

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

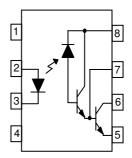
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DATASHEET


8 PIN DIP LOW INPUT CURRENT HIGH GAIN SPLIT DARLINGTON PHOTOCOUPLER 6N138 6N139

Features

- High current transfer ratio-2000% typical
- High isolation voltage between input and output (Viso=5000 Vrms)
- Guaranteed performance from 0°C to 70°C
- Pb free and RoHS compliant.
- UL approved (No. 214129)
- VDE approved (No. 132249)
- SEMKO approved
- NEMKO approved
- DEMKO approved
- FIMKO approved
- •CSA approved (No. 2037145)

Schematic

Pin Configuration

- 1. No Connection
- 2. Anode
- 3. Cathode
- 4. No Connection
- 5. Gnd
- 6. Vout
- 7. V_B
- 8. Vcc

Description

The 6N138 and 6N139 devices each consists of an infrared emitting diode, optically coupled to a high gain split Darlington photo detector. They provide extremely high current transfer ratio between input and output, with access to a base terminal to adjust the gain bandwidth. These devices are packaged in an 8-pin DIP package and available in wide-lead spacing and SMD options.

Applications

- Digital logic ground isolation
- RS-232C line receiver
- · Low input current line receiver
- Microprocessor bus isolation
- · Current loop receiver

Absolute Maximum Ratings (Ta=25°C)

	Parameter		Symbol	Rating	Unit
	Forward current		I _F	20	mA
	Peak forward current (50% duty, 1ms P.W)		I _{FP}	40	mA
Input	Peak transient current (≤1µs P.W,300pps)		I _{Ftrans}	1	Α
	Reverse voltage		V_{R}	5	V
	Power dissipation		P _{IN}	45	mW
	Power dissipation		Po	100	mW
	Output current		Ю	60	mA
Output	Emitter-Base Reverse Voltage		VER	0.5	V
•	Output voltage	6N138 6N139	Vo	-0.5 to 7 -0.5 to 18	V
	Supply voltage	6N138 6N139	V _{CC}	-0.5 to 7 -0.5 to 18	V
Isolation v	oltage *1		V_{ISO}	5000	V rms
Operating	temperature		T _{OPR}	-40 ~ +85	℃
Storage Temperature		T _{STG}	-55 ~ +125	.€	
Soldering	temperature *2		T _{SOL}	260	℃

Notes:

^{*1} AC for 1 minute, R.H.= 40 ~ 60% R.H. In this test, pins 1, 2, 3, 4 are shorted together, and pins 5, 6, 7, 8 are shorted together.

^{*2} For 10 seconds

Electrical Characteristics (T_A=0 to 70 °C unless specified otherwise)

Input

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward voltage	V _F	-	1.3	1.7	V	I _F = 1.6mA
Reverse Voltage	V _R	5.0	-	-	V	I _R = 10μA, T _A =25℃
Temperature coefficient of forward voltage	$\Delta V_F/\Delta T_A$	-	-1.8	-	mV/℃	I _F =1.6mA

Output

Parameter		Symbol	Min	Тур.	Max.	Unit	Condition
Logic High	6N138	. 1	-	0.01	100	^	I _E =0mA, V _O =V _{CC} =18V
Output Current	6N139	Гон -	-	-	250	μΑ	IF=UIIIA, VO=VCC=10V
Logic Low	6N138	laa.	_	0.6	1.5	mA	I _F =1.6mA, V _O =Open,
Supply Current	6N139	ICCL	_	0.0	1.5	ША	V _{CC} =18V
Logic High	6N138	1	_	0.05	10	μΑ	I _F =0mA, V _O =Open,
Supply Current	6N139	ГССН	-	0.05	10	μΑ	V _{CC} =18V

Transfer Characteristics (T_a=0 to 70 ℃ unless specified otherwise, Vcc=4.5V)

Param	eter	Symbol	Min	Тур.	Max.	Unit	Condition		
Current	6N139	_	400	2500	-		$I_F = 0.5 \text{mA}, V_O = 0.4 \text{V}, V_{CC} = 4.5 \text{V}$		
Transfer Ratio		CTR	500	2000	-	%	$I_F = 1.6 \text{mA}, V_O = 0.4 \text{V},$		
rialio	6N138		300	2000	-		$V_{CC}=4.5V$		
	6N139 V _O				-	0.05	0.4		$I_F = 0.5 \text{mA}, I_O = 2 \text{mA}, V_{CC} = 4.5 \text{V}$
Lasia Law		6N139 V _{OL} - - 6N138 -	-	0.09	0.4		$I_F = 1.6 \text{mA}, I_O = 8 \text{mA},$ $V_{CC} = 4.5 \text{V}$		
Logic Low Output Voltage			-	0.12	0.4	V	$I_F = 5mA$, $I_O = 15mA$, $V_{CC}=4.5V$		
voltage			-	0.17	0.4		$I_F = 12\text{mA}, I_O = 24\text{mA},$ $V_{CC} = 4.5V$		
	6N138		-	0.06	0.4		$I_F = 1.6 \text{mA}, I_O = 4.8 \text{mA}, V_{CC} = 4.5 \text{V}$		

Switching Characteristics (T_a=0 to 70 °C unless specified otherwise, Vcc=5V)

Switching C	Jiiaiaoto	1101100 (1	a=0 t0 7	J C dilli	ooo opot	Jillou ot	ilei wise, vcc=5v)		
Param	eter	Symbol	Min	Тур.	Max.	Unit	Condition		
		_	-	5	25		$I_F = 0.5 \text{mA}$, $R_L = 4.7 \text{k}\Omega$, $T_A = 25 ^{\circ}\text{C}$		
Propagatio	6N139		-	-	30	μs	$I_F = 0.5 mA$, $R_L = 4.7 k\Omega$		
n Delay Time to	011139	TPHL -	-	0.2	1		$I_F = 12mA , R_L=270\Omega, \\ T_A=25^{\circ}\!C$		
Logic Low			-	-	2		$I_F = 12mA$, $R_L = 270\Omega$		
(Fig. 13)	6N138		-	1.4	10		$I_F = 1.6 \text{mA}$, $R_L = 2.2 \text{k}\Omega$, $T_A = 25 ^{\circ}\text{C}$		
	011100		-	-	15		$I_F = 1.6 mA$, $R_L = 2.2 k\Omega$		
	6N139 6N138				-	16	60		$I_F = 0.5$ mA , $R_L = 4.7$ kΩ, $T_A = 25$ °C
Dropogatio		N139 - TPLH -	-	-	90	μs	$I_F = 0.5 mA$, $R_L = 4.7 k\Omega$		
Propagatio n Delay Time to			-	1.7	7		$I_F = 12\text{mA}$, $R_L = 270\Omega$, $T_A = 25$ °C		
Logic High			-	-	10		$I_F = 12mA$, $R_L = 270\Omega$		
(Fig. 13)			-	8	35		$I_F = 1.6\text{mA}$, $R_L = 2.2\text{k}\Omega$, $T_A = 25$ °C		
		011100		-	-	50		$I_F=1.6mA\;,\;R_L{=}2.2k\Omega$	
Common Mode Transient Immunity at Logic High (Fig. 14) *3		СМн	1,000	-	-	V/µs	$I_F = 0mA,$ $V_{CM} = 10Vp-p,$ $R_L = 2.2K\Omega, T_A = 25 ^{\circ}C$		
Common Mode Transient Immunity at Logic Low (Fig. 14) *3		CM _L	1,000	-	-	V/µs	$I_F = 1.6 mA,$ $V_{CM} = 10 Vp-p,$ $R_L = 2.2 K\Omega, T_A = 25 °C$		

^{*} Typical values at $T_a = 25$ °C

Typical Electro-Optical Characteristics Curves

Fig.1 LED Forward Current vs. Forward Voltage

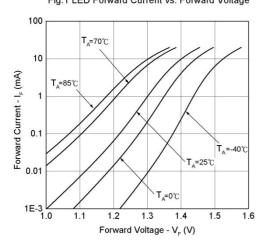
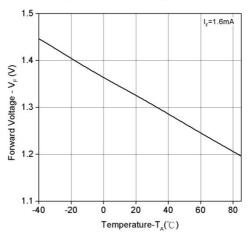



Fig.2 LED Forward Voltage vs. Temperature

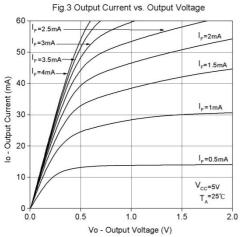


Fig.4 Output Current vs. Input Diode Forward Current

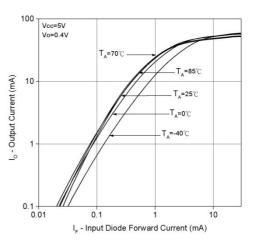


Fig.5 Current Transfer Ratio vs. Forward Current

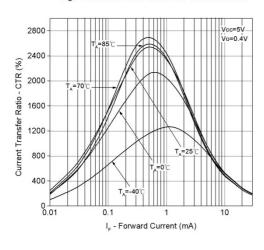


Fig.6 Current Transfer Ratio vs. Base-Emitter Resistance

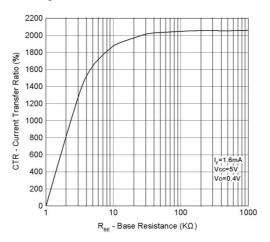


Fig.7 Non-saturated Rise nand Fall Times vs. Load Resistance

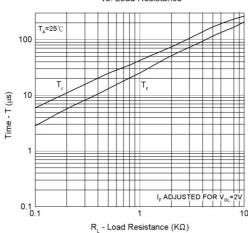


Fig.8 Propagation Delay To Logic Low vs. Base-Emitter Resistance

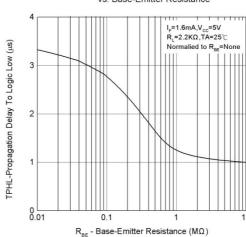


Fig.9 Propagation Delay vs. Input Diode Forward Current

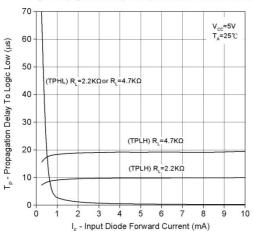


Fig.10 Propagation Delay to Logic Low vs. Pulse Period

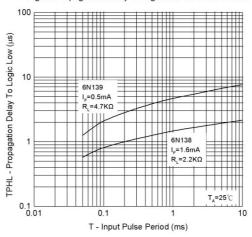


Fig.11 Propagation Delay vs. Temperature

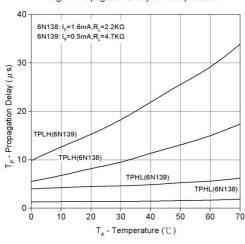


Fig.12 Logic Low Supply Current vs. Input Diode Forward Current



Fig. 13 Switching Time Test Circuit and Waveform

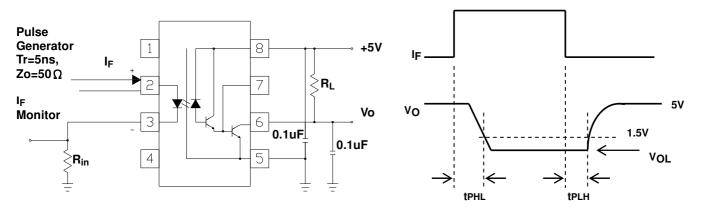
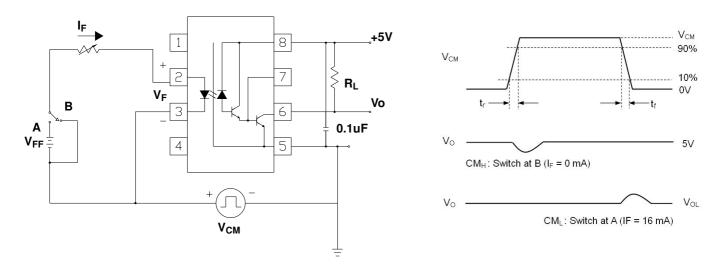



Fig. 14 Common Mode Transient Immunity Test Circuit and Waveform

Note:

*3 Common mode transient immunity in logic high level is the maximum tolerable (positive) dVcm/dt on the leading edge of the common mode pulse signal VCM, to assure that the output will remain in a logic high state (i.e., VO > 2.0V).

Common mode transient immunity in logic low level is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a logic low state (i.e., VO < 0.8V).

Order Information

Part Number

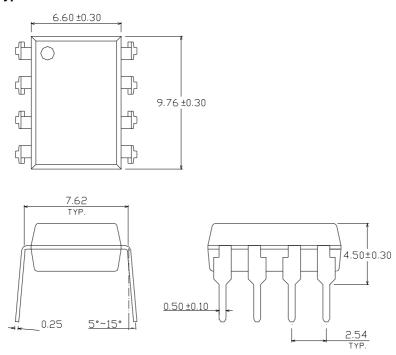
6N13XY(Z)-V

Note

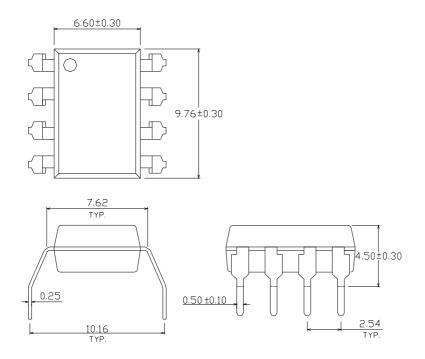
= Part No. (X = 8 or 9)

X Y = Lead form option (S, S1, M or none)

Z V = Tape and reel option (TA, TB or none).

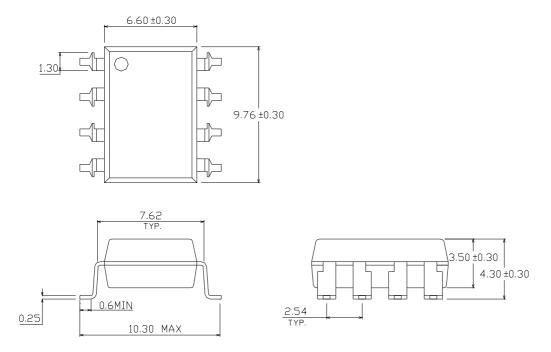

= VDE (optional)

Option	Description	Packing quantity
None	Standard DIP-8	45 units per tube
M	Wide lead bend (0.4 inch spacing)	45 units per tube
S (TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
S (TB)	Surface mount lead form + TB tape & reel option	1000 units per reel
S1 (TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S1 (TB)	Surface mount lead form (low profile) + TB tape & reel option	1000 units per reel

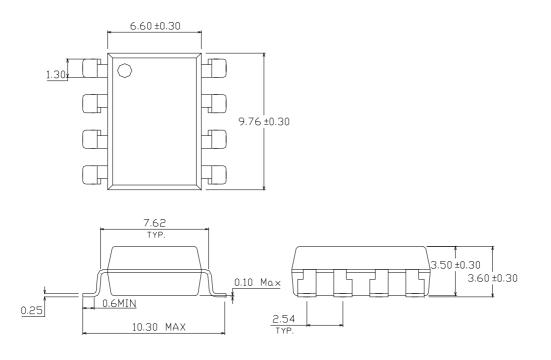


Package Dimension (Dimensions in mm)

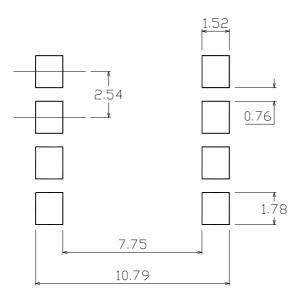
Standard DIP Type



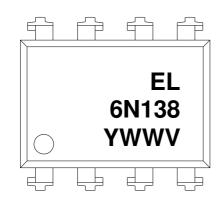
Option M Type



Option S Type



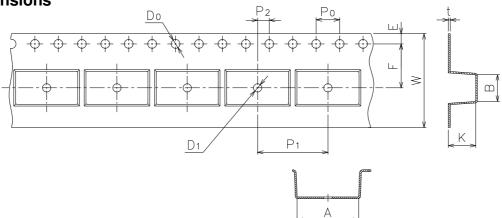
Option S1 Type



Recommended pad layout for surface mount leadform

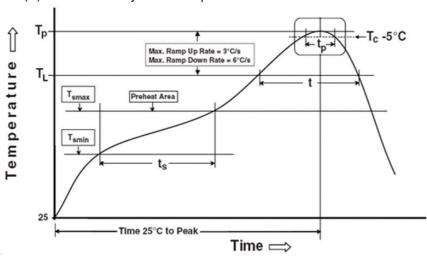
Device Marking

Notes


EL denotes EVERLIGHT
6N138 denotes Device Number
Y denotes 1 digit Year code
WW denotes 2 digit Week code
V denotes VDE (Optional)

Tape & Reel Packing Specifications

Option TA Option TB Option TB


Dimension No.	Α	В	Do	D1	E	F
Dimension(mm)	10.4±0.1	10.0±0.1	1.5+0.1/-0	1.5±0.25/-0	1.75±0.1	7.5±0.1
Dimension No.	Ро	P1	P2	t	W	К
		12.0±0.1	2.0±0.05	0.4±0.05	16.0±0.3/	4.5±0.1

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note: Reference: IPC/JEDEC J-STD-020D

Preheat

Temperature min (T _{smin})	150 ℃
Temperature max (T _{smax})	200℃
Time $(T_{smin} \text{ to } T_{smax}) (t_s)$	60-120 seconds
Average ramp-up rate (T _{smax} to T _p)	3 °C/second max

Other

Liquidus Temperature (T _L)	217 ℃
Time above Liquidus Temperature (t $_{\rm L}$)	60-100 sec
Peak Temperature (T _P)	260 <i>°</i> C
Time within 5 $^{\circ}\!$	30 s
Ramp- Down Rate from Peak Temperature	6°C /second max.
Time 25 ℃ to peak temperature Reflow times	8 minutes max. 3 times

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT corporation. Please don't reproduce or cause anyone to reproduce them without EVERLIGHT's consent.