: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- Two independent clocked FIFOs (64 x 36 storage capacity each) buffering data in opposite directions
- Supports clock frequencies up to 67 MHz
- Fast access times of 10 ns
- Free-running CLKA and CLKB can be asynchronous or coincident (simultaneous reading and writing of data on a single clock edge is permitted)
- Mailbox bypass Register for each FIFO
- Dynamic Port B bus sizing of 36 bits (long word), 18 bits (word), and 9 bits (byte)
- Selection of Big- or Little-Endian format for word and byte bus sizes
- Three modes of byte-order swapping on port B
- Programmable Almost-Full and Almost-Empty flags
- Microprocessor interface control logic
- $\overline{E F A}, \overline{F F A}, \overline{A E A}$, and $\overline{\text { AFA }}$ flags synchronized by CLKA
- $\overline{\mathrm{EFB}}, \overline{\mathrm{FFB}}, \overline{\mathrm{AEB}}$, and $\overline{\mathrm{AFB}}$ flags synchronized by CLKB
- Passive parity checking on each port
- Parity generation can be selected for each port
- Available in space saving 120-pin thin quad flat package (TQFP)
- Green parts available, see ordering information

FUNCTIONAL BLOCK DIAGRAM

IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc. SyncBiFIFO is a trademark of Integrated Device Technology, Inc.

DESCRIPTION:

The IDT72V3614 is designed to run offa3.3V supply for exceptionally low powerconsumption. This device is monolithic, high-speed, low-powerCMOS bidirectional clocked FIFOmemory. Itsupportsclockfrequencies upto 67 MHz and has read accesstimes as fastas 10 ns . TheFIFO operates in IDTStandard mode. Two independent 64×36 dual-port SRAM FIFOs on board the chip buffer data in opposite directions. Each FIFO has flags to indicate empty and full conditions and two programmable flags(Almost-Full and Almost-Empty) to indicate when a selected number of words is stored in memory. FIFO data on port B can be input and output in 36-bit, 18-bit, and 9-bit formats with a choice ofBig-orLittle-Endian configurations. Three modes ofbyte-order swapping are possible with any bus size selection. Communication between each portcan bypass the FIFOs viatwo 36-bit mailbox registers. Each mailbox register has a flag to signal when new mail has been stored. Parity is checked passively on each port and may be ignored ifnot desired. Parity generation can be selected
for data read from each port. Two or more devices can be used in parallel to create wider data paths.

This device is a clocked FIFO, which means each port employs a synchronous interface. All data transfers through a portare gated to the LOW-to-HIGH transition of a continuous (free-running) portclock by enable signals. The clocks for each port are independent of one another and can be asynchronous or coincident. Theenables for each portare arranged to provide a simple bidirectional interface between microprocessors and/orbuses controlled by a synchronous interface.

The Full Flag ($\overline{\mathrm{FFA}}, \overline{\mathrm{FFB}})$ and Almost-Full flag ($\overline{\mathrm{AFA}}, \overline{\mathrm{AFB}})$ of a FIFO are two-stage synchronized to the portclock thatwrites data to its array. The Empty Flag ($\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}$) and Almost-Empty ($\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}$) flag of a FIFO are two stage synchronized to the port clock that reads data from its array.

The IDT72V3614 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. This device is fabricated using high speed, submicron CMOS technology.

PIN CONFIGURATION

NOTE:

1. Pin 1 identifier in corner.

PIN DESCRIPTION

Symbol	Name	1/0	Description
A0-A35	Port A Data	$1 / 0$	36-bit bidirectional data portfor side A.
$\overline{\text { AEA }}$	PortAAlmostEmpty Flag	$\left\|\begin{array}{c} 0 \\ \text { (PortA) } \end{array}\right\|$	Programmable Almost-Empty flag synchronized to CLKA. It is LOW when the number of 36 -bitwords in FIFO2 is less than or equal to the value in the offset register, X .
$\overline{\text { AEB }}$	PortB AlmostEmpty Flag	$\begin{gathered} 0 \\ (\text { Port B) } \end{gathered}$	Programmable Almost-Empty flag synchronized to CLKB. It is LOW when the number of 36 -bitwords in FIFO1 is less than or equal to the value in the offset register, X .
$\overline{\text { AFA }}$	PortA Almost-Full Flag	$\begin{array}{\|c\|} \hline 0 \\ (\text { PortA) } \end{array}$	Programmable Almost-Full flag synchronized to CLKA. It is LOW when the number of 36 -bitempty locations in FIFO1 is less than or equal to the value in the offset register, X.
$\overline{\mathrm{AFB}}$	PortB Almost-Full Flag	$\begin{array}{\|c\|} \hline 0 \\ \text { (PortB) } \end{array}$	Programmable Almost-Full flag synchronized to CLKB. It is LOW when the number of 36 -bitempty locations in FIFO 2 is less than or equal to the value in the offset register, X .
B0-B35	PortB Data	//0	36-bitbidirectional data portfor side B.
$\overline{\mathrm{BE}}$	Big-EndianSelect	1	Selects the bytes on port B used during byte or word data transfer. A LOW on $\overline{\mathrm{BE}}$ selects the mostsignificant bytes on BO-B35 for use, and a HIGH selects the least significant bytes.
CLKA	Port A Clock	1	CLKA is a continuous clock that synchronizes all data transfers through port A and can be asynchronous or coincident to CLKB. EFA, FFA, AFA, and $\overline{\text { AEA }}$ are synchronized to the LOW-to-HIGH transition of CLKA.
CLKB	Port B Clock	1	CLKB is a continuous clock that synchronizes all data transfers through port B and can be asynchronous or coincident to CLKA. Port B byte swapping and data port sizing operations are also synchronous to the LOW-to-HIGH transition of CLKB. $\overline{E F B}, \overline{F F B}, \overline{A F B}$, and $\overline{\mathrm{AEB}}$ are synchronized to the LOW-to-HIGH transition of CLKB.
$\overline{\text { CSA }}$	Port A Chip Select	I	$\overline{\text { CSA }}$ must be LOW to enable a LOW-to-HIGH transition of CLKA to read or write data on port A. The AO-A35 outputs are in the high-impedance state when CSA is HIGH.
$\overline{\text { CSB }}$	PortBChipSelect	1	$\overline{\mathrm{CSB}}$ must be LOW to enable a LOW-to-HIGH transition of CLKB to read or write data on port B. The BO-B35 outputs are in the high-impedance state when $\overline{\mathrm{CSB}}$ is HIGH.
EFA	Port A Empty Flag	$\begin{array}{\|c\|} \hline 0 \\ (\text { PortA) } \end{array}$	$\overline{\text { EFA }}$ is synchronized to the LOW-to-HIGH transition of CLKA. When EFA isLOW, FIFO2 is empty, and and reads from its memory are disabled. Data can be read from FIFO2 to the output register when EFA is HIGH. EFA is forced LOW when the device is reset and is set HIGH by the second LOW-to-HIGH transition of CLKA after data is loaded into empty FIFO2 memory.
$\overline{\text { EFB }}$	PortB Empty Flag	$\begin{array}{\|c\|} \hline 0 \\ (\text { Port B) } \end{array}$	EFB is synchronized to the LOW-to-HIGH transition of CLKB. When EFB is LOW, the FIFO1 is empty, and and reads from its memory are disabled. Data can be read from FIFO1 to the output register when EFB is HIGH. EFB is forced LOW when the device is reset and is set HIGH by the second LOW-to-HIGH transition of CLKB after data is loaded into empty FIFO1 memory.
ENA	Port A Enable	I	ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or write data on port A.
ENB	Port B Enable	1	ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or write data on port B.
$\overline{\text { FFA }}$	Port A Full Flag	$\begin{array}{\|c\|} \hline 0 \\ (\text { PortA) } \end{array}$	FFAA is synchronized to the LOW-to-HIGH transition of CLKA. When FFAA is LOW, FIFO1 is full, and writes to its memory are disabled. FFA is forced LOW when the device is reset and is set HIGH by the second LOW-to-HIGH transition of CLKA after reset.
$\overline{\mathrm{FFB}}$	Port B Full Flag	$\begin{array}{\|c\|} \hline 0 \\ (\text { Port B) } \end{array}$	FFB is synchronized to the LOW-to-HIGH transition of CLKB. When FFB is LOW, FIFO2 is full, and writes writes to its memory are disabled. $\overline{\text { FFB }}$ is forced LOW when the device is reset and is set HIGH by the second LOW-to-HIGH transition of CLKB after reset.
FS1, FS0	Flag-Offset Selects	1	The LOW-to-HIGH transition of $\overline{\text { RST }}$ latches the values of FSO and FS1, which selects one of four preset values for the Almost-Full flag and Almost-Empty flag offset.
MBA	Port A Mailbox Select	1	A HIGH level on MBA chooses a mailbox register for a port A read or write operation. When the AO-A35 outputs are active, a HIGH level on MBA selects data from the mail2 register for output, and a LOW level selects FIFO2 output register data for output.
$\overline{\text { MBF1 }}$	Mail1 Register Flag	0	$\overline{\text { MBF1 }}$ is setLOW by a LOW-to-HIGH transition of CLKA that writes data to the mail 1 register. Writes to the mail1 register are inhibited while $\overline{\text { MBF1 }}$ is set LOW. MBF1 is set HIGH by a LOW-to-HIGH transition of CLKB when a port B read is selected and both $\mathrm{SIZ1}$ and SIZO are HIGH . MBF1 is set HIGH when the device is reset.

PIN DESCRIPTION (Continued)

Symbol	Name	1/0	Description
$\overline{\text { MBF2 }}$	Mail2 Register Flag	0	$\overline{\text { MBF2 }}$ is setLOW by a LOW-to-HIGH transition of CLKB that writes datato the mail2 register. Writes to the mail2 register are inhibited while $\overline{\text { MBF2 }}$ is set LOW. $\overline{\text { MBF2 }}$ is set HIGH by a LOW-to-HIGH transition of CLKA when a port A read is selected and MBA is HIGH . $\overline{\text { MBF2 }}$ is set HIGH when the device is reset.
$\frac{\text { ODD/ }}{\text { EVEN }}$	Odd/Even Parity Select	I	Odd parity is checked on each port when ODD/EVEN is HIGH, and even parity is checked when ODD/EVEN is LOW. ODD/EVEN also selects the type of parity generated for each port if parity generation is enabled for a read operation.
PEFA	Port A Parity Error Flag	$\begin{gathered} 0 \\ (\text { (Port A) } \end{gathered}$	When any byte applied to terminals A0-A35 fails parity, $\overline{\text { FEFA }}$ is LOW. Bytes are organized as AO-A8, A9-A17, A18-A26, and A27-A35, with the most significant bit of each byte serving as the parity bit. The type of parity checked is determined by the state of the ODD/EVENinput. The parity trees used to check the AO-A35 inputs are shared by the mail2 register to generate parity if parity generation is selected by PGA. Therefore, if a mail2 read with parity generation is setup by having W/RA LOW, MBA HIGH, and PGA HIGH, the PEFA flag is forced HIGH regardless of the AO-A35 inputs.
$\overline{\text { PEFB }}$	Port B Parity Error Flag	$\begin{gathered} 0 \\ (\text { Port B) } \end{gathered}$	When any valid byte applied to terminals $\mathrm{B} 0-\mathrm{B} 35$ fails parity, $\overline{\text { PEFB }}$ is LOW. Bytes are organized as $\mathrm{BO}-\mathrm{B} 8$, B9-B17, B18-B26, B27-B35 with the most significant bit of each byte serving as the parity bit. A byte is valid when it is used by the bus size selected for Port B. The type of parity checked is determined by the state of the ODD/EVEN input. The parity trees used to check the BO-B35 inputs are shared by the mail 1 register to generate parity if parity generation is selected by PGB. Therefore, if a mail1 read with parity generation is setup by having W/ $\overline{\mathrm{R} B}$ LOW, SIZ1 and SIZO HIGH, and PGB HIGH, the PEFB flag is forced HIGH regardless of the state of the BOB35inputs.
PGA	Port A Parity Generation	1	Parity is generated for data reads from port A when PGA is HIGH. The type of parity generated is selected by the state of the ODD/EVEN input. Bytes are organized as A0-A8, A9-A17, A18-A26, and A27-A35. The generated parity bits are outputin the mostsignificant bit of each byte.
PGB	Port B Parity Generation	1	Parity is generated for data reads from port B when PGB is HIGH. The type of parity generated is selected by the state of the ODD/EVEN input. Bytes are organized as $\mathrm{BO}-\mathrm{B} 8, \mathrm{B9}-\mathrm{B} 17, \mathrm{~B} 18-\mathrm{B} 26$, and $\mathrm{B} 27-\mathrm{B} 35$. The generated parity bits are outputin the mostsignificant bit of each byte.
$\overline{\mathrm{RST}}$	Reset	1	To reset the device, four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH transitions of CLKB must occur while $\overline{\mathrm{RST}}$ is LOW. This sets the $\overline{\mathrm{AFA}}, \overline{\mathrm{AFB}}, \overline{\mathrm{MBF} 1}$, and $\overline{\mathrm{MBF2}}$ flags HIGH and the $\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}, \overline{\mathrm{AEA}}$, $\overline{\text { AEB }}, \overline{\text { FFA }}$, and $\overline{F F B}$ flags LOW. The LOW-to-HIGH transition of $\overline{\text { RST }}$ latches the status of the FS1 and FSO inputs to selectAImost-Full and Almost-Empty flag offsets.
SIZ0, SIZ1	Port B Bus SizeSelects	$\begin{array}{\|c\|} \hline 1 \\ \text { (PortB) } \end{array}$	ALOW-to-HIGH transition of CLKB latches the states of SIZO, SIZ1, and $\overline{\mathrm{BE}}$, and the following LOW-to-HIGH transition of CLKB implements the latched states as a port B bus size. Port B bus sizes can be long word, word or byte. A HIGH on both SIZO and SIZ1 accesses the mailbox registers for a port B 36 -bit write or read.
SW0,SW1	Port B Byte SwapSelect	$\begin{array}{\|c\|} \hline 1 \\ \text { (Port B) } \end{array}$	At the beginning of each long word transfer, one of four modes of byte-order swapping is selected by SWO and SW1. The four modes are no swap, byte swap, word swap, and byte-word swap. Byte-order swapping is possible with any bus-size selection.
W/ $\bar{R} A$	PortAWrite/ ReadSelect	1	A HIGH selects a write operation and a LOW selects a read operation on port A for a LOW-to-HIGH transition of CLKA. The A0-A35 outputs are in the high-impedance state when W//RA is HIGH.
W $\overline{\mathrm{R}} \mathrm{B}$	PortBWrite/ Read Select	1	A HIGH selects a write operation and a LOW selects a read operation on port B for a LOW-to-HIGH transition of CLKB. The BO-B35 outputs are in the high-impedance state when W/RB is HIGH .

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)(1)

Symbol	Rating	Commercial	Unit
VCC	Supply Voltage Range	-0.5 to +4.6	V
$\mathrm{VI}^{(2)}$	Input Voltage Range	-0.5 to $\mathrm{VcC}+0.5$	V
$\mathrm{VO}^{(2)}$	OutputVoltage Range	-0.5 to $\mathrm{VCC}+0.5$	V
IIK	Input Clamp Current, $(\mathrm{VI}<0$ or $\mathrm{VI}>\mathrm{VCC})$	± 20	mA
IOK	Output Clamp Current, $(\mathrm{Vo}<0$ or $\mathrm{Vo}>\mathrm{VCC})$	± 50	mA
IOUT	Continuous Output Current, $(\mathrm{VO}=0$ to VCC$)$	± 50	mA
ICC	Continuous Current Through VCC or GND	± 500	mA
TsTG	Storage Temperature Range	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
VCC	Supply Voltage	3.0	3.3	3.6	V
VIH	HIGH Level Input Voltage	2	-	Vcc +0.5	V
VIL	LOW-Level InputVoltage	-	-	0.8	V
IOH	HIGH-Level Output Current	-	-	-4	mA
IOL	LOW-Level Output Current	-	-	8	mA
TA	Operating Free-air Temperature	0	-	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREEAIR TEMPERATURE RANGE (Unless otherwise noted)

Symbol	Parameter	Test Conditions		IDT72V3614 Commercial tCLK $=15$ ns			Unit
				Min.	Typ. ${ }^{(1)}$	Max.	
VOH	OutputLogic"1"Voltage	$\mathrm{Vcc}=3.0 \mathrm{~V}$,	$\mathrm{IOH}=-4 \mathrm{~mA}$	2.4	-	-	V
VOL	OutputLogic "0" Voltage	$\mathrm{Vcc}=3.0 \mathrm{~V}$,	$\mathrm{IOL}=8 \mathrm{~mA}$	-	-	0.5	V
ILI	Input Leakage Current (Any Input)	$\mathrm{VcC}=3.6 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}$ or 0	-	-	± 5	$\mu \mathrm{A}$
ILO	OutputLeakageCurrent	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{Vo}=\mathrm{Vcc}$ or 0	-	-	± 5	$\mu \mathrm{A}$
ICC ${ }^{(2)}$	Standby Current	$\mathrm{Vcc}=3.6 \mathrm{~V}$,	$\mathrm{VI}=\mathrm{Vcc}-0.2 \mathrm{~V}$ or 0	-	-	500	$\mu \mathrm{A}$
CIN	InputCapacitance	$\mathrm{VI}=0$,	$\mathrm{f}=1 \mathrm{MHz}$	-	4	-	pF
Cout	OutputCapacitance	$\mathrm{Vo}=0$,	$\mathrm{f}=1 \mathrm{MHZ}$	-	8	-	pF

NOTES:

1. All typical values are at $\mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. For additional Icc information, see Figure 1, Typical Characteristics: Supply Current (Icc) vs. Clock Frequency (fs).

DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION

The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing the FIFO on the IDT72V3614 with CLKA and CLKB set tofs. All data inputs and data outputs change state during each clock cycle to consume the highestsupply current. Data outputs were disconnected to normalize the graphtoazero-capacitance load. Once the capacitive lead perdata-outputchannel is known, the powerdissipation can be calculated with theequation below.

CALCULATING POWER DISSIPATION

With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of the IDT72V3614 can be calculated by:

$$
\begin{gathered}
\operatorname{PT}=\operatorname{VCC} x \operatorname{ICC}(f)+ \\
\mathrm{N}
\end{gathered}
$$

where:

N	$=$	number of used outputs (36-bit (long word), 18-bit (word) or 9-bit (byte) bus-size)
CL	$=$	outputcapacitanceload
fo	$=$	switching frequency of an output
VoH	$=$	outputhigh level voltage

When no reads or writes are occurring on this device, the power dissipated by a single clock (CLKA or CLKB) input running at frequency fs is calculated by:
$\mathrm{PT}=\mathrm{Vcc} x \mathrm{fs} \times 0.025 \mathrm{~mA} / \mathrm{MHz}$

Figure 1. Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fs)

DC ELECTRICAL CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE

Commercial: $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.30 \mathrm{~V} ; \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant

Symbol	Parameter	IDT72V3614L15		Unit
		Min.	Max.	
fs	Clock Frequency, CLKA or CLKB	-	66.7	Mhz
tCLK	Clock Cycle Time, CLKA or CLKB	15	-	ns
tCLKH	Pulse Duration, CLKA or CLKB HIGH	6	-	ns
tCLKL	Pulse Duration, CLKA or CLKB LOW	6	-	ns
tDS	Setup Time, A0-A35 before CLKA \uparrow and B0-B35 before CLKB \uparrow	4	-	ns
tens	Setup Time, $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{A}, \mathrm{ENA}$ and MBA before CLKA $\uparrow ; \overline{\mathrm{CSB}}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{B}$ and ENB before CLKB \uparrow	5	-	ns
tszs	Setup Time, SIZ0, SIZ1, and $\overline{\text { BE }}$ before CLKB \uparrow	4	-	ns
tsws	Setup Time, SW0 and SW1 before CLKB \uparrow	6	-	ns
tPGS	Setup Time, ODD/EVEN and PGA before CLKA \uparrow; ODD/EVEN and PGB before CLKB ${ }^{(1)}$	4	-	ns
tRSTS	Setup Time, $\overline{\text { RST }}$ LOW before CLKA \uparrow or CLKB $\uparrow^{(2)}$	5	-	ns
tFSS	Setup Time, FS0 and FS1 before $\overline{\text { RST }}$ HIGH	5	-	ns
DH	Hold Time, A0-A35 after CLKA \uparrow and B0-B35 after CLKB \uparrow	1	-	ns
tenh	Hold Time, $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R} A}, \mathrm{ENA}$ and MBA after CLKA \uparrow; $\overline{\mathrm{CSB}}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{B}$ and ENB after CLKB \uparrow	1	-	ns
tSZH	Hold Time, SIZ0, SIZ1, and $\overline{\mathrm{BE}}$ after CLKB \uparrow	1	-	ns
tSWH	Hold Time, SW0 and SW1 after CLKB \uparrow	1	-	ns
tPGH	Hold Time, ODD/EVEN and PGA after CLKA \uparrow; ODD/ $\overline{E V E N}$ and PGB after CLKB $\uparrow^{(1)}$	0	-	ns
tRSTH	Hold Time, $\overline{\mathrm{RST}}$ LOW after CLKA \uparrow or CLKB $\uparrow^{(2)}$	5	-	ns
tFSH	Hold Time, FS0 and FS1 after $\overline{\text { RST }}$ HIGH	4	-	ns
tSKEW1 ${ }^{(3)}$	Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}, \overline{\mathrm{FFA}}, \overline{\mathrm{FFB}}$	8	-	ns
tSKEW2 ${ }^{(3,4)}$	Skew Time, between CLKA \uparrow and CLKB \uparrow for $\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}}, \overline{\mathrm{AFA}}$, and $\overline{\mathrm{AFB}}$	14	-	ns

NOTES:

1. Only applies for a clock edge that does a FIFO read.
2. Requirement to count the clock edge as one of at least four needed to reset a FIFO.
3. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.
4. Design simulated, not tested.

SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30pF
 Commercial: $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.30 \mathrm{~V}$; $\mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant

Symbol	Parameter	IDT72V3614L15		Unit
		Min.	Max.	
tA	Access Time, CLKA \uparrow to A0-A35 and CLKB \uparrow to B0-B35	2	10	ns
tWFF	Propagation Delay Time, CLKA to $\overline{\mathrm{FFA}}$ and CLKB \uparrow to $\overline{\mathrm{FFB}}$	2	10	ns
tREF	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{EFA}}$ and and CLKB \uparrow to $\overline{\mathrm{EFB}}$	2	10	ns
tPAE	Propagation Delay Time, CLKA \uparrow to $\overline{\mathrm{AEA}}$ and CLKB \uparrow to $\overline{\mathrm{AEB}}$	2	10	ns
tPAF	Propagation Delay Time, CLKA to $\overline{\mathrm{AFA}}$ and CLKB \uparrow to $\overline{\mathrm{AFB}}$	2	10	ns
tPMF	Propagation Delay Time, CLKA to $\overline{\text { MBF1 }}$ LOW or $\overline{\text { MBF2 }}$ HIGH and CLKB \uparrow to MBF2 LOW or MBF1 HIGH	1	9	nS
tPMR	Propagation Delay Time, CLKA \uparrow to B0-B35 ${ }^{(1)}$ and CLKB \uparrow to $\mathrm{A} 0-\mathrm{A} 35{ }^{(2)}$	2	10	ns
tPPE ${ }^{(3)}$	Propagation delay time, CLKB to $^{\overline{\text { PEFB }}}$	2	10	nS
tMDV	Propagation Delay Time, MBA to A0-A35 valid and SIZ1, SIZ0 to B0-B35 valid	1	10	ns
tPDPE	Propagation Delay Time, A0-A35 valid to $\overline{\text { PEFA }}$ valid; $\mathrm{B} 0-\mathrm{B} 35$ valid to $\overline{\text { PEFB }}$ valid	2	10	ns
tPOPE	Propagation Delay Time, ODD/ $\overline{\text { EVEN }}$ to $\overline{\text { PEFA }}$ and $\overline{\text { PEFB }}$	2	10	ns
tPOPB ${ }^{(4)}$	Propagation Delay Time, ODD/EVEN to parity bits (A8, A17, A26, A35) and (B8, B17, B26, B35)	2	10	ns
tPEPE	Propagation Delay Time, $\overline{C S A}, ~ E N A, W / \bar{R} A, M B A, ~ o r ~ P G A ~ t o ~ \overline{P E F A} ; \overline{C S B}, ~ E N B, ~ W / \bar{R} B$, SIZ1, SIZ0, or PGB to $\overline{\text { PEFB }}$	1	10	ns
tPEPB ${ }^{(4)}$	Propagation Delay Time, $\overline{\mathrm{CSA}}, \mathrm{ENA}, \mathrm{W} / \overline{\mathrm{R}} \mathrm{A}, \mathrm{MBA}$, or PGA to parity bits (A8, A17, A26, A35); $\overline{\mathrm{CSB}}, \mathrm{ENB}, \mathrm{W} / \overline{\mathrm{R} B}, \mathrm{SIZ1}, \mathrm{SIZO}$, or PGB to parity bits (B8, B17, B26, B35)	2	10	ns
tRSF	Propagation Delay Time, $\overline{\mathrm{RST}}$ to ($\overline{\mathrm{MBF} 1}, \overline{\mathrm{MBF} 2}$) HIGH	1	15	ns
ten	Enable Time, $\overline{\mathrm{CSA}}$ and W/ $\overline{\mathrm{R} A}$ LOW to A0-A35 active and $\overline{\mathrm{CSB}}$ LOW and $\overline{\mathrm{W}} / R B$ HIGH to B0-B35active	2	10	ns
tDIS	Disable Time, $\overline{\mathrm{CSA}}$ or $\mathrm{W} / \overline{\mathrm{R}} \mathrm{A}$ HIGH to A0-A35 at high-impedance and $\overline{\mathrm{CSB}}$ HIGH or W/RBLOW to BO-B35athigh-impedance	1	8	ns

NOTES:

1. Writing data to the mail1 register when the $\mathrm{BO}-\mathrm{B} 35$ outputs are active and $\mathrm{SIZ1} ,\mathrm{SIZO} \mathrm{are} \mathrm{HIGH}$.
2. Writing data to the mail2 register when the AO-A35 outputs are active and MBA is HIGH.
3. Only applies when a new port B bus size is implemented by the rising CLKB edge.
4. Only applies when reading data from a mail register.

SIGNAL DESCRIPTIONS

RESET

The IDT72V3614 is resetby taking the Reset $(\overline{\mathrm{RST}})$ inputLOW for atleast fourportAclock (CLKA) and four portB clock (CLKB)LOW-to-HIGH transitions. The Reset input can switch asynchronously to the clocks. A device reset initializes the internal read and write pointers of each FIFO and forces the Full Flags $(\overline{\mathrm{FFA}}, \overline{\mathrm{FFB}})$ LOW, the Empty Flags $(\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}})$ LOW, the Almost-Empty flags ($\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}})$ LOW and the Almost-Full flags $(\overline{\mathrm{AFA}}, \overline{\mathrm{AFB}}) \mathrm{HIGH}$. A reset also forces the Mailbox Flags ($\overline{\text { MBF1 }}, \overline{\text { MBF2 }})$ HIGH. After a reset, $\overline{\text { FFA }}$ is set HIGH after two LOW-to-HIGH transitions of CLKA and $\overline{\text { FFB }}$ is setHIGH after two LOW-to-HIGH transitions of CLKB. The device must be reset after power up before data is written to its memory.

A LOW-to-HIGH transition on the RST input loads the Almost-Full and Almost-Empty Offset register (X) with the values selected by the Flag Select (FS0, FS1) inputs. The values that can be loaded into the registers are shown in Table 1. For the relevant Resetand preset value loading timing diagram, see Figure 5.

FIFO WRITE/READ OPERATION

The state of portA dataA0-A35 outputs is controlled by the portAChip Select $(\overline{\mathrm{CSA}})$ and the port A Write/Read select $(\mathrm{W} / \overline{\mathrm{R}} A)$. The A0-A35 outputs are in the high-impedance state when either $\overline{C S A}$ or $W / \bar{R} A$ is HIGH. The A0-A35 outputs are active when both $\overline{C S A}$ and W/RA areLOW. Data is loaded into FIFO1 from the A0-A35inputs onaLOW-to-HIGHtransition ofCLKA whenCSA isLOW, W/ $\bar{R} A$ is HIGH, ENA is HIGH, MBA is LOW, and $\overline{\text { FFA }}$ is HIGH. Data is read from FIFO2 to the A0-A35 outputs by a LOW-to-HIGH transition of CLKA when $\overline{\mathrm{CSA}}$ is LOW, W/RA isLOW, ENA is HIGH, MBA is LOW, and $\overline{\text { EFA }}$ is HIGH (see Table 2). Port A read and write timing diagrams can be found in Figure 6 and 15.

The port B control signals are identical to those of portA. The state of the port B data (B0-B35) outputs is controlled by the port B Chip Select ($\overline{\mathrm{CSB}}$) and the port B Write/Read select (W/R/B). The B0-B35 outputs are in the highimpedance state when either $\overline{C S B}$ orW/ $\overline{\mathrm{R}}$ B is HIGH. TheB0-B35 outputs are active when both $\overline{C S B}$ and W/ $\bar{R} B$ areLOW. Datais loaded into FIFO2 from the B0-B35 inputs on aLOW-to-HIGH transition of CLKB when $\overline{\mathrm{CSB}}$ is LOW, W/ $\overline{\mathrm{RB}}$ is HIGH, ENB is HIGH, $\overline{\mathrm{EFB}}$ is HIGH, and either SIZ0 orSIZ1 is LOW. Data is read fromFIFO1 to the B0-B35 outputs by aLOW-to-HIGH transition ofCLKB when $\overline{C S B}$ is LOW, W/ $\bar{R} B$ isLOW, ENB is $H I G H, ~ \overline{E F B}$ is $H I G H$, and either SIZO or SIZ1 is LOW (see Table 3). PortB read and write timing diagrams together with Bus-Matching, byte-swapping and Endian select can be found in Figures 7 to 12.

The setup and hold time constraintstothe portclocksfor the portChipSelects ($\overline{\mathrm{CSA}}, \overline{\mathrm{CSB}}$) and Write/Read selects (W/R̄A, W/RBB) areonly forenabling write and read operations and are not related to high-impedance control of the data outputs. If a portenable is LOW during a clock cycle, the portChip Select and Write/Read select can change states during the setup and hold time window of thecycle.

SYNCHRONIZED FIFO FLAGS

Each FIFO is synchronized to its portclock throughtwo flip-flop stages. This is done to improve flag reliability by reducing the probability of metastableevents on the outputwhen CLKA and CLKB operate asynchronously to one another. $\overline{\mathrm{EFA}}, \overline{\mathrm{AEA}}, \overline{\mathrm{FFA}}$, and $\overline{\mathrm{AFA}}$ are synchronized to CLKA. $\overline{\mathrm{EFB}}, \overline{\mathrm{AEB}}, \overline{\mathrm{FFB}}$, and $\overline{\mathrm{AFB}}$ are synchronized to CLKB. Tables 4 and 5 show the relationship of each port flag to the level of FIFO1 and FIFO2 fill.

EMPTY FLAGS ($\overline{\mathrm{EFA}}, \overline{\mathrm{EFB}}$)

The Empty Flag of aFIFO is synchronized to the portclock that reads data fromits array. WhentheEmpty Flag is HIGH, new data can be read to the FIFO
outputregister. Whenthe Empty Flag is LOW, the FIFO is empty and attempted FIFO reads are ignored. When reading FIFO1 with a byte or word size on port $B, \overline{E F B}$ is set LOW when the fourth byte or second word of the last long word is read.

The read pointer of FIFO is incremented each time a new word is clocked to the output register. The state machine that controls an Empty Flag monitors a write-pointer and read-pointer comparator that indicates when the FIFO memory status is empty, empty +1 , or empty +2 . A word written to a FIFO can be read to the FIFO output register in a minimum of three cycles of the Empty Flag synchronizing clock. Therefore, an Empty FlagisLOWifa word inmemory is the next data to be sentto the FIFO output register and two cycles of the port clock that reads data from the FIFO have not elapsed since the time the word was written. The Empty Flag of the FIFO is set HIGH by the second LOW-toHIGH transition of the synchronizing clock, and the new data word can be read to the FIFO output register in the following cycle.

ALOW-to-HIGHtransition on an Empty Flag synchronizing clockbeginsthe firstsynchronization cycle of a write ifthe clock transition occurs attime tSKEW1 orgreater after the write. Otherwise, the subsequentclock cycle can be the first synchronization cycle (see Figure 14 and 15).

FULL FLAG ($\overline{\mathrm{FFA}}, \overline{\mathrm{FFB}})$

The Full Flag of aFIFO is synchronized to the port clock that writes data to its array. When the Full Flag is HIGH, a memory location is free in the FIFO to receive new data. No memory locations are free when the full flag is LOW and attempted writes to the FIFO are ignored.

Each time a word is written to aFIFO, the write pointer is incremented. The state machine that controls a Full Flag monitors a write-pointer and read-pointer comparator that indicates when the FIFO memory status is full, full-1, or full-2. From the time a word is read fromaFIFO, the previous memorylocation is ready to be written in a minimum of three cycles of the Full Flag synchronizing clock. Therefore, aFull Flag is LOW iflessthantwo cycles ofthe Full Flag synchronizing clock have elapsed since the next memory write location has been read. The second LOW-to-HIGHtransition on the Full Flag synchronization clock afterthe read sets the Full Flag HIGH and the data can be written in the following clock cycle.

ALOW-to-HIGHtransition on aFull Flag synchronizing clock begins the first synchronization cycle of a read ifthe clock transition occurs attime tSKEW1 or greater after the read. Otherwise, the subsequent clock cycle can be the first synchronization cycle (see Figure 16 and 17).

ALMOST-EMPTY FLAGS ($\overline{\mathrm{AEA}}, \overline{\mathrm{AEB}})$

The Almost-Empty flag of aFIFO is synchronized to the portclock thatreads datafromitsarray. ThestatemachinethatcontrolsanAlmost-Emptyflagmonitors a write-pointer and a read-pointer comparator that indicates when the FIFO memory status is almost-empty, almost-empty +1 , or almost-empty +2 . The almost-empty state is defined by the value ofthe Almost-Full and Almost-Empty Offsetregister (X). This register is loaded with one of four preset values during adevice reset(seeResetsection). AnAlmost-Empty flagisLOWwhentheFIFO contains X or less long words in memory and is HIGH when the FIFO contains (X+1) or more long words.

TwoLOW-to-HIGHtransitions ofthe Almost-Empty flag synchronizing clock are required after aFIFO write for the Almost-Empty flag to reflect the new level offill. Therefore, the Almost-Empty flag ofaFIFO containing $(X+1)$ or morelong words remains LOW iftwo cycles of the synchronizing clock have notelapsed since the write that filled the memory to the ($\mathrm{X}+1$) level. An Almost-Empty flag is setHIGH by the second LOW-to-HIGH transition of the synchronizing clock aftertheFIFO writethatfillsmemory tothe (X+1)level. ALOW-to-HIGHtransition of an Almost-Empty flag synchronizing clock begins the first synchronization

TABLE 1 - FLAG PROGRAMMING

FS1	FS0	$\overline{\text { RST }}$	ALMOST-FULL AND ALMOST-EMPTY FLAG OFFSET REGISTER (X)
H	H	\uparrow	16
H	L	\uparrow	12
L	H	\uparrow	8
L	L	\uparrow	4

TABLE 2 - PORT-A ENABLE FUNCTION TABLE

$\overline{\text { CSA }}$	W/R̄A	ENA	MBA	CLKA	Data A (A0-A35) I/O	Port Functions
H	X	X	X	X	Input	None
L	H	L	X	X	Input	None
L	H	H	L	\uparrow	Input	FIFO1 Write
L	H	H	H	\uparrow	Input	Mail1 Write
L	L	L	L	X	Output	FIFO2 Read
L	L	H	L	\uparrow	Output	None
L	L	L	H	X	Output	Output

TABLE 3 - PORT-B ENABLE FUNCTION TABLE

$\overline{\mathrm{CSB}}$	W/R \mathbf{R}	ENB	SIZ1, SIZO	CLKB	Data B (B0-B35) I/O	Port Functions
H	X	X	X	X	Input	None
L	H	L	X	X	Input	None
L	H	H	One, both LOW	\uparrow	Input	FIFO2 Write
L	H	H	Both HIGH	\uparrow	Input	Mail2 Write
L	L	L	One, both LOW	X	Output	None
L	L	H	One, both LOW	\uparrow	Output	FIFO1 read
L	L	L	Both HIGH	X	Output	None
L	L	H	Both HIGH	\uparrow	Output	Mail1 Read (Set MBF1 HIGH)

TABLE 4 - FIF01 FLAG OPERATION

Number of 36 -Bit Words in the FIFO1 ${ }^{(1)}$	Synchronized to CLKB		Synchronized to CLKA	
	$\overline{\text { EFB }}$	$\overline{\text { AEB }}$	$\overline{\mathrm{A}} \overline{\mathrm{A}}$	$\overline{\mathrm{F}} \overline{\mathrm{A}}$
0	L	L	H	H
1 to X	H	L	H	H
$(X+1)$ to [64-(X+1)]	H	H	H	H
$(64-X)$ to 63	H	H	L	H
64	H	H	L	L

TABLE 5 - FIFO2 FLAG OPERATION

Number of 36-Bit Words in the FIFO2 ${ }^{(1)}$	Synchronized to CLKA		Synchronized to CLKB	
	$\overline{\text { EFA }}$	$\overline{\text { AEA }}$	$\overline{\mathrm{A}} \overline{\mathrm{B}}$	FFB
0	L	L	H	H
1 to X	H	L	H	H
$(\mathrm{X}+1)$ to [64-(X+1)]	H	H	H	H
(64-X) to 63	H	H	L	H
64	H	H	L	L

NOTE:

1. X is the value in the Almost-Empty flag and Almost-Full flag Offset register.
cycleifitoccursattimetSKEW2 orgreaterafterthe writethatfills theFIFOto(X+1) long words. Otherwise, the subsequent synchronizing clock cycle can be the first synchronization cycle (see Figure 18 and 19).

ALMOST FULL FLAGS ($\overline{\mathrm{AFA}}, \overline{\mathrm{AFB}}$)

The Almost-Full flag of a FIFO is synchronized to the port clock that writes data to its array. The state machine that controls an Almost-Full flag monitors a write-pointer and read-pointer comparator that indicates when the FIFO memory status is almostfull, almostfull-1, or almostfull-2. Thealmost-full state is defined by the value of the Almost-Full and Almost-Empty Offsetregister (X). This register is loaded with one of four preset values during a device reset(see Resetsection). An Almost-Full flag is LOW when the FIFO contains (64-X) or more long words in memory and is HIGH when the FIFO contains [64-(X+1)] or less long words.

TwoLOW-to-HIGH transitions ofthe Almost-Full flag synchronizing clock are required after a FIFO read for the Almost-Full flag to reflect the new level of fill. Therefore, the Almost-Full flag of a FIFO containing [64-(X+1)] or less words remains LOW iftwo cycles of the synchronizing clock have notelapsed since the read that reduced the number of long words in memory to [64-(X+1)]. An Almost-Full flag is set HIGH by the second LOW-to-HIGH transition of the synchronizing clock after the FIFO read thatreduces the number of long words in memory to [64-(X+1)]. A LOW-to-HIGH transition of an Almost-Full flag synchronizing clock begins the first synchronization cycle if it occurs at time tSKEW2 or greater after the read that reduces the number of long words in memory to $[64-(X+1)]$. Otherwise, the subsequent synchronizing clock cycle can be the first synchronization cycle (see Figure 20 and 21).

MAILBOX REGISTERS

Each FIFO has a 36-bit bypass register to pass command and control information between portA and portB withoutputting itin queue. The Mailbox Select (MBA, SIZ0, SIZ1) inputs choose between a mail register and a FIFO for a port data transfer operation. ALOW-to-HIGH transition on CLKA writes A0-A35 data to the mail1 register when a port A write is selected by $\overline{\mathrm{CSA}}, \mathrm{W} /$ $\bar{R} A$, and ENA with MBAHIGH. ALOW-to-HIGH transition on CLKB writesB0$B 35$ data to the mail2 register when a port B write is selected by $\overline{C S B}, W / \bar{R} B$, and ENB with both SIZ1 and SIZO HIGH. Writing data to a mail register sets the corresponding flag($\overline{\mathrm{MBF1}}$ or $\overline{\mathrm{MBF} 2}$) LOW. Attempted writestoa mail register are ignored while the mail flag is LOW.

Whenthe portAdata outputs (A0-A35) are active, the data on the bus comes from the FIFO2 output register when MBA is LOW and from the mail2 register when MBA is HIGH. When the portB dataoutputs (B0-B35) are active, the data on the bus comes from the FIFO1 outputregister when either one orboth SIZ1 and SIZO are LOW and from the mail2 register when both SIZ1 and SIZO are HIGH. The Mail1 Register Flag ($\overline{\mathrm{MBF} 1}$) is set HIGH by a rising CLKB edge when a port B read is selected by $\overline{C S B}, W / \bar{R} B$, and ENB with both $\mathrm{SIZ1}$ and SIZOHIGH. The Mail2 Register Flag (MBF2) is setHIGH by a LOW-to-HIGH transition on CLKA when portA read is selected by $\overline{\mathrm{CSA}}, \mathrm{W} / \overline{\mathrm{R} A}$, and ENA and MBA is HIGH. The data in the mail register remains intact after it is read and changes only when new data is written to the register. Relevant mail register and Mail RegisterFlagtiming diagramscan be found in Figure22and Figure 23.

DYNAMIC BUS SIZING

The port B bus can be configured in a 36-bit long word, 18-bit word, or 9bit byte format for data read from FIFO1 or written to FIFO2. Word- and bytesize bus selections can utilize the mostsignificantbytes ofthe bus(Big-Endian) orleastsignificantbytes ofthebus(Little-Endian). PortBbussizecanbechanged dynamically and synchronous to CLKB to communicate with peripherals of various bus widths.

The levels applied to the portB bus Size select(SIZ0, SIZ1) inputs and the Big-Endianselect($\overline{\mathrm{BE}})$ inputarestored oneachCLKBLOW-to-HIGHtransition. The stored portB bus size selection is implemented by the nextrising edge on CLKB according to Figure 2.

Only 36-bitlong-word data is written to or read from the two FIFO memories on the IDT72V3614.Bus-matching operations are done after datais read from the FIFO1 RAM and before data is written tothe FIFO2 RAM. PortB bus sizing does not apply to mail register operations.

BUS-MATCHING FIF01 READS

Data is read from the FIFO1 RAM in 36-bitlong word increments. If along word bus size is implemented, the entire long word immediately shifts to the FIFO1 output register. If byte or word size is implemented on port B, only the firstoneortwo bytes appear onthe selected portion oftheFIFO1 outputregister, with the restofthelong word stored in auxiliary registers. Inthis case, subsequent FIFO1 reads with the same bus-size implementation output the rest of the long word to the FIFO1 output register in the order shown by Figure 2.

Each FIFO1 read with anew bus-size implementationautomatically unloads datafrom the FIF01 RAM to its outputregister and auxiliary registers. Therefore, implementing a new portB bussize and performing aFIFO1 read beforeall bytes or words stored in the auxiliary registers have been read results in a loss of the unread long word data.

When reading data from FIFO1 in byte or word format, the unused B0-B35 outputs are indeterminate.

BUS-MATCHING FIFO2 WRITES

Data is written to the FIFO2 RAM in 36-bit long word increments. FIFO2 writes, with a long-word bus size, immediately store each long word in FIFO2 RAM. Data written to FIFO2 with a byte or word bus size stores the initial bytes orwords in auxiliary registers. TheCLKB rising edge that writes the fourth byte or the second word of long word to FIFO2 also stores the entire long word in FIFO2 RAM. The bytes are arranged in the manner shown in Figure 2.

Each FIFO2 write with a new bus-size implementation resets the state machinethatcontrols the dataflow from the eauxiliary registers to theFIFO2RAM. Therefore, implementing a new bus size and performing a FIFO2 write before bytes orwordsstored inthe auxiliary registers have beenloaded to FIFO2RAM results in a loss of data.

When writing data to FIFO2 inbyte orword format, the unused B0-B35inputs are don't care ${ }^{(1)}$ inputs.

PORT-B MAIL REGISTER ACCESS

In addition to selecting port-B bus sizes for FIFO reads and writes, the port Bbus Size select(SIZ0, SIZ1) inputs also access the mail registers. Whenboth SIZ0 and SIZ1 areHIGH, the mail1 register is accessed for a port Blong word read and the mail2 register is accessed for a portB long word write. The mail register is accessed immediately and any bus-sizing operation that may be underway is unaffected by the mail register access. Afterthe mail registeraccess is complete, the previous FIFO access can resume in the nextCLKB cycle. The logic diagram in Figure 3 shows the previous bus-size selection is preserved when the mail registers are accessed from port B. A port B bus size is implemented on each rising CLKB edge according to the states of SIZO_Q, SIZ1_Q, and $\overline{B E}$ _Q.

BYTE SWAPPING

The byte-order arrangement of data read from FIFO1 or data written to FIFO2 can be changed synchronous to the rising edge of CLKB. Byte-order swapping is not available for mail register data. Four modes of byte-order swapping (including no swap) can be done with any data port size selection.

The order of the bytes are rearranged within the long word, but the bit order withinthe bytes remains constant.

Byte arrangement is chosen by the portB Swap select(SW0, SW1) inputs on a CLKB rising edge that reads a new long word from FIFO1 or writes a new long word to FIFO2. The byte order chosen on the first byte or first word of a new long word read fromFIFO1 or written to FIFO2 is maintained until the entire long word is transferred, regardless of the SW0 and SW1 states during subsequentwrites or reads. Figure4 is an example of the byte-order swapping available for long words. Performing a byte swap and bus size simultaneously fora FIFO1 read first rearranges the bytes as shown in Figure 4, then outputs the bytes as shown in Figure 2. Simultaneous bus-sizing and byte-swapping operations for FIFO2 writes, first loads the data according to Figure 2, then swaps the bytes as shown in Figure 4 when the long word is loaded to FIFO2 RAM.

PARITY CHECKING

The portAinputs (A0-A35) and portB inputs (B0-B35) each have four parity trees to check the parity of incoming (or outgoing) data. A parity failure on one ormore bytes ofthe portAdatabusis reported byaLOW level on the portParity Error Flag ($\overline{\mathrm{PEFA}})$. A parity failure on one or more bytes of the portB data input that are valid for the bus-size implementation is reported by aLOW level on the portBParity Error Flag ($\overline{\text { PEFB }})$. Odd orEven parity checking can be selected, and the Parity Error Flags can be ignored if this feature is not desired.

Parity status is checked on each inputbus according to the level ofthe Odd/ Even parity (ODD/EVEN) selectinput. A parity erroron one or more valid bytes of a port is reported by a LOW level on the corresponding port Parity Error Flag ($\overline{\text { PEFA }}, \overline{\text { PEFB }}$)output. Port A bytes are arranged as A0-A8, A9-A17,A18-A26, and A27-A35. Port B bytes are arranged as B0-B8, B9-B17, B18-B26, and B27-B35, and its valid bytes are those used in a portB bus-size implementation. When Odd/Even parity is selected, a port Parity Error Flag ($\overline{\mathrm{PEFA}}, \overline{\mathrm{PEFB}}$) is LOW if any byte on the port has an odd/even number of LOW levels applied tothebits.

Thefour parity treesused to check theA0-A35inputs are shared by the mail2 register when parity generation is selected for port A reads (PGA = HIGH). When a port A read from the mail2 register with parity generation is selected with CSA LOW, ENA HIGH, W/R्RA LOW, MBA HIGH, and PGA HIGH, the portA Parity Error Flag ($\overline{\mathrm{PEFA}})$ is held HIGH regardless of the levels applied to the

A0-A35 inputs. Likewise, the parity trees used to check the B0-B35 inputs are shared by the mail1 register when parity generation is selected for port B reads (PGB = HIGH). When a portB read from the mail1 registerwith paritygeneration is selected with $\overline{C S B} L O W, E N B$ HIGH,W/RBBLOW, bothSIZO andSIZ1 HIGH, and PGB HIGH, the port B Parity Error Flag $(\overline{\mathrm{PEFB}})$ is held HIGH regardless of the levels applied to the B0-B35 inputs (see Figure 24 and 25).

PARITY GENERATION

A HIGH level on the port A Parity Generate select (PGA) or port B Parity Generate select(PGB) enables the IDT72V3614 to generate parity bits for port reads from a FIFO or mailbox register. Port A bytes are arranged as A0-A8, A9-A17, A18-26, and A27-A35, with the mostsignificant bit of each byte used as the parity bit. Port B bytes are arranged as B0-B8, B9-B17, B18-B26, and B27-B35, with the mostsignificantbitofeach byte used as the parity bit. A write to a FIFO or mail register stores the levels applied to all nine inputs of a byte regardless of the state ofthe Parity Generate select(PGA, PGB) inputs. When data is read from a port with parity generation selected, the lower eight bits of each byte are used to generate a parity bit according to the level on the ODD/ EVEN select. The generated parity bits are substituted for the levels originally written to the most significant bits of each byte as the word is read to the data outputs.

Parity bits forFIFO data are generated after the data is read fromSRAM and before the data is written to the output register. Therefore, the port A Parity Generate select(PGA) and Odd/Even parity select(ODD/EVEN) have setup and hold time constraints to the port A Clock (CLKA) and the port B Parity Generate select(PGB) and ODD/EVEN have setup and hold-time constraints to the portBClock (CLKB). These timing constraints only apply for a rising clock edge used to read a new long word to the FIFO output register.

The circuit used to generate parity for the mail1 data is shared by the port B bus (B0-B35) to check parity and the circuit used to generate parity for the mail2 data is shared by the port A bus (A0-A35) to check parity. The shared parity trees of a portare used to generate parity bits for the datain a mail register when the port Chip Select ($\overline{\mathrm{CSA}}, \overline{\mathrm{CSB}}$) is LOW, Enable (ENA, ENB) is HIGH, Write/Readselect(W/RA,W/RB) inputisLOW, the Mail registerisselected(MBA is HIGH for port A; both SIZO and SIZ1 are HIGH for port B), and port Parity Generate select(PGA, PGB) is HIGH. Generating parity for mail register data does not change the contents of the register (see Figure 26 and 27).

BYTE ORDER ON PORT A:

BYTE ORDER ON PORT B:

$\overline{\mathrm{BE}}$	$\mathrm{SIZ1}$	SIZ0
x	L	L

(b) WORD SIZE —BIG-ENDIAN

(c) WORD SIZE - LITTLE-ENDIAN

$\overline{\mathrm{BE}}$	SIZ1	SIZ0
L	H	L

$\overline{\mathrm{BE}}$	$\mathrm{SIZ1}$	SIZ0
H	L	H

2nd: Read from FIFO1/ Write to FIFO2

1st: Read from FIFO1/ Write to FIFO2

2nd: Read from FIFO1/ Write to FIFO2

3rd: Read from FIFO1/ Write to FIFO2

4th: Read from FIFO1/ Write to FIFO2

Figure 2. Dynamic Bus Sizing

Figure 2. Dynamic Bus Sizing (Continued)

Figure 3. Logic Diagrams for SIZO, SIZ1, and $\overline{B E}$ Register
(1) Either a HIGH or LOW can be applied to a "don't care" input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily "don't care" (along with unused inputs) must not be left open, rather they must be either HIGH or LOW.

SW1	SW0
L	H

(b) BYTE SWAP

SW1	SW0
H	L

(c) WORD SWAP

SW1	SW0
H	H

(d) BYTE-WORD SWAP

4663 drw fig 03

Figure 4. Byte Swapping (Long Word Size Example)

Figure 5. Device Reset and Loading the X Register with the Value of Eight

1. Written to FIFO1.

Figure 6. Port-A Write Cycle Timing for FIFO1

NOTE:

1. $\mathrm{SIZO}=\mathrm{HIGH}$ and $\mathrm{SIZ1}=$ HIGH writes data to the mail2 register

DATA SWAP TABLE FOR LONG-WORD WRITES TO FIFO2

SWAP MODE		DATA WRITTEN TO FIFO2				DATA READ FROM FIFO2			
SW1	SW0	B35-27	B26-18	B17-B9	B8-B0	A35-27	A26-A18	A17-A9	A8-A0
L	L	A	B	C	D	A	B	C	D
L	H	D	C	B	A	A	B	C	D
H	L	C	D	A	B	A	B	C	D
H	H	B	A	D	C	A	B	C	D

Figure 7. Port-B Long-Word Write Cycle Timing for FIFO2

NOTES:

1. SIZO $=$ HIGH and SIZ1 $=$ HIGH writes data to the mail2 register
2. $\overline{\text { PEFB }}$ indicates parity error for the following bytes: B35-B27 and B26-B18 for Big-Endian bus, and B17-B9 and B-8-B0 for Little-Endian bus.

DATA SWAP TABLE FOR WORD WRITES TO FIFO2

SWAP MODE		WRITE NO.	DATA WRITTEN TO FIFO2				DATA READ FROM FIFO2				
		BIG-ENDIAN	LITTLE-ENDIAN								
SW1	SW0		B35-27	B26-18	B17-B9	B8-B0	A35-27	A26-A18	A17-A9	A8-A0	
L	L		1	A	B	C	D	A	B	C	D
		2	C	D	A	B					
L	H	1	D	C	B	A	A	B	C	D	
		2	B	A	D	C					
H	L	1	C	D	A	B	A	B	C	D	
		2	A	B	C	D					
H	H	1	B	A	D	C	A	B	C	D	
		2	D	C	B	A					

Figure 8. Port-B Word Write Cycle Timing for FIFO2

NOTES:

1. $\mathrm{SIZO}=\mathrm{HIGH}$ and $\mathrm{SIZ1}=\mathrm{HIGH}$ writes data to the mail2 register.
2. PEFB indicates parity error for the following bytes: B35-B27 for Big-Endian bus and B8-BO for Little-Endian bus.

DATA SWAP TABLE FOR BYTE WRITES TO FIFO2

SWAP MODE		WRITE NO.	DATA WRITTEN TO FIFO2		DATA READ FROM FIFO2			
		$\frac{\text { BIG-ENDIAN }}{\text { B35-B27 }}$	$\begin{array}{\|c\|} \hline \text { LITTLE-ENDIAN } \\ \hline \mathrm{B8} 8-80 \\ \hline \end{array}$					
SW1	swo			A35-A27	A26-A18	A17-A9	A8-A0	
L	L	1	A	D				
		2	B	C	A	B	C	D
		3	C	B				
		4	D	A				
L	H	1	D	A				
		2	C	B	A	B	C	D
		3	B	C				
		4	A	D				
H	L	1	C	B				
		2	D	A	A	B	C	D
		3	A	D				
		4	B	C				
H	H	1	B	C	A	B	C	D
		2	A	D				
		3	D	A				
		4	C	B				

Figure 9. Port-B Byte Write Cycle Timing for FIFO2

NOTES:

1. $\mathrm{SIZO}=$ HIGH and $\mathrm{SIZ1}=$ HIGH selects the mail1 register for output on B0-B35.
2. Data read from FIFO1.

DATA SWAP TABLE FOR FIFO LONG-WORD READS FROM FIFO1

DATA WRITTEN TO FIFO1				SWAP MODE		DATA READ FROM FIF01			
A35-A27	A26-A18	A17-A9	A8-A0	SW1	SW0	B35-B27	B26-B18	B17-B9	B8-B0
A	B	C	D	L	L	A	B	C	D
A	B	C	D	L	H	D	C	B	A
A	B	C	D	H	L	C	D	A	B
A	B	C	D	H	H	B	A	D	C

Figure 10. Port-B Long-Word Read Cycle Timing for FIFO1

NOTES:

1. $\mathrm{SIZO}=\mathrm{HIGH}$ and $\mathrm{SIZ1}=\mathrm{HIGH}$ selects the mail1 register for output on $\mathrm{B} 0-\mathrm{B} 35$.
2. Unused word B0-B17 or B18-B35 are indeterminate.

DATA SWAP TABLE FOR WORD READS FROM FIFO1

DATA WRITTEN TO FIFO1				SWAP MODE		READNO.	DATA READ FROM FIFO1				
				BIG-ENDIAN	LITTLE-ENDIAN						
A35-A27	A26-A18	A17-A9	A8-A0			SW1	SW0	B35-B27	B26-B18	B17-B9	B8-B0
A	B	C	D	L	L		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & A \\ & C \end{aligned}$	B	$\begin{aligned} & \text { C } \\ & \text { A } \end{aligned}$	$\begin{aligned} & D \\ & \text { B } \end{aligned}$
A	B	C	D	L	H		$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { D } \end{aligned}$	$\begin{aligned} & A \\ & C \end{aligned}$
A	B	C	D	H	L	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & D \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { D } \end{aligned}$	
A	B	C	D	H	H	1	$\begin{aligned} & \text { B } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \end{aligned}$	D	$\begin{aligned} & \text { C } \\ & \text { A } \end{aligned}$	

Figure 11. Port-B Word Read Cycle Timing for FIFO1

NOTES:

1. $\mathrm{SIZO}=\mathrm{HIGH}$ and $\mathrm{SIZ1}=$ HIGH selects the mail1 register for output on $\mathrm{BO}-\mathrm{B} 35$.
2. Unused bytes B9-B35 or B0-B26 are indeterminate.

DATA SWAP TABLE FOR BYTE READS FROM FIFO1

DATA WRITTEN TO FIFO 1				SWAP MODE		$\begin{gathered} \text { READ } \\ \text { NO. } \end{gathered}$	DATA READ FROM FIFO 1		
				BIGENDIAN	LITTLE- ENDIAN				
A35-A27	A26-A18	A17-A9	A8-A0			SW1	SW0	B35-B27	B8-B0
A	B	C	D	L	L		1 2 3 4	$\begin{aligned} & \hline \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \hline \text { D } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$
A	B	C	D	L	H	1 2 3 4	$\begin{aligned} & \text { D } \\ & \text { C } \\ & \text { B } \\ & \text { A } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C } \\ & \text { D } \end{aligned}$	
A	B	C	D	H	L	1 2 3 4	$\begin{aligned} & \text { C } \\ & \text { D } \\ & \text { A } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { D } \\ & \text { C } \end{aligned}$	
A	B	C	D	H	H	1 2 3 4	B A D C	$\begin{aligned} & \text { C } \\ & \text { D } \\ & \text { A } \\ & \text { B } \end{aligned}$	

Figure 12. Port-B Byte Read Cycle Timing for FIFO1

NOTE:

1. Read from FIFO2.

Figure 13. Port-A Read Cycle Timing for FIFO2

NOTES:

1. tsKEw1 is the minimum time between a rising CLKA edge and a rising CLKB edge for EFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising CLKB edge is less than tsKEw1, then the transition of EFB HIGH may occur one CLKB cycle later than shown.
2. Port-B size of long word is selected for FIFO1 read by SIZ1 = LOW, SIZO = LOW. If port-B size is word or byte, EFB is set LOW by the last word or byte read from FIFO1, respectively.

Figure14. EFB Flag Timing and First Data Read when FIFO1 is Empty

NOTES:

1. tskeww is the minimum time between a rising CLKB edge and a rising CLKA edge for EFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskEw1, then the transition of EFA HIGH may occur one CLKA cycle later than shown.
2. Port B size of long word is selected for FIFO2 write by SIZ1 = LOW, SIZO = LOW. If port B size is word or byte tskEw1 is referenced to the rising CLKB edge that writes the last word or byte of the long word, respectively.

Figure 15. EFA Flag Timing and First Data Read when FIFO2 is Empty

NOTES:

1. tsKEw 1 is the minimum time between a rising CLKB edge and a rising CLKA edge for $\overline{F F A}$ to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising CLKA edge is less than tskEw1, then FFA may transition HIGH one CLKA cycle later than shown.
2. Port B size of long word is selected for FIFO1 read by SIZ1 = LOW, SIZ0 = LOW. If port B size is word or byte, tskEW1 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.

Figure 16. $\overline{\text { FFA }}$ Flag Timing and First Available Write when FIFO1 is Full.

