

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

International Rectifier

6CWQ03FN

SCHOTTKY RECTIFIER

7 Amp

$$I_{F(AV)} = 7Amp$$

 $V_R = 30V$

Major Ratings and Characteristics

Characteristics	Values	Units	
I _{F(AV)} Rectangular waveform	7	А	
V _{RRM}	30	V	
I _{FSM} @ tp=5 µs sine	535	Α	
V _F @3Apk, T _J = 125°C (per leg)	0.35	V	
T _J range	-40 to 150	°C	

Description/ Features

The 6CWQ03FN surface mount, center tap, Schottky rectifier series has been designed for applications requiring low forward drop and small foot prints on PC board. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Popular D-PAK outline
- Center tap configuration
- Small foot print, surface mountable
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

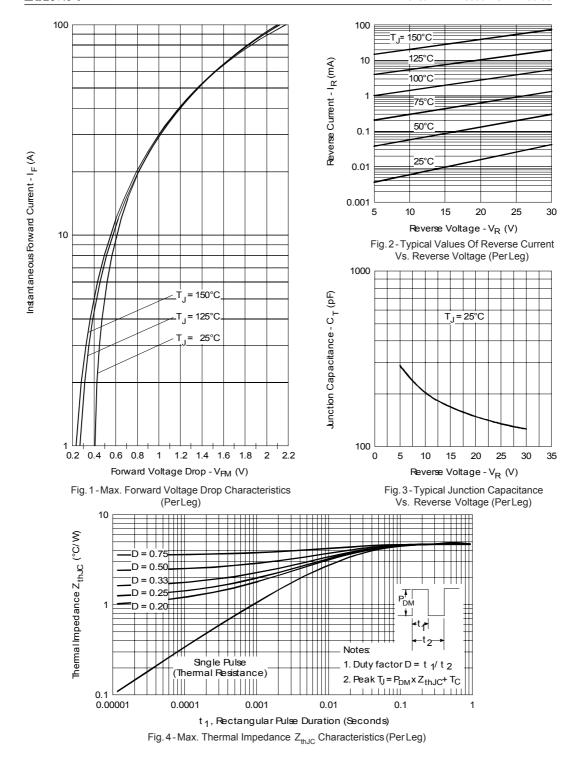
Voltage Ratings

Partnumber	6CWQ03FN
V _R Max. DC Reverse Voltage (V)	20
V _{RWM} Max. Working Peak Reverse Voltage (V)	30

Absolute Maximum Ratings

	Parameters	6CWQ	Units	Conditions	
I _{F(AV)}	Max.AverageForward (PerLeg)	3.5	Α	50% duty cycle @ T _C = 134°C, rectangular wave form	
` '	Current*SeeFig.5 (PerDevice)	7			
I _{FSM}	Max.PeakOneCycleNon-Repetitive	535	Α	5μs Sine or 3μs Rect. pulse	Following any rated load condition and with
	Surge Current (Per Leg) *See Fig. 7	90		10ms Sine or 6ms Rect. pulse	rated V _{RRM} applied
E _{AS}	Non-Repet.Avalan.Energy(PerLeg)	8	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 2 \text{Amps}, L = 4 \text{mH}$	
I _{AR}	Repetitive Avalanche Current (Per Leg)	1.0	А	Current decaying linearly to zero in 1 μ sec Frequency limited by T _J max. V _A = 1.5 x V _R typical	

Electrical Specifications


	Parameters	6CWQ	Units	C	Conditions
V _{FM}	Max. Forward Voltage Drop	0.45	V	@ 3A	T,= 25 °C
	(Per Leg) * See Fig. 1 (1)	0.52	V	@ 6A	1 _J = 23 0
		0.35	V	@ 3A	T 405 °C
		0.46	V	@ 6A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current	2	mA	T _J = 25 °C	\/ = rated \/
	(Per Leg) * See Fig. 2 (1)	50	mA	T _J = 125 °C	V _R = rated V _R
V _{F(TO}	Threshold Voltage	0.22	V	$T_J = T_J \text{ max.}$	
r _t	Forward Slope Resistance	32.86	mΩ		
C _T	Typ. Junction Capacitance (PerLeg)	290	pF	V _R = 5V _{DC} (test signal range 100Khz to 1Mhz) 25°C	
L _s	Typical Series Inductance (Per Leg)	5.0	nH	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	10000	V/µs	(Rated V _R)	

(1) Pulse Width < 300µs, Duty Cycle <2%

Thermal-Mechanical Specifications

	Parameters	6CWQ	Units	Conditions
T _J	Max. Junction Temperature Range (*)	-40 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-40 to 150	°C	
R _{thJC}	Max. Thermal Resistance (Per Leg)	4.70	°C/W	DC operation *See Fig. 4
	Junction to Case (Per Device)	2.35		
wt	Approximate Weight	0.3(0.01)	g(oz.)	
	Case Style	D-Pa	k	Similar to TO-252AA
	MarkingDevice	6CWQ0	3FN	

thermal runaway condition for a diode on its own heatsink

Bulletin PD-20560 rev. H 05/06

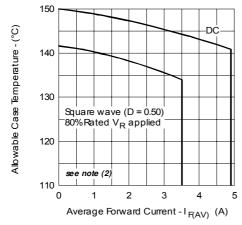


Fig. 5 - Max. Allowable Case Temperature Vs. Average Forward Current (Per Leg)

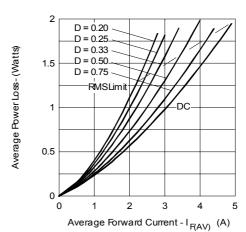
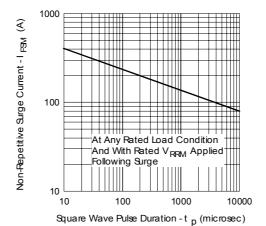
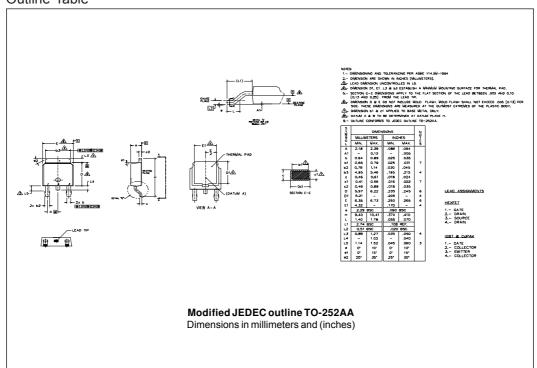
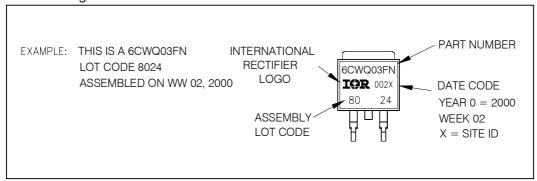
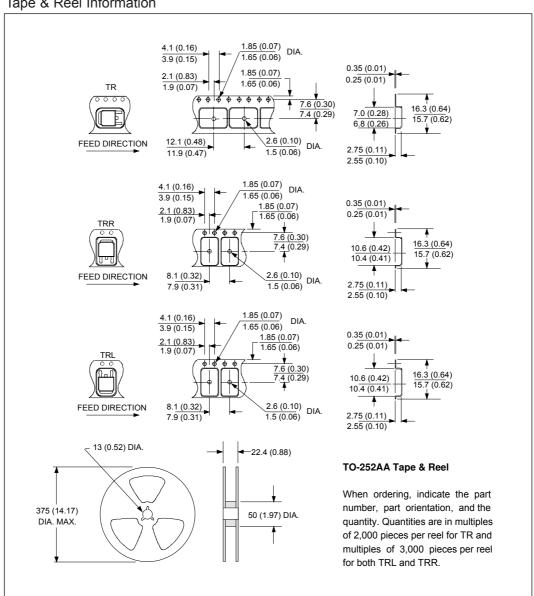


Fig. 6-Forward Power Loss Characteristics (PerLeg)


Fig. 7 - Max. Non-Repetitive Surge Current (Per Leg)

 $\begin{aligned} \textbf{(2)} \;\; &\text{Formula used: } \textbf{T}_{\text{C}} = \textbf{T}_{\text{J}} - (\text{Pd} + \text{Pd}_{\text{REV}}) \, \textbf{x} \, \textbf{R}_{\text{thJC}}; \\ &\text{Pd} = \text{Forward PowerLoss} = \textbf{I}_{F(\text{AV})} \, \textbf{x} \, \textbf{V}_{\text{FM}} \, \textcircled{@} \, (\textbf{I}_{F(\text{AV})} / \, \textbf{D}) \; \; (\text{see Fig. 6}); \\ &\text{Pd}_{\text{REV}} = \text{Inverse Power Loss} = \textbf{V}_{\text{R1}} \, \textbf{x} \, \textbf{I}_{\text{R}} \, (\textbf{1} - \textbf{D}); \, \textbf{I}_{\text{R}} \, \textcircled{@} \, \textbf{V}_{\text{R1}} = 80\% \, \text{rated} \, \textbf{V}_{\text{R}} \end{aligned}$


Outline Table

Part Marking Information

Tape & Reel Information

Ordering Information Table

Device Code 6 C W Q 03 FN TRL - 1 2 3 4 5 6 7 8

- Current Rating (7A)
- Center Tap Configuration
- Package Identifier
 - W = D-Pak
- 4 Schottky "Q" Series
- Voltage Rating (03 = 30V)
- 6 FN = TO-252AA
- 7 • none = Tube (50 pieces)
 - TR = Tape & Reel
 - TRL = Tape & Reel (Left Oriented)
 - TRR = Tape & Reel (Right Oriented)
- none = Standard Production
 - PbF = Lead-Free

Data and specifications subject to change without notice. This product has been designed and qualified for AEC Q101 Level. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309

05/06

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products. Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier®, IR®, the IR logo, HEXFET®, HEXSense®, HEXDIP®, DOL®, INTERO®, and POWIRTRAIN® are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com Revision: 12-Mar-07