{CC} & & & & & & & \\ & & & & & & & & \\ I_{CC} & & & & & & & \\ I_{CC} & & \\ I_{CC} & & & \\ I_{CC} $	$ \begin{array}{cccccc} & & - & & -0.5 & - & 5.0 \\ & & & & & & & & & \\ V_{CC} & \pm 5\% & & & & & & & \\ & & & & & & & & & \\ V_{CC} & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & &$

Frequency Stability

PARAMETER	SYMBOL	CONDITIONS MIN TYP MAX		UNIT		
Frequency Range						
LVPECL	f _o	-		10 - 320		
LVDS			10 - 320			MHz
Frequency Stability [Note 1]	$\Delta f/f_{O}$	-	2	20, 25, 50 or 100		
Aging	$\Delta f/f_{25}$	First Year @ +25°C, nominal V _{CC}	-3	-3 - 3		ppm
1.] Inclusive of initial tolerance at tir	me of shipment, changes	in supply voltage, load, temperature and 1st year ag	ing.			

Output Parameters

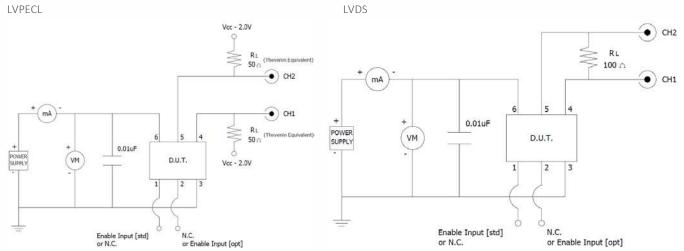
PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNIT	
Output Type	-	-		LVPECL		-	
Output Load	RL	Terminated to V_{CC} - 2.0V	-	50	-	Ohms	
	V _{OH}		V _{CC} - 1.025	-	V _{CC} - 0.880		
Output Voltage Levels	V _{OL}	PECL Load, -20°C to +70°C	V _{CC} - 1.810	-	V _{CC} - 1.620	V	
	V _{OH}		V _{CC} - 1.085	-	V _{CC} - 0.880	N/	
	V _{OL}	PECL Load, -40°C to +85°C	V _{CC} - 1.830	-	V _{CC} - 1.555	V	
Output Duty Cycle	SYM	@ V _{CC} - 1.3V	45	-	55	%	
Rise and Fall Time	T _R , T _F	@ 20%/80% Levels, R _L = 50 Ohms	-	0.3	0.7	ns	
Output Type	-	-		LVDS		-	
Output Load	RL	Between Outputs	-	100	-	Ohms	
Output Malta as Lough	V _{OH}		-	1.43	1.60		
Output Voltage Levels	V _{OL}	LVDS Load	0.90	1.10	-	V	
Output Duty Cycle	SYM	@ 1.25V	45	-	55	%	
Differential Output Voltage	V _{OD}	R _L = 100 Ohms	247	330	454	mV	
Offset Voltage	V _{OS}	LVDS Load	1.125	1.25	1.375	V	
Rise and Fall Time	T _R , T _F	@ 20%/80% Levels, R _L = 100 Ohms	-	0.4	0.7	ns	

DOC#008-0453-0 Rev. C

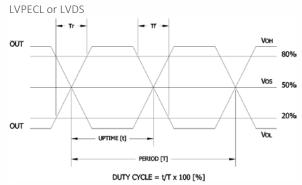
www.ctscorp.com

Model 637 Very Low Jitter LVPECL or LVDS Clock

Electrical Specifications


Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	
Start Up Time	Ts	Application of V_{CC}	-	2	5	ms	
Enable Function [Standby]							
Enable Input Voltage	V _{IH}	Pin 1 or 2 Logic '1', Output Enabled	$0.7V_{CC}$	-	-	V	
Disable Input Voltage	VIL	Pin 1 or 2 Logic '0', Output Disabled	-	-	$0.3V_{CC}$	V	
Disable Time	T _{PLZ}	Pin 1 or 2 Logic '0', Output Disabled	-	-	200	ns	
Enable Time	T _{PLZ}	Pin 1 or 2 Logic '1', Output Enabled	-	-	2	ms	
Phase Jitter, RMS	tjrms	Bandwidth 12 kHz - 20 MHz	-	300	500	fs	
Period Jitter, RMS	pjrms	-	-	2.6	-	ps	
Period Jitter, pk-pk	pjpk-pk	-	-	25	-	ps	


Enable Truth Table

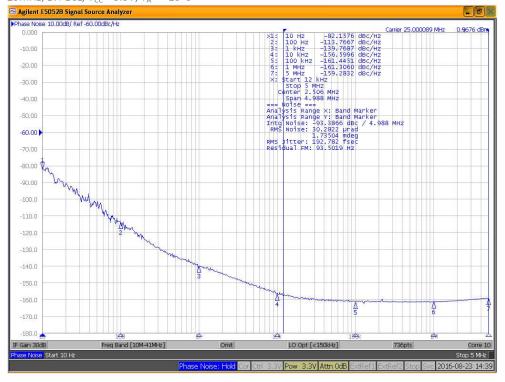
Pin 1 or Pin 2	Pin 4 & Pin 5
Logic '1'	Output
Open	Output
Logic 'O'	High Imp.

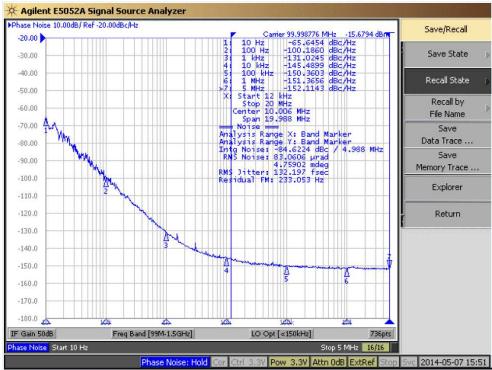
Test Circuit

Output Waveform

DOC#008-0453-0 Rev. C

www.ctscorp.com


Page 3 of 9


Performance Data

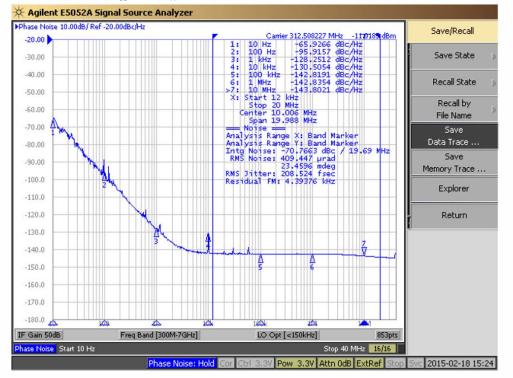
Phase Noise [typical]

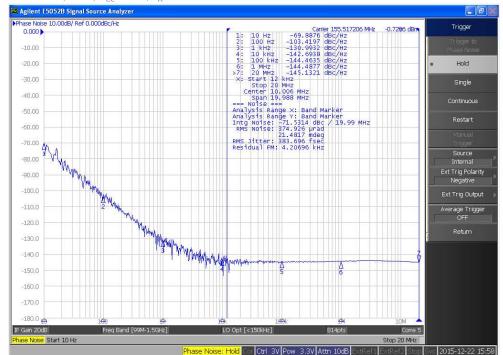
25MHz, LVPECL, V_{CC} = 3.3V, T_A = +25°C

100MHz, LVPECL, V_{CC} = 3.3V, T_A = +25°C

DOC#008-0453-0 Rev. C

www.ctscorp.com


Page 4 of 9



Performance Data

Phase Noise [typical]

312.50MHz, LVPECL, V_{CC} = 3.3V, T_A = +25°C

155.52MHz, LVDS, V_{CC} = 3.3V, T_A = +25°C

DOC#008-0453-0 Rev. C

www.ctscorp.com

Page 5 of 9

Phase Noise Tabulated

Typical, $V_{CC} = 3.3V$, $T_{A} = +25^{\circ}C$

PARAMETER	SYMBOL	CONDITIONS	ТҮР	UNIT
LVPECL @ 25.00MHz				
Phase Noise		Single Side Band		
		@ 10Hz	-82.16	
		@ 100Hz	-113.77	
		@ 1kHz	-139.77	dBc/Hz
	-	@ 10kHz	-156.60	ивс/пг
		@ 100kHz	-161.45	
		@ 1MHz	-161.31	
		@ 5MHz	-159.28	
Phase Jitter, RMS	tjrms	Integration Bandwidth 12kHz - 20MHz	192.78	fs
PARAMETER	SYMBOL	CONDITIONS	ТҮР	UNIT
LVPECL @ 312.20MHz				
Phase Noise		Single Side Band		
		@ 10Hz	-65.93	
		@ 100Hz	-95.92	
	_	@ 1kHz	-128.25	dBc/Hz
		@ 10kHz	-130.51	ubc/112
		@ 100kHz	-142.82	
		@ 1MHz	-142.84	
		@ 10MHz	-143.80	

LVPECL @ 100.00MHz				
Phase Noise		Single Side Band		
		@ 10Hz	-65.65	
		@ 100Hz	-100.19	
		@ 1kHz	-131.02	dBc/Hz
	-	@ 10kHz	-145.49	arc/Hz
		@ 100kHz	-150.36	
		@ 1MHz	-151.37	
		@ 5MHz	-152.11	
Phase Jitter, RMS	tjrms	Integration Bandwidth 12kHz - 20MHz	132.20	fs
PARAMETER	SYMBOL	CONDITIONS	TYP	UNIT
LVDS @ 155.52MHz				
Phase Noise		Single Side Band		
		@ 10Hz	-69.89	
		@ 100Hz	-103.42	
	_	@ 1kHz	-130.99	dBc/Hz
	-	@ 10kHz	-142.69	UDC/ HZ
		@ 100kHz	-144.46	
		@ 1MHz	-144.49	
		@ 20MHz	-145.13	

PARAMETER

Phase Jitter, RMS

SYMBOL

tjrms

Model 637 Very Low Jitter LVPECL or LVDS Clock

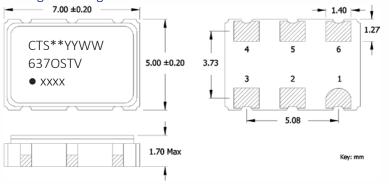
CONDITIONS

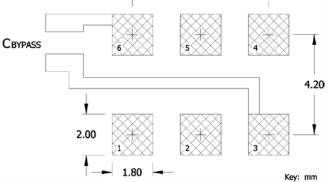
Integration Bandwidth 12kHz - 20MHz 383.70

ТҮР

UNIT

fs


DOC#008-0453-0 Rev. C


Very Low Jitter LVPECL or LVDS Clock

Mechanical Specifications

Package Drawing

Recommended Pad Layout 5.08

Pin Assignments

Pin	Symbol	Function
1	EOH or N.C.	Enable [std] or No Connect
2	N.C. or EOH	No Connect or Enable [opt]
3	GND	Circuit & Package Ground
4	Output	RF Output
5	Output	Complimentary RF Output
6	V _{cc}	Supply Voltage

Marking Information

- 1. ** Manufacturing Site Code.
- 2. YYWW Date Code; YY year, WW week.
- O Output Type; P or E = LVPECL, L or V = LVDS.
 ST Frequency Stability/Temperature Code.

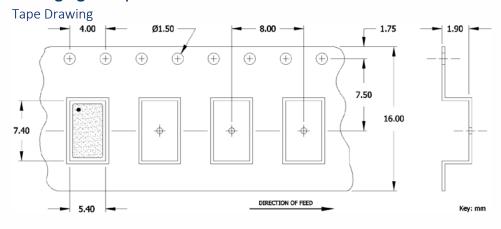
Model 637

- [Refer to Ordering Information] 5. V – Voltage Code; 3 = 3.3V, 2 = 2.5V.
- 6. xxxx Frequency Code.
 3-digits, frequencies below 100MHz
 4-digits, frequencies 100MHz or greater

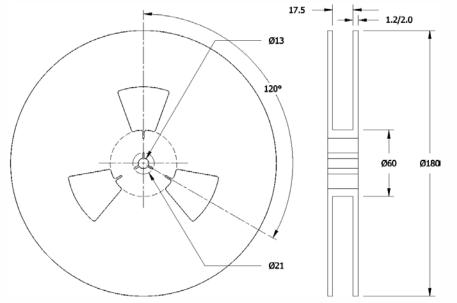
[See document 016-1454-0, Frequency Code Tables.]

Notes

- 1. JEDEC termination code (e4). Barrier-plating is nickel [Ni] with gold [Au] flash plate.
- Reflow conditions per JEDEC J-STD-020; +260°C maximum, 20 seconds.
- 3. MSL = 1.


DOC#008-0453-0 Rev. C

www.ctscorp.com


Page 7 of 9

Packaging - Tape and Reel

Reel Drawing

Notes

1. Device quantity is 1k pieces maximum per 180mm reel.

2. Complete CTS part number, frequency value and date code information must appear on reel and carton labels.

Addendum

Additional Developed Frequencies – MHz

FREQUENCY	FREQUENCY CODE	FREQUENCY	FREQUENCY CODE	FREQUENCY	FREQUENCY CODE	FREQUENCY	FREQUENCY CODE
10.000000	100	153.600000	1536				
19.440000	194	156.253906	156A				
27.000000	270	167.372800	167A				
40.000000	400	173.370800	1733				
44.736000	447	175.000000	1750				
80.000000	800	178.500000	1785				
120.000000	1200	180.000000	1800				
133.000000	1330	184.320000	1843				
148.351600	148A	225.000000	2250				
148.500000	1485						

Frequency Codes for Cover Page Table – MHz

FREQUENCY	FREQUENCY CODE	FREQUENCY	FREQUENCY CODE	FREQUENCY	FREQUENCY CODE	FREQUENCY	FREQUENCY CODE
25.000000	250	100.000000	1000	156.250000	1562	212.500000	2125
50.000000	500	125.000000	1250	161.132800	1611	250.000000	2500
74.175800	74A	150.000000	1500	187.500000	1875	312.500000	3125
74.250000	742	155.520000	1555	200.000000	2000		