

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

128K x 36, 256K x 18 3.3V Synchronous SRAMs 3.3V I/O, Pipelined Outputs Burst Counter, Single Cycle Deselect

IDT71V3576S IDT71V3578S

Features

- 128K x 36, 256K x 18 memory configurations
- Supports high system speed:

Commercial and Industrial:

- 150MHz 3.8ns clock access time
- 133MHz 4.2ns clock access time
- ◆ LBO input selects interleaved or linear burst mode
- Self-timed write cycle with global write control (GW), byte write enable (BWE), and byte writes (BWx)
- 3.3V core power supply
- Power down controlled by ZZ input
- 3.3V I/O
- Packaged in a JEDEC Standard 100-pin plastic thin quad flatpack (TQFP)

Description

The IDT71V3576/78 are high-speed SRAMs organized as 128K x 36/256K x 18. The IDT71V3576/78 SRAMs contain write, data, address and control registers. Internal logic allows the SRAM to generate a self-timed write based upon a decision which can be left until the end of the write cycle.

The burst mode feature offers the highest level of performance to the system designer, as the IDT71V3576/78 can provide four cycles of data for a single address presented to the SRAM. An internal burst address counter accepts the first cycle address from the processor, initiating the access sequence. The first cycle of output data will be pipelined for one cycle before it is available on the next rising clock edge. If burst mode operation is selected (\overline{ADV} =LOW), the subsequent three cycles of output data will be available to the user on the next three rising clock edges. The order of these three addresses are defined by the internal burst counter and the \overline{LBO} input pin.

The IDT71V3576/78 SRAMs utilize the latest high-performance CMOS process and are packaged in a JEDEC standard 14mm x 20mm 100-pin thin plastic quad flatpack (TQFP).

Pin Description Summary

Address Inputs	Input	Synchronous
Chip Enable	Input	Synchronous
Chip Selects	Input	Synchronous
Output Enable	Input	Asynchronous
Global Write Enable	Input	Synchronous
Byte Write Enable	Input	Synchronous
Individual Byte Write Selects	Input	Synchronous
Clock	Input	N/A
Burst Address Advance	Input	Synchronous
Address Status (Cache Controller)	Input	Synchronous
Address Status (Processor)	Input	Synchronous
Linear / Interleaved Burst Order	Input	DC
Sleep Mode	Input	Asynchronous
Data Input / Output	l/O	Synchronous
Core Power, I/O Power	Supply	N/A
Ground	Supply	N/A
	Chip Enable Chip Selects Output Enable Global Write Enable Byte Write Enable Individual Byte Write Selects Clock Burst Address Advance Address Status (Cache Controller) Address Status (Processor) Linear / Interleaved Burst Order Sleep Mode Data Input / Output Core Power, I/O Power	Chip Enable Input Chip Selects Input Output Enable Input Global Write Enable Input Byte Write Enable Input Individual Byte Write Selects Input Clock Input Burst Address Advance Input Address Status (Cache Controller) Input Address Status (Processor) Input Linear / Interleaved Burst Order Input Sleep Mode Input Data Input / Output Core Power, I/O Power Supply

5279 tbl 01

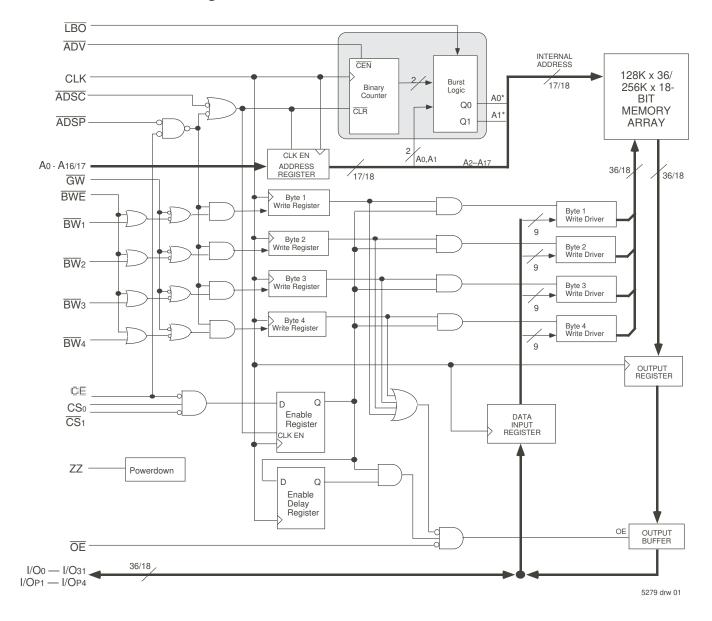
NOTE:

1. \overline{BW}_3 and \overline{BW}_4 are not applicable for the IDT71V3578.

The IDT logo is a registered trademark of Integrated Device Technology, Inc

DECEMBER 2015

Pin Definitions(1)


Symbol	Pin Function	I/O	Active	Description
A0-A17	Address Inputs	Ι	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK and $\overline{\text{ADSC}}$ Low or $\overline{\text{ADSP}}$ Low and $\overline{\text{CE}}$ Low.
ADSC	Address Status (Cache Controller)	Ι	LOW	Synchronous Address Status from Cache Controller. ADSC is an active LOW input that is used to load the address registers with new addresses.
ADSP	Address Status (Processor)	_	LOW	Synchronous Address Status from Processor. $\overline{\text{ADSP}}$ is an active LOW input that is used to load the address registers with new addresses. $\overline{\text{ADSP}}$ is gated by $\overline{\text{CE}}$.
ĀDV	Burst Address Advance	_	LOW	Synchronous Address Advance. $\overline{\text{ADV}}$ is an active LOW input that is used to advance the internal burst counter, controlling burst access after the initial address is loaded. When the input is HIGH the burst counter is not incremented; that is, there is no address advance.
BWE	Byte Write Enable	-	LOW	Synchronous byte write enable gates the byte write inputs \overline{BW}_1 - \overline{BW}_4 . If \overline{BWE} is LOW at the rising edge of CLK then \overline{BW}_1 inputs are passed to the next stage in the circuit. If \overline{BWE} is HIGH then the byte write inputs are blocked and only \overline{GW} can initiate a write cycle.
BW1-BW4	Individual Byte Write Enables	Ι	LOW	Synchronous byte write enables. \overline{BW}_1 controls I/O ₀₋₇ , I/O _{P1} , \overline{BW}_2 controls I/O ₈₋₁₅ , I/O _{P2} , etc. Any active byte write causes all outputs to be disabled.
CE	Chip Enable	I	LOW	Synchronous chip enable. \overline{CE} is used with CSo and \overline{CS} 1 to enable the IDT71V3576/78. \overline{CE} also gates ADSP.
CLK	Clock	I	N/A	This is the clock input. All timing references for the device are made with respect to this input.
CS ₀	Chip Select 0	- 1	HIGH	Synchronous active HIGH chip select. CSo is used with $\overline{\text{CE}}$ and $\overline{\text{CS}}_1$ to enable the chip.
ŪS₁	Chip Select 1	- 1	LOW	Synchronous active LOW chip select. $\overline{\text{CS}}_1$ is used with $\overline{\text{CE}}$ and CSo to enable the chip.
Ū₩	Global Write Enable	I	LOW	Synchronous global write enable. This input will write all four 9-bit data bytes when LOW on the rising edge of CLK. $\overline{\text{GW}}$ supersedes individual byte write enables.
I/O0-I/O31 I/OP1-I/OP4	Data Input/Output	I/O	N/A	Synchronous data input/output (I/O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK.
<u>LBO</u>	Linear Burst Order	_	LOW	Asynchronous burst order selection input. When $\overline{\text{LBO}}$ is HIGH, the interleaved burst sequence is selected. When $\overline{\text{LBO}}$ is LOW the Linear burst sequence is selected. $\overline{\text{LBO}}$ is a static input and must not change state while the device is operating.
ŌĒ	Output Enable	I	LOW	Asynchronous output enable. When $\overline{\text{OE}}$ is LOW the data output drivers are enabled on the I/O pins if the chip is also selected. When $\overline{\text{OE}}$ is HIGH the I/O pins are in a high-impedance state.
77.	Sleep Mode	Ι	HIGH	Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the IDT71V3576/78 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.This pin has an internal pull down.
VDD	Power Supply	N/A	N/A	3.3V core power supply.
VDDQ	Power Supply	N/A	N/A	3.3V I/O Supply.
Vss	Ground	N/A	N/A	Ground.
NC	No Connect	N/A	N/A	NC pins are not electrically connected to the device.

5279 tbl 02

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Functional Block Diagram

Absolute Maximum Ratings(1)

Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	٧
VTERM ^(3,6)	Terminal Voltage with Respect to GND	-0.5 to VDD	٧
VTERM ^(4,6)	Terminal Voltage with Respect to GND	-0.5 to V _{DD} +0.5	٧
VTERM ^(5,6)	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	٧
TA ⁽⁷⁾	Commercial Operating Temperature	-0 to +70	ů
	Industrial Operating Temperature	-40 to +85	°C
TBIAS	Temperature Under Bias	-55 to +125	ů
Тѕтс	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	2.0	W
Іоит	DC Output Current	50	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VDD terminals only.
- 3. VDDQ terminals only.
- 4. Input terminals only.
- 5. I/O terminals only.
- 6. This is a steady-state DC parameter that applies after the power supplies have ramped up. Power supply sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
- 7. Ta is the "instant on" case temperature.

Recommended Operating Temperature and Supply Voltage

Grade Temperature ⁽¹⁾		Vss	VDD	VDDQ
Commercial	0°C to +70°C	0V	3.3V±5%	3.3V±5%
Industrial	-40°C to +85°C	0V	3.3V±5%	3.3V±5%

NOTES:

5279 tbl 04

1. Ta is the "instant on" case temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
VDD	Core Supply Voltage	3.135	3.3	3.465	٧
VDDQ	VDDQ I/O Supply Voltage		3.3	3.465	٧
Vss	Supply Voltage	0	0	0	٧
VIH	Input High Voltage - Inputs	2.0		VDD +0.3	٧
VIH	VIH Input High Voltage - I/O			VDDQ +0.3 ⁽¹⁾	٧
VIL	Input Low Voltage	-0.3 ⁽²⁾		0.8	٧

5279 tbl 06

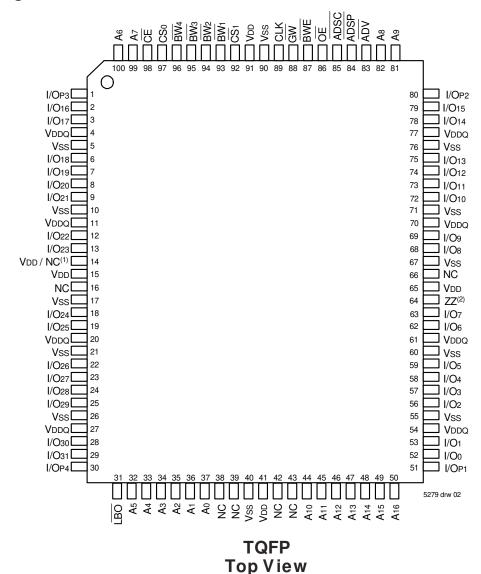
NOTES.

5279 tbl 03

- 1. ViH (max) = VDDQ + 1.0V for pulse width less than tcyc/2, once per cycle.
- 2. VIL (min) = -1.0V for pulse width less than tcyc/2, once per cycle.

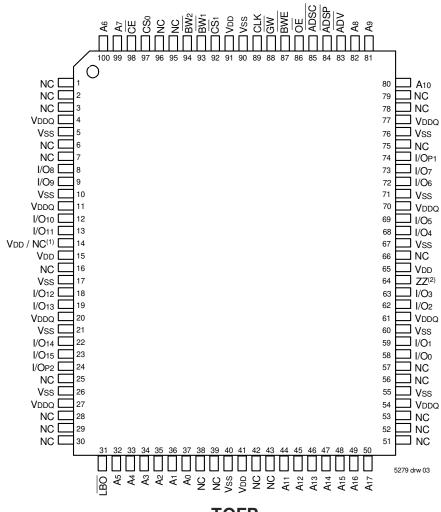
100 Pin TQFP Capacitance

 $(TA = +25^{\circ}C, f = 1.0MHz)$


Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	5	pF
Cvo	I/O Capacitance	Vout = 3dV	7	pF

NOTE

5279 tbl 07


1. This parameter is guaranteed by device characterization, but not production tested.

Pin Configuration – 128K x 36

- 1. Pin 14 can either be directly connected to VDD, or connected to an input voltage ≥ VIH, or left unconnected.
- 2. Pin 64 can be left unconnected and the device will always remain in active mode.

Pin Configuration -256K x 18

TQFP Top View

- 1. Pin 14 can either be directly connected to VDD, or connected to an input voltage ≥ VIH, or left unconnected.
- 2. Pin 64 can be left unconnected and the device will always remain in active mode.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 5%)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
IIul	Input Leakage Current	VDD = Max., VIN = 0V to VDD	_	5	μA
LZZ	ZZ and LBO Input Leakage Current ⁽¹⁾	VDD = Max., VIN = 0V to VDD		30	μΑ
IILOI	Output Leakage Current	Vout = 0V to VdDQ, Device Deselected	-	5	μΑ
Vol	Output Low Voltage	IOL = +8mA, VDD = Min.	-	0.4	V
Vон	Output High Voltage	loн = -8mA, Vdd = Min.	2.4	_	V

NOTE:

5279 tbl 08

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽¹⁾

			150MHz		133		
Symbol	Parameter	Test Conditions	Com'l	Ind	Com'l	Ind	Unit
ldd	Operating Power Supply Current	Device Selected, Outputs Open, $VDD = Max.$, $VDDQ = Max.$, $VIN \ge VIH \text{ or } \le VIL$, $f = fMax^{(2)}$	295	305	250	260	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, VDD = Max., VDDQ = Max., VIN \geq VHD or \leq VLD, f = $0^{(2,3)}$	30	35	30	35	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Outputs Open, $VDD = Max.$, $VDDQ = Max.$, $VIN \ge VHD$ or $\le VLD$, $f = fMax^{(2,3)}$	105	115	100	110	mA
lzz	Full Sleep Mode Supply Current	$ZZ \ge VHD$, $VDD = Max$.	30	35	30	35	mA

NOTES:

5279 tbl 09

- 1. All values are maximum guaranteed values.
- 2. At f = fMAX, inputs are cycling at the maximum frequency of read cycles of 1/tcvc while ADSC = LOW; f=0 means no input lines are changing.
- 3. For I/Os VHD = VDDQ 0.2V, VLD = 0.2V. For other inputs VHD = VDD 0.2V, VLD = 0.2V.

AC Test Conditions

(VDDQ = 3.3V)

(1004 - 0.01)	
Input Pulse Levels	0 to 3V
Input Rise/Fall Times	2ns
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
AC Test Load	See Figure 1

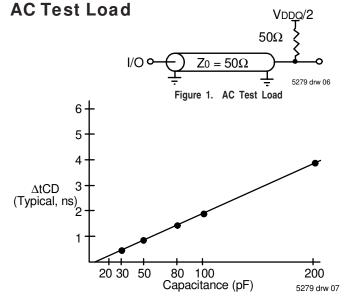


Figure 2. Lumped Capacitive Load, Typical Derating

^{1.} The LBO pin will be internally pulled to Vpb and the ZZ pin will be internally pulled to Vss if they are not actively driven in the application.

$\underline{ Synchronous Truth Table^{(1,3)}}$

Operation	Address Used	ĈĒ	CS ₀	Շ S₁	ADSP	ADSC	ĀDV	GW	BWE	B₩x	ŌĒ (2)	CLK	I/O
Deselected Cycle, Power Down	None	Н	Χ	Χ	Х	L	Χ	Χ	Χ	Χ	Χ	-	HI-Z
Deselected Cycle, Power Down	None	L	Χ	Н	L	Χ	Χ	Χ	Χ	Χ	Χ	-	HI-Z
Deselected Cycle, Power Down	None	L	L	Х	L	Х	Х	Х	Χ	Χ	Χ	-	HI-Z
Deselected Cycle, Power Down	None	L	Х	Н	Х	L	Х	Х	Х	Х	Х	-	HI-Z
Deselected Cycle, Power Down	None	L	L	Χ	Х	L	Χ	Χ	Χ	Χ	Χ	-	HI-Z
Read Cycle, Begin Burst	External	L	Н	L	L	Х	Χ	Χ	Χ	Χ	L	-	D out
Read Cycle, Begin Burst	External	L	Н	L	L	Χ	Χ	Χ	Χ	Χ	Н	-	HI-Z
Read Cycle, Begin Burst	External	L	Н	L	Н	L	Х	Н	Η	Χ	L	-	Dout
Read Cycle, Begin Burst	External	L	Н	L	Н	L	Х	Н	L	Н	L	-	Dout
Read Cycle, Begin Burst	External	L	Н	L	Н	L	Χ	Н	L	Н	Н	-	HI-Z
Write Cycle, Begin Burst	External	L	Н	L	Н	L	Χ	Н	L	L	Χ	-	DIN
Write Cycle, Begin Burst	External	L	Н	L	Н	L	Χ	L	Χ	Χ	Χ	-	DIN
Read Cycle, Continue Burst	Next	Χ	Χ	Χ	Н	Н	L	Н	Н	Χ	L	-	Dout
Read Cycle, Continue Burst	Next	Χ	Χ	Χ	Н	Н	L	Н	Н	Χ	Н	-	HI-Z
Read Cycle, Continue Burst	Next	Χ	Χ	Χ	Н	Н	L	Н	Χ	Н	L	-	D out
Read Cycle, Continue Burst	Next	Х	Χ	Х	Н	Н	L	Н	Χ	Н	Н	-	HI-Z
Read Cycle, Continue Burst	Next	Η	Х	Х	Х	Н	L	Н	Η	Χ	L	-	Dout
Read Cycle, Continue Burst	Next	Η	Х	Х	Х	Н	L	Н	Н	Χ	Н	-	HI-Z
Read Cycle, Continue Burst	Next	Η	Х	Х	Х	Н	L	Н	Х	Н	L	-	Dout
Read Cycle, Continue Burst	Next	Ι	Χ	Х	Х	Н	L	Н	Χ	Н	Н	-	HI-Z
Write Cycle, Continue Burst	Next	Χ	Χ	Х	Н	Н	L	Н	L	L	Х	-	DIN
Write Cycle, Continue Burst	Next	Χ	Χ	Х	Н	Н	L	L	Χ	Х	Х	-	DIN
Write Cycle, Continue Burst	Next	Ι	Χ	Х	Х	Η	L	Н	Ш	L	Х	-	DIN
Write Cycle, Continue Burst	Next	Η	Χ	Х	Х	Н	L	L	Χ	Χ	Χ	-	DIN
Read Cycle, Suspend Burst	Current	Χ	Χ	Х	Н	Н	Н	Н	Ι	Х	L	-	Dout
Read Cycle, Suspend Burst	Current	Χ	Χ	Х	Н	Н	Н	Н	Η	Χ	Н	-	HI-Z
Read Cycle, Suspend Burst	Current	Χ	Χ	Х	Н	Н	Н	Н	Χ	Н	L	-	Dout
Read Cycle, Suspend Burst	Current	Χ	Χ	Х	Н	Н	Н	Н	Χ	Н	Н	-	HI-Z
Read Cycle, Suspend Burst	Current	Ι	Χ	Х	Х	Н	Н	Н	Ι	Х	L	-	Dout
Read Cycle, Suspend Burst	Current	Ι	Χ	Х	Х	Н	Н	Н	Ι	Х	Н	-	HI-Z
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	Х	Н	L	-	Dout
Read Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	Х	Н	Н	-	HI-Z
Write Cycle, Suspend Burst	Current	Х	Χ	Х	Н	Н	Н	Н	L	L	Х	-	DIN
Write Cycle, Suspend Burst	Current	Х	Х	Х	Н	Н	Н	L	Х	Х	Х	-	DIN
Write Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	Н	L	L	Х	-	DIN
Write Cycle, Suspend Burst	Current	Н	Х	Х	Х	Н	Н	L	Х	Х	Х	-	DIN

NOTES

- 1. $L = V_{IL}$, $H = V_{IH}$, X = Don't Care.
- 2. $\overline{\text{OE}}$ is an asynchronous input.
- 3. ZZ = low for this table.

Synchronous Write Function Truth Table (1,2)

Operation	GW	BWE	BW ₁	BW ₂	BW₃	BW ₄
Read	Н	Н	Х	Х	Х	Х
Read	Н	L	Н	Н	Н	Н
Write all Bytes	L	Х	Х	Х	Х	Х
Write all Bytes	Н	L	L	L	L	L
Write Byte 1 ⁽³⁾	Н	L	Ĺ	Н	Н	Н
Write Byte 2 ⁽³⁾	Н	L	Н	L	Н	Н
Write Byte 3 ⁽³⁾	Н	L	Н	Н	L	Н
Write Byte 4 ⁽³⁾	Н	L	Н	Н	Н	L

NOTES:

5279 tbl 12

- 1. L = VIL, H = VIH, X = Don't Care.
- 2. \overline{BW}_3 and \overline{BW}_4 are not applicable for the IDT71V3578.
- 3. Multiple bytes may be selected during the same cycle.

Asynchronous Truth Table (1)

Operation ⁽²⁾	ŌĒ	ZZ	I/O Status	Power
Read	L	L	Data Out	Active
Read	Н	L	High-Z	Active
Write	Х	L	High-Z – Data In	Active
Deselected	Х	L	High-Z	Standby
Sleep Mode	Х	Н	High-Z	Sleep

NOTES:

- 1. $L = V_{IL}$, $H = V_{IH}$, X = Don't Care.
- 2. Synchronous function pins must be biased appropriately to satisfy operation requirements.

Interleaved Burst Sequence Table (**LBO**=VDD)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	Α0	A1	Α0	A 1	Α0	A 1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ⁽¹⁾	1	1	1	0	0	1	0	0

NOTE:

5279 tbl 14

5279 tbl 13

Linear Burst Sequence Table (LBO=Vss)

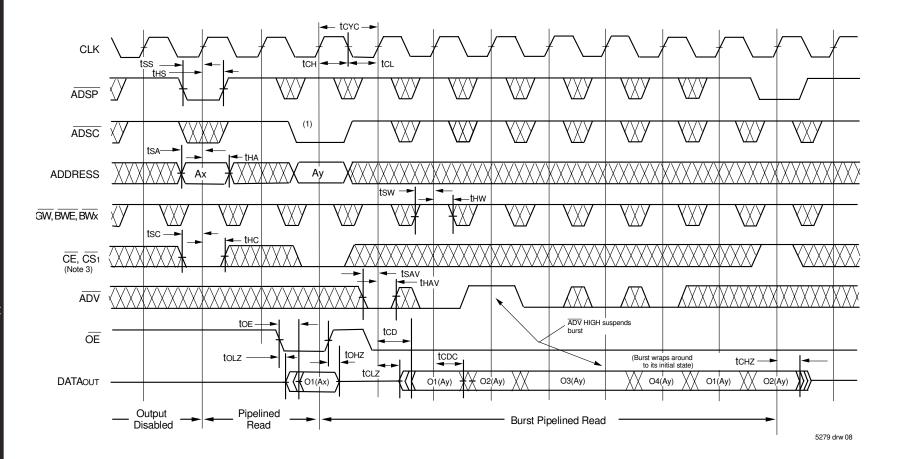
	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	Α0	A1	Α0	A 1	Α0	A 1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ⁽¹⁾	1	1	0	0	0	1	1	0

NOTE:

^{1.} Upon completion of the Burst sequence the counter wraps around to its initial state.

^{1.} Upon completion of the Burst sequence the counter wraps around to its initial state.

AC Electrical Characteristics

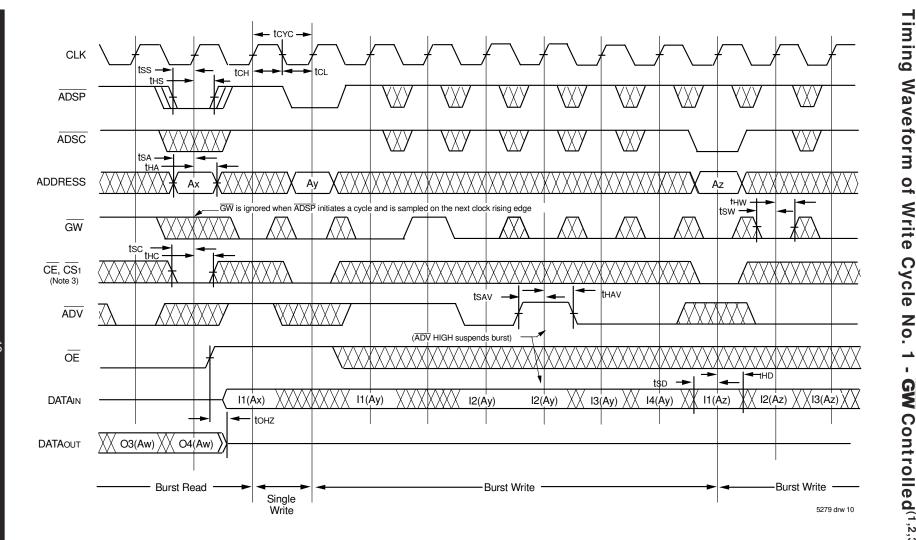

(VDD = 3.3V ±5%, Commercial and Industrial Temperature Ranges)

		150	MHz	133MHz		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tcyc	Clock Cycle Time	6.7	_	7.5	_	ns
tcH ⁽¹⁾	Clock High Pulse Width	2.6	_	3	_	ns
tcL ⁽¹⁾	Clock Low Pulse Width	2.6		3	_	ns
Output Param	neters					
tcp	Clock High to Valid Data	_	3.8		4.2	ns
tcpc	Clock High to Data Change	1.5	_	1.5	_	ns
toLz ⁽²⁾	Clock High to Output Active	0	_	0	_	ns
tchz ⁽²⁾	Clock High to Data High-Z	1.5	3.8	1.5	4.2	ns
toe	Output Enable Access Time	_	3.8	_	4.2	ns
toLZ ⁽²⁾	Output Enable Low to Output Active	0	_	0	—	ns
tонz ⁽²⁾	Output Enable High to Output High-Z	_	3.8	_	4.2	ns
Set Up Times	3	<u> </u>	1			
tsa	Address Setup Time	1.5	_	1.5	_	ns
tss	Address Status Setup Time	1.5	_	1.5	_	ns
tsp	Data In Setup Time	1.5	_	1.5	_	ns
tsw	Write Setup Time	1.5	_	1.5	—	ns
tsav	Address Advance Setup Time	1.5	_	1.5	_	ns
tsc	Chip Enable/Select Setup Time	1.5	_	1.5	_	ns
Hold Times						
tha	Address Hold Time	0.5	_	0.5	_	ns
ths	Address Status Hold Time	0.5	_	0.5	_	ns
thd	Data In Hold Time	0.5		0.5	_	ns
thw	Write Hold Time	0.5	_	0.5	_	ns
thav	Address Advance Hold Time	0.5	_	0.5	_	ns
thc	HC Chip Enable/Select Hold Time			0.5	—	ns
Sleep Mode a	and Configuration Parameters					
tzzpw	ZZ Pulse Width	100		100	—	ns
tzzr ⁽³⁾	ZZ Recovery Time	100	_	100	_	ns
tcfg ⁽⁴⁾	Configuration Set-up Time	27	_	30	_	ns

NOTES:

- 1. Measured as HIGH above VIH and LOW below VIL.
- 2. Transition is measured ±200mV from steady-state.
- 3. Device must be deselected when powered-up from sleep mode.
- 4. tcFg is the minimum time required to configure the device based on the \overline{LBO} input. \overline{LBO} is a static input and must not change during normal operation.

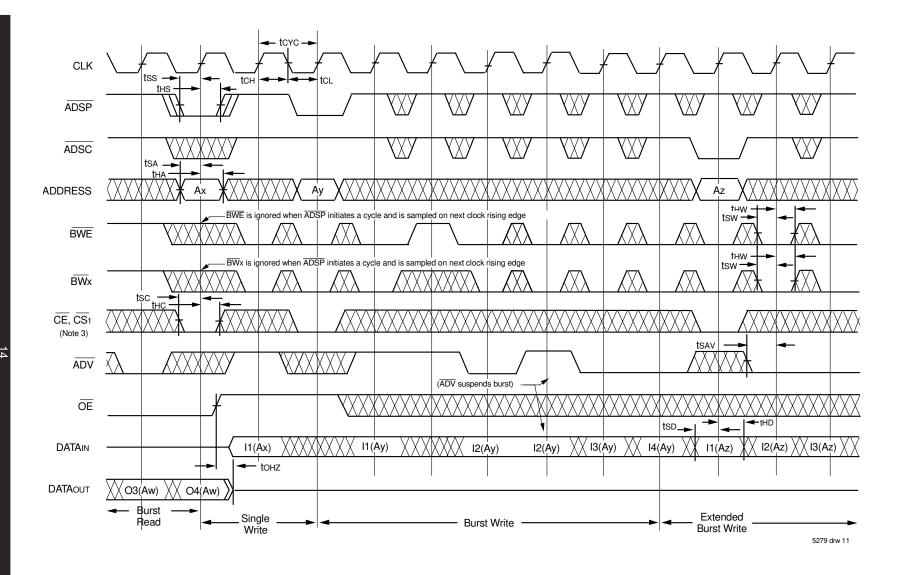
Timing Waveform of Pipelined Read Cycle^(1,2)



- 1. O1 (Ax) represents the first output from the external address Ax. O1 (Ay) represents the first output from the external address Ay; O2 (Ay) represents the next output data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input.
- 2. ZZ input is LOW and LBO is Don't Care for this cycle.
- 3. CS0 timing transitions are identical but inverted to the \overline{CE} and $\overline{CS1}$ signals. For example, when \overline{CE} and $\overline{CS1}$ are LOW on this waveform, CS0 is HIGH.

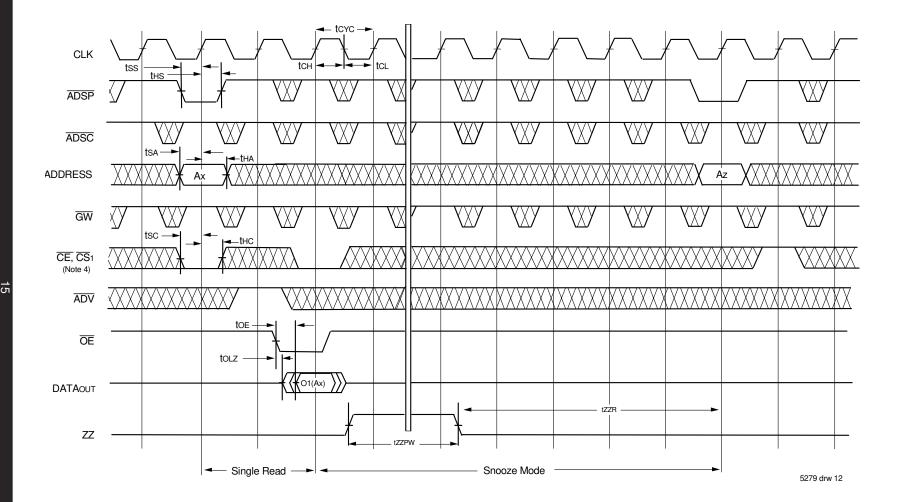
tcyc → CLK tss tcH tcl tHS ADSP tsa --▶ tHA **ADDRESS** GW ADV ŌE tsd thd toe 🔫 tolz tcd **DATA**IN I1(Ay) tonz tclz **DATA**OUT O1(Ax) O3(Az) tcd Pipelined Single Read Pipelined Burst Read Write 5279 drw 09

- 1. Device is selected through entire cycle; \overline{CE} and $\overline{CS}1$ are LOW, CS0 is HIGH.
- 2. ZZ input is LOW and \overline{LBO} is Don't Care for this cycle.
- 3. O1 (Ax) represents the first output from the external address Ax. I1 (Ay) represents the first input from the external address Ay; O1 (Az) represents the first output from the external address Az; O2 (Az) represents the next output data in the burst sequence of the base address Az, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the TBO input.

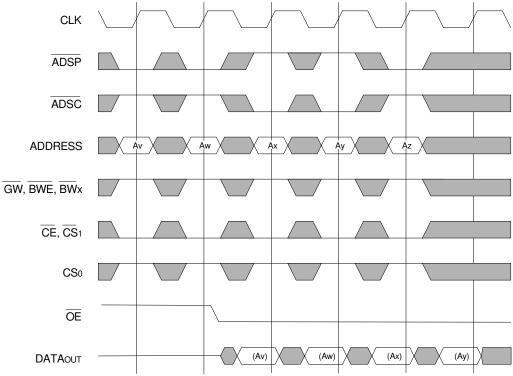

•

- 1. ZZ input is LOW, BWE is HIGH and LBO is Don't Care for this cycle.
- 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ay; 12 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the \overline{LBO} input. In the case of input I2 (Ay) this data is valid for two cycles because \overline{ADV} is high and has suspended the burst.

 3. CS0 timing transitions are identical but inverted to the \overline{CE} and $\overline{CS1}$ signals. For example, when \overline{CE} and $\overline{CS1}$ are LOW on this waveform, CS0 is HIGH.


Timing Waveform of Write Cycle No. N Byte Controlled^(1,2,3)

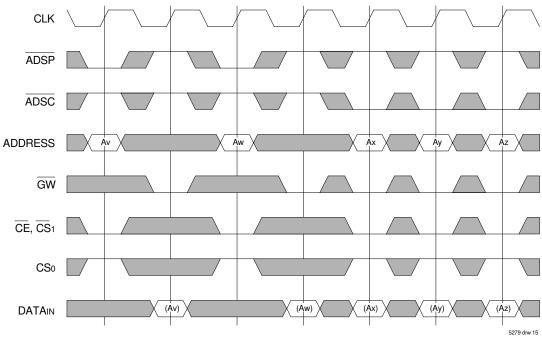
- 1. ZZ input is LOW, \overline{GW} is HIGH and \overline{LBO} is Don't Care for this cycle.
- 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the first input from the external address Ax. II (Ay) represents the external address Ax. II (Ay) represents the external address Ax. II (Ay) represents the external address Ax. II (address Ay; 12 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the \overline{LBO} input. In the case of input I2 (Ay) this data is valid for two cycles because \overline{ADV} is high and has suspended the burst.


 3. CS0 timing transitions are identical but inverted to the \overline{CE} and $\overline{CS1}$ signals. For example, when \overline{CE} and $\overline{CS1}$ are LOW on this waveform, CS0 is HIGH.

Timing Waveform of Sleep (ZZ) and Power-Down Modes^(1,2,3)

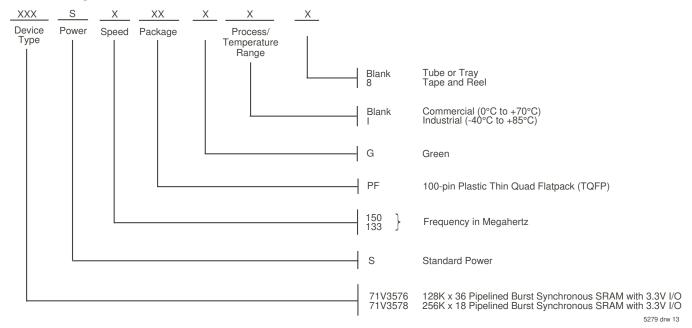
- 1. Device must power up in deselected Mode
- 2. LBO is Don't Care for this cycle.
- It is not necessary to retain the state of the input registers throughout the Power-down cycle.
 CSo timing transitions are identical but inverted to the E and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CSo is HIGH.

Non-Burst Read Cycle Timing Waveform



NOTES:

5279 drw 14


- 1. ZZ input is LOW, \overline{ADV} is HIGH and \overline{LBO} is Don't Care for this cycle.
- 2. (Ax) represents the data for address Ax, etc.
- 3. For read cycles, ADSP and ADSC function identically and are therefore interchangable.

Non-Burst Write Cycle Timing Waveform

- 1. ZZ input is LOW, \overline{ADV} and \overline{OE} are HIGH, and \overline{LBO} is Don't Care for this cycle.
- 2. (Ax) represents the data for address Ax, etc.
- 3. Although only \overline{GW} writes are shown, the functionality of \overline{BWE} and \overline{BWx} together is the same as \overline{GW} .
- 4. For write cycles, ADSP and ADSC have different limitations.

Ordering Information

Package Information

100-Pin Thin Quad Plastic Flatpack (TQFP) Information available on the IDT website

Datasheet Document History

7/26/99		Updated to new format
9/17/99	Pg. 8	Revised ISB1 and IZZ for speeds 100–200MHz
	Pg. 11	Revised tcdc (min.) at 166MHz
	Pg. 18	Added 119 BGA package diagram
	Pg. 20	Added Datasheet Document History
12/31/99	Pg. 1, 8, 11, 19	Removed 166, 183, and 200MHz speed grade offerings
	•	(see IDT71V35761 and IDT71V35781)
	Pg. 1, 4, 8, 11, 19	Added Industrial Temperature range offerings
04/04/00	Pg.18	Added 100TQFP Package Diagram Outline
	Pg. 4	Add capacitancce table for the BGA package; Add Industrial temperature to table;
	ŭ	Insert note to Absolute Max Rating and Recommended Operating Temperature tables
	Pg. 7	Add note to BGA pin configurations; corrected typo in pinout
06/01/00	ŭ	Add new package offering, 13 x 15mm fBGA
	Pg. 20	Correct BG119 Package Diagram Outline
07/15/00	Pg. 7	Add note reference to BG119 pinout
	Pg. 8	Add DNU reference note to BQ165 pinout
	Pg. 20	Update BG119 Package Diagram Outline Dimensions
10/25/00	•	Remove Preliminary Status
	Pg. 8	Add reference note to pin N5 on BQ165 pinout, reserved for JTAG TRST
04/22/03	Pg. 4	Updated 165 BGA table information from TBD to 7
06/30/03	Pg. 1,2,3,5-9	Updated datasheet with JTAG information
	Pg. 5-8	Removed note for NC pins (38,39(PF package); L4, U4 (BG package) H2, N7 (BQ package))
	•	requiring NC or connection to Vss.
	Pg. 19,20	Added two pages of JTAG Specification, AC Electrical, Definitions and Instructions
	Pg. 21-23	Removed old package information from the datasheet
	Pg. 24	Updated ordering information with JTAG and Y stepping information. Added information
		regarding packages available IDT website.
01/01/04	Pg.21	Added "Restricted hazardous substance device" to ordering information.
01/20/10	Pg.1,2,4,7,8	Combined S and YS datasheet into one datasheet. Deleted JTAG and packages BGA, fBGA.
	Pg.19,20,21	Removed "IDT" from orderable part number.
02/25/12	Pg.1,2,3,7,17	Removed YS. Deleted JTAG info from Functional Block diagram and Ordering information.
		Deleted JTAG pins TMS, TDI, TCK and TDO from 3 tables. Updated ordering information to
		include tube or tray and tape & reel.
02/08/13	Pg.1	Removed IDT in reference to fabrication.
	Pg.17	Updated the wording from Restricted Hazardous Substance Device to Green in the Ordering
		Information.
12/10/15	Pg. 17	Amended the Ordering Information drawing to restore the visibility of this information.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: sramhelp@idt.com 408-284-4532

The IDT logo is a registered trademark of Integrated Device Technology, Inc.