: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- Choose from among the following memory density options:

IDT72V51233 — Total Available Memory = 589,824 bits
IDT72V51243 - Total Available Memory = 1,179,648 bits
IDT72V51253 — Total Available Memory = 2,359,296 bits

- Configurable from 1 to 4 Queues
- Queues may be configured at master reset from the pool of Total Available Memory in blocks of 512×18 or $1,024 \times 9$
- Independent Read and Write access per queue
- User programmable via serial port
- Default multi-queue device configurations
-IDT72V51233: 8, $192 \times 18 \times 4 Q$ or $16,384 \times 9 \times 4 Q$
-IDT72V51243: $16,384 \times 18 \times 4 Q$ or $32,768 \times 9 \times 4 Q$
-IDT72V51253: $32,768 \times 18 \times 4 Q$ or $65,536 \times 9 \times 4 Q$
- 100% Bus Utilization, Read and Write on every clock cycle
- 166 MHz High speed operation (6ns cycle time)
- 3.7ns access time
- Individual, Active queue flags ($\overline{\mathrm{OV}}, \overline{\mathrm{FF}}, \overline{\mathrm{PAE}}, \overline{\mathrm{PAF}})$
- 4 bit parallel flag status on both read and write ports
- Provides continuous $\overline{\text { PAE }}$ and $\overline{\text { PAF }}$ status of up to 4 Queues
- Global Bus Matching - (All Queues have same Input Bus Width and Output Bus Width)
- User Selectable Bus Matching Options:
- x18in to x180ut
- x9in to x180ut
- x18in to x9out
- x9in to x9out
- FWFT mode of operation on read port
- Partial Reset, clears data in single Queue
- Expansion of up to 8 multi-queue devices in parallel is available
- JTAG Functionality (Boundary Scan)
- Available in a 256 -pin PBGA, 1 mm pitch, $17 \mathrm{~mm} \times 17 \mathrm{~mm}$
- HIGH Performance submicron CMOS technology
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available

FUNCTIONAL BLOCK DIAGRAM

MULTI-QUEUE FLOW-CONTROL DEVICE

DESCRIPTION:

The IDT72V51233/72V51243/72V51253 multi-queue flow-control devices are single chip within which anywhere between 1 and 4 discrete FIFO queues can be setup. All queues withinthe device have a common datainput bus, (write port) and a common data outputbus, (read port). Data written into the write port is directed to a respective queue via an internal de-multiplex operation, addressed by the user. Data read from the read port is accessed from a respective queue via an internal multiplex operation, addressed by the user. Data writes and reads can be performed at high speeds up to 166 MHz , with accesstimes of 3.7 ns . Data write and read operations are totally independent of each other, a queue maybe selected on the write port and a different queue on the read port or both ports may select the same queue simultaneously.

The device provides Full flag and Output Valid flag status for the queue selected for write and read operations respectively. Also a Programmable AlmostFulland Programmable AlmostEmpty flagforeachqueue is provided. Two 4 bit programmable flag busses are available, providing status of all queues, including queues notselected forwrite or read operations, these flag busses provide an individual flag per queue.

Bus Matching is available on this device, either port can be 9 bits or 18 bits wide. When Bus Matching is used the device ensures the logical transfer of data throughputina Little Endian manner.

The user has full flexibility configuring queues within the device, being able to program the total number of queues between 1 and 4 , the individual queue depths being independent of each other. The programmable flag positions are also user programmable. All programming is done via a dedicated serial port. If the user does not wish to program the multi-queue device, a default option is available that configures the device in a predetermined manner.

BothMasterResetand Partial Resetpins are provided onthis device.AMaster Reset latches in all configuration setup pins and must be performed before programming of the device cantakeplace. A Partial Reset will resetthe read and write pointers of an individual queue, providedthatthe queue is selected on both the write port and read port at the time of partial reset.
AJTAG test port is provided, here the multi-queue flow-control device has a fully functional Boundary Scan feature, compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.

SeeFigure 1, Multi-QueueFlow-ControlDevice Block Diagramforan outline of the functional blocks within the device.

Figure 1. Multi-Queue Flow-Control Device Block Diagram

PIN CONFIGURATION

DETAILED DESCRIPTION

MULTI-QUEUE STRUCTURE

The IDT multi-queue flow-control device has a single data input port and single data output port with up to 4 FIFO queues in parallel buffering between the two ports. The user can setup between 1 and 4 Queues within the device. These queues canbe configured to utilize the total available memory, providing the userwithfull flexibility andability to configurethequeues to be variousdepths, independent of one another.

MEMORY ORGANIZATION/ALLOCATION

The memory is organized into what is known as "blocks", each block being 512×18 or $1,024 \times 9$ bits. When the user is configuring the number of queues and individual queue sizes the user must allocate the memory to respective queues, in units of blocks, that is, a single queue can be made up from 0 to m blocks, where misthe total number of blocks available within a device. Alsothe total size of any given queue must be in increments of 512×18 or $1,024 \times 9$. For the IDT72V51233, IDT72V51243 and IDT72V51253 the Total Available Memory is 64, 128 and 256 blocks respectively (ablock being 512×18 or 1,024 $x 9$). If any port is configured for $x 18$ bus width, a block size is 512×18. If both the write and read ports are configured for $x 9$ bus width, a block size is 1,024 x9. Queues can bebuiltfrom theseblocksto makeany sizequeue desiredand any number of queues desired.

BUS WIDTHS

The inputportis commontoall queues withinthe device, as istheoutput port. The device provides the userwith BusMatching options suchthat the inputport and output port can be either x9 orx18bits wide, the read and write port widths being set independently of one another. Because the ports are common to all queues the width of the queues is not individually set, sothat the input width of all queues are equal and the output width of all queues are equal.

WRITING TO \& READING FROM THE MULTI-QUEUE

Data being written into the device via the input port is directed to a discrete queue viathe write queue select address inputs. Conversely, data being read from the device read port is readfrom aqueue selected viathe read queue select address inputs. Data canbesimultaneously written into and readfromthe same queue or different queues. Once a queue is selected for data writes or reads, the writing and reading operation is performed in the same manner as conventional IDT synchronous FIFO, utilizing clocks and enables, there is a single clock and enable per port. When a specific queue is addressed on the write port, data placed on the data inputs is written to that queue sequentially based onthe rising edge of a write clock provided setup and hold times are met. Conversely, data is read on to the output portafter an access time from a rising edge on a read clock.

Theoperation of the write port is comparable tothe function of a conventional FIFO operating in standard IDT mode. Write operations can be performed on the write portprovidedthatthequeuecurrently selected is notfull, afull flagoutput provides status of the selected queue. The operation of the read port is comparable to the function of a conventional FIFO operating in FWFT mode. When a queue is selected on the output port, the next word in that queue will automatically fall through to the output register. All subsequent words from that queue require an enabled read cycle. Data cannot be read from a selected queueifthatqueue is empty, the read portprovides an Output Validflagindicating when data read out is valid. If the user switches to a queue that is empty, the last word from the previous queue will remain on the output register.

As mentioned, the write port has a fullflag, providing full status of the selected queue. Along with the full flaga dedicated almostfull flag is provided, this almost full flag is similar to the almost full flag of a conventional IDT FIFO. The device
provides a user programmable almost full flag for all 4 queues and when a respectivequeue is selected on the write port, the almostfull flagprovidesstatus for that queue. Conversely, the read port has an output valid flag, providing status of the databeing read from the queue selected on the read port. As well as the output valid flagthe device provides a dedicated almostempty flag. This almostempty flagis similartothe almostempty flag of a conventional IDTFIFO. The device provides a user programmable almost empty flag for all 4 queues and when a respective queue is selected on the read port, the almostemptyflag provides status for that queue.

PROGRAMMABLE FLAG BUSSES

In additiontothese dedicatedflags, full \& almostfull onthe write portand output valid \&almostempty onthe read port, therearetwoflag status busses. Analmost fullflag status bus is provided, this bus is 4 bits wide. Also, an almostempty flag status bus is provided, againthis bus is 4 bits wide. The purpose of these flag busses is to provide the user with a means by which to monitor the datalevels within queues that may notbe selected on the write or read port. As mentioned, the device provides almostfull and almostempty registers (programmable by the user) for each of the 4 queues in the device.

The 4 bit $\overline{\text { PAE }}$ n and 4 bit $\overline{\text { PAF }}$ n busses provide a discrete status of the Almost Empty and Almost Full conditions of all 4 queue's. Ifthe device is programmed for less than 4 queue's, then there will be a corresponding number of active outputs on the $\overline{\text { PAE }}$ and $\overline{\text { PAF }} n$ busses.

The flag busses can provide a continuous status of all queues. If devices are connected inexpansion mode the individual flagbusses canbeleft ina discrete form, providing constant status of all queues, orthe busses of individual devices can be connected together to produce a single bus of 4 bits. The device can then operate in a "Polled" or "Direct" mode.

When operating in polled mode the flag bus provides status of each device sequentially, thatis, oneach rising edge of aclocktheflagbusis updatedtoshow the status of each device in order. The rising edge of the write clock will update the Almost Full bus and a rising edge on the read clock will update the Almost Emptybus.
When operating in direct modethe device driving the flag bus is selected by the user. The user addresses the device that will take control of a respective flag bus, these $\overline{\text { PAF }}$ and $\overline{\text { PAE }}$ flag busses operating independently of one another. Addressing of the Almost Full flag bus is done via the write port and addressing of the Almost Empty flag bus is done via the read port.

EXPANSION

Expansion of multi-queue devices is also possible, up to 8 devices can be connected in a parallelfashion providing the possibility of both depth expansion or queue expansion. Depth Expansion means expanding the depths of individual queues. Queue expansion means increasing the total number of queues available. Depth expansion is possible by virtue of the fact that more memory blocks within a multi-queue device can be allocated to increase the depth of a queue. For example, depth expansion of 8 devices provides the possibility of 8queues of $32 \mathrm{~K} x 18$ deep withinthe IDT72V51233,64Kx18deep within the IDT72V51243 and 128K x 18 deep within the IDT72V51253, each queue being setup within a single device utilizing all memory blocks available to produce a single queue. This is the deepest queue that can setup within a device.
For queue expansion of the 4 queue device, a maximum number of 32 (8 x 4) queues may be setup, each queue being $4 K \times 18$ or $2 K x 9$ deep, if less queues are setup, then morememory blocks will be available to increasequeue depths if desired. Whenconnecting multi-queue devices in expansion modeall respective inputpins (data \& control) and outputpins (data \& flags), should be "connected"togetherbetween individual devices.

PIN DESCRIPTIONS

Symbol \& Pin No.	Name	I/OTYPE	Description
$\begin{array}{\|l\|} \hline \text { D[17:0] } \\ \text { Din (See Pin } \\ \text { tablefordetails) } \\ \hline \end{array}$	DatalnputBus	LVTTL INPUT	These are the 18 data input pins. Data is written into the device via these input pins on the rising edge ofWCLK provided that WENis LOW. Due to bus matching notall inputs may be used, any unused inputs should betied LOW.
$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \mathrm{DF}^{(1)} \\ (\mathrm{L} 3) \end{array}$	DefaultFlag	LVTTL INPUT	If the user requires default programming of the multi-queue device, this pin must be setup before Master Reset and mustnottoggle during any device operation. The state of this input at master resetdetermines
$\begin{array}{\|l\|} \hline \text { DFM }^{(1)} \\ \text { (L2) } \end{array}$	Defaul Mode	LVTTL INPUT	The multi-queue device requires programming after master reset. The user can do this serially via the serial port, orthe user can use the default method. IfDFM is LOW atmaster resetthen serial mode will be selected, ifHIGH then default mode is selected.
$\begin{array}{\|l\|} \hline \text { ESTR } \\ \text { (R15) } \end{array}$	$\overline{\text { PAEn Flag Bus }}$ Strobe	LVTTL INPUT	If direct operation of the $\overline{\text { PAEn bu b has been selected, the ESTR input is used in conjunction with RCLK }}$ and the RDADD bus to selecta device for its queues to be placed on to the $\overline{\text { PAEn bus outputs. A device }}$ addressed via the RDADD bus is selected on the rising edge of RCLK provided that ESTR is HIGH. If Polled operations has been selected, ESTR should be tied inactive, LOW. Note, that a PAEn flag bus selection cannotbe made,(ESTR mustNOT go active) until programming of the parthas been completed and $\overline{\text { SENO }}$ has gone LOW.
$\begin{aligned} & \text { ESYNC } \\ & \text { (R16) } \end{aligned}$	PAEn Bus Sync	LVTTL OUTPUT	ESYNC is an output from the multi-queue device that provides a synchronizing pulse for the $\overline{\text { PAEn bus }}$ during Polled operation of the $\overline{\text { PAEn bus. During Polled operation each devices queue status flags are }}$ loaded ontothe $\overline{\text { PAEn }}$ bus outputs sequentially based on RCLK. The firrt RCLK rising edge loads device 1 onto $\overline{\mathrm{PAEE}}$, the second RCLK rising edge loads device 2and soon. During the RCLK cycle that a selected device is placed on to the PAEn bus, the ESYNC output will be HIGH.
$\begin{array}{\|l\|} \hline \text { EXI } \\ (T 16) \end{array}$	$\overline{\text { PAEn Bus }}$ Expansion In	LVTTL INPUT	The EXI input is used when multi-queue devices are connected in expansion mode and Polled $\overline{\mathrm{PAE}} \mathrm{n} /$ bus operation has been selected. EXI of device ' N ' connects directly to EXO of device ' $\mathrm{N}-1$ '. The EXI receives a token from the previous device in a chain. In single device mode the EXI input must be tied mustbe connected to the EXO output of the same device. In expansion mode the EXI of the first device should be tied LOW, when direct mode is selected.
$\begin{array}{\|l\|} \hline \text { EXO } \\ \text { (T15) } \end{array}$	$\overline{\text { PAEn Bus }}$ ExpansionOut	LVTTL OUTPUT	EXO is an output that is used when multi-queue devices are connected in expansion mode and Polled pin pulses HIGH when device N placesits $\overline{\text { PAE }}$ status on to the $\overline{\text { PAE }}$ bus with respectto RCLK. This pulse (token) is then passed on to the nextdevice in the chain ' $\mathrm{N}+1$ ' and on the next RCLK rising edge the first quadrant of device $\mathrm{N}+1$ will be loaded on to the $\overline{\text { PAEn bus. This continues through the chain and EXO }}$ of the last device is then looped back to EXI of the first device. The ESYNC output of each device in the chain provides synchronization to the user of this looping event.
$\begin{array}{\|l\|} \hline \bar{F} \bar{F} \\ \text { (P8) } \end{array}$	Full Flag	LVTTL OUTPUT	This pin provides the full flag output for the active queue, that is, the queue selected on the input port forwrite operations, (selected viaWCLK, WRADD bus and WADEN). On the WCLK cycle after aqueue selection, this flag will show the status of the newly selected queue. Data can be written to this queue on the next cycle provided FF is HIGH. This flag has High-Impedance capability, this is important during expansion of devices, whenthe FF flag output of upto 8 devices may be connected togetheronacommon line. The device with a queue selected takes control of the $\overline{F F}$ bus, all other devices place their $\overline{F F}$ output into High-Impedance. When aqueue selection is made on the write port his output will switch from High-Impedance control on the next WCLK cycle. This flag is synchronized to WCLK.
$\begin{array}{\|l\|} \hline \mathrm{FM}^{(1)} \\ (\mathrm{K} 16) \end{array}$	Flag Mode	LVTTL INPUT	This pinis setup before a master reset and mustnot toggle during any device operation. The state of the FM pinduring Master Resetwill determine whetherthe PAFn and PAEnflagbusses operate ineitherPolled or Direct mode. If this pin is HIGH the mode is Polled, if LOW then it will be Direct.
$\begin{array}{\|l} \text { FSTR } \\ \text { (R4) } \end{array}$	$\overline{\text { PAFn Flag Bus }}$ Strobe	LVTTL INPUT	If direct operation of the $\overline{\text { PAFn }}$ bus has been selected, the FSTR inputis used in conjunction with WCLK and the WRADD bus to selecta device for its queues to be placed on to the $\overline{\text { PAF }}$ bus outputs. A device addressed via the WRADD bus is selected on the rising edge of WCLK provided that FSTR is HIGH. If Polled operations has been selected, FSTR should be tied inactive, LOW. Note, that a PAFn flag bus selection cannotbe made,(FSTR mustNOT go active) until programming of the parthas been completed and $\overline{\text { SENO }}$ has gone LOW.

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/OTYPE	Description
FSYNC (R3)	$\overline{\text { PAFn Bus Sync }}$	LVTTL OUTPUT	FSYNC is an output from the multi-queue device that provides a synchronizing pulse for the $\overline{\text { PAFn bus }}$ during Polled operation of the PAFn bus. During Polled operation each quadrant of queue status flags is loaded on to the PAFn bus outputs sequentially based on WCLK. The firstWCLK rising edge loads device1 on tothe $\overline{\text { PAFn }}$ bus outputs, the second WCLK rising edge loads device 2 and so on. During the WCLK cycle that a selected device is placed on to the $\overline{\text { PAF }}$ bus, the FSYNC output will be HIGH.
$\begin{aligned} & \hline \begin{array}{l} \text { FXI } \\ \text { (T2) } \end{array} \end{aligned}$	$\overline{\text { PAFn }}$ Bus Expansion In	LVTTL INPUT	The FXI input is used when multi-queue devices are connected in expansion mode and Polled $\overline{\mathrm{PAF}} \mathrm{n}$ bus operation has been selected. FXI of device ' N ' connects directly to FXO of device ' $\mathrm{N}-1$ '. The FXI receives a token from the previous device in a chain. In single device mode the FXI input must be tied LOW ifthe $\overline{\text { PAF }}$ bus is operated in direct mode. Ifthe $\overline{\text { PAF }}$ bus is operated in polled mode the FXI input mustbe connected to the FXO output of the same device. In expansion mode the FXI of the first device should be tied LOW, when direct mode is selected.
$\begin{aligned} & \text { FXO } \\ & \text { (T3) } \end{aligned}$	PAFnBus ExpansionOut	LVTTL OUTPUT	FXO is an output that is used when multi-queue devices are connected in expansion mode and Polled $\overline{\text { PAF }}$ n bus operation has been selected. FXO of device ' N ' connects directly to FXI of device ' $\mathrm{N}+1$ '. This pin pulses HIGH when device N placesits $\overline{\text { PAF }}$ status on tothe $\overline{\text { PAFn }}$ bus with respecto WCLK. This pulse (token) is then passed on to the next device in the chain ' $\mathrm{N}+1$ ' and on the next WCLK rising edge the first quadrant of device $\mathrm{N}+1$ will be loaded on to the $\overline{\text { PAFn bus. This continues through the chain and FXO }}$ of the last device is then looped back to FXI of the first device. The FSYNC output of each device in the chain provides synchronization to the user of this looping event.
$\begin{aligned} & \text { ID[2:0 }{ }^{(1)} \\ & \text { (ID2-C9 } \\ & \text { ID1-A10 } \\ & \text { ID0-B10 } \end{aligned}$	Device ID Pins	LVTTL INPUT	For the 4Q multi-queue device the WRADD address bus is 5 bits and RDADD address bus is 6 bits wide. When aqueue selectiontakes placethe3MSb's ofthis address bus are usedtoaddress the specific device (the LSb's are used to address the queue within that device). During write/read operations the 3MSb's ofthe address are compared to the device ID pins. The first device in a chain of multi-queue's (connected in expansion mode), may be setup as ' 000 ', the second as ' 001 ' and so on through to device 8 which is '111', howeverthe ID does nothave to match the device order. In single device mode these pins should be setup as '000' and the 3 MSb's oftheWRADD and RDADD address busses should be tied LOW. The ID[2:0] inputs setup a respective devices ID during master reset. These ID pins must not toggle during any device operation. Note, the device selected as the 'Master' does not have to have the ID of '000'.
$\begin{aligned} & \mathrm{IW}^{(1)} \\ & (\mathrm{L} 15) \\ & \hline \end{aligned}$	InputWidth	LVTTL INPUT	IW selects the bus width for the data input bus. If IW is LOW during a Master Reset then the bus width is $x 18$, if HIGH then it is $\times 9$.
$\begin{aligned} & \begin{array}{l} \text { MAST }^{(1)} \\ \text { (K15) } \end{array} \end{aligned}$	Master Device	LVTTL INPUT	The state ofthis inputatMaster Resetdetermines whether a given device (withina chain of devices), is the Master device or a Slave. If this pin is HIGH, the device is the master, if it is LOW then it is a Slave. The master device is the firstto take control of all outputs after a master reset, all slave devices go to High-Impedance, preventing bus contention. Ifa multi-queue device is beingused in single device mode, this pin mustbe setHIGH.
$\overline{\mathrm{MRS}}$ (T9)	MasterReset	LVTTL INPUT	Amaster resetis performed bytaking $\overline{\mathrm{MRS}}$ from HIGH to LOW, to HIGH. Device programming is required aftermaster reset.
$\overline{\mathrm{OE}}$ (M14)	OutputEnable	LVTTL INPUT	The Outputenable signal is an Asynchronous signal used to provide three-state control of the multi-queue data outputbus, Qout. If a device has been configured as a "Master" device, the Qout data outputs will be in a Low Impedance condition if the $\overline{\mathrm{OE}}$ input is LOW. If $\overline{\mathrm{OE}}$ is HIGH then the Qout data outputs will be in High Impedance. If a device is configureda "Slave" device, then the Qout data outputs will always be in High Impedance until that device has been selected onthe Read Port, atwhich point $\overline{\text { OE }}$ provides threestate of that respective device.
$\begin{aligned} & \overline{\mathrm{OV}} \\ & (\mathrm{Pg}) \end{aligned}$	Output Valid Flag	LVTTL OUTPUT	This outputflagprovides outputvalidstatus forthe dataword presentonthemulti-queueflow-control device data output port, Qout. This flag is therefore, 2 -stage delayed to match the data output path delay. That is, there is a 2 RCLK cycle delay from the time a given queue is selected for reads, to the time the $\overline{\mathrm{OV}}$ flag represents the data in that respective queue. When a selected queue on the read port is read to empty, the $\overline{\mathrm{OV}}$ flag will go HIGH , indicating that data on the output bus is not valid. The $\overline{\mathrm{OV}}$ flag also has HighImpedance capability, required when multiple devices are used and the $\overline{\mathrm{OV}}$ flags are tied together.
$\begin{aligned} & \mathrm{OW}^{(1)} \\ & (\mathrm{L} 16) \end{aligned}$	OutputWidth	LVTTL INPUT	OW selects the bus widthforthe dataoutputbus. IfOW is LOW during aMaster Resetthenthe bus width is $x 18$, if HIGH then it is $x 9$.

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/O TYPE	Description
$\begin{array}{\|l\|} \hline \overline{\mathrm{PAE}} \\ (\mathrm{P} 10) \end{array}$	Programmable Almost-EmptyFlag	LVTTL OUTPUT	This pin provides the Almost-Empty flag status for the queue that has been selected on the output port for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected queue is almost-empty. This flag output may be duplicated on one of the $\overline{\text { PAEn bus lines. This flag is }}$ synchronizedto RCLK.
$\overline{\text { PAEn }}$ (PAE3-P13 PAE2-R13 $\overline{\text { PAE1-T13 }}$ PAE $0-T 14)$	Programmable Almost-Empty Flag Bus	LVTTL OUTPUT	Onthe 4Qdevice the $\overline{\text { PAEn }}$ bus is 4 bits wide. This outputbus provides $\overline{\text { PAE }}$ status of all 4 queues, withina selected device. During queue read/write operations these outputs provide programmable empty flag status in either director polled mode. The mode of flag operation is determined during master reset via the state of the FM input. Thisflagbus is capable of High-Impedancestate, this is important during expansion of multi-queue devices. During directoperationthe $\overline{\text { PAEn bus is updatedto show the PAE status ofqueues }}$ within a selected device. Selection is made using RCLK, ESTR and Flag Bus RDADD. During Polled based on the rising edge of RCLK.
$\begin{array}{\|l} \overline{\mathrm{PAF}} \\ \text { (R8) } \end{array}$	Programmable Almost-Full Flag	LVTTL OUTPUT	This pin provides the Almost-Full flag status for the queue that has been selected on the input portfor write operations, (selected viaWCLK, WRADD andWADEN). This pinis LOW whenthe selectedqueue is almost-full. This flag output may be duplicated on one of the $\overline{\text { PAFn }}$ bus lines. This flag is synchronized toWCLK
$\overline{\text { PAF }}$ $\left.\begin{array}{l}\text { (PAE3-P5 } \\ \text { (PAE2-R5 } \\ \text { PAE } \\ \overline{\text { PAE1-T5 }} \\ \hline \text { PAE-T4 }\end{array}\right)$	Programmable Almost-Full Flag Bus	LVTTL OUTPUT	Onthe 4Qdevice the $\overline{\text { PAF }}$ nbus is 4 bits wide. This outputbus provides $\overline{\mathrm{PAF}}$ status of all 4 queues, withina selected device. During queue read/write operations these outputs provide programmablefull flag status, ineitherdirect or polled mode. The mode offlag operation is determined during master resetviathe state of the FM input. This flag bus is capable of High-Impedance state, this is important during expansion of multi-queue devices. During directoperation the $\overline{\text { PAF }}$ bus is updated to show the $\overline{\text { PAF status of aqueues }}$ within a selected device. Selection is made using WCLK, FSTR, WRADD and WADEN. During Polled operation the $\overline{\mathrm{PAF}}$ n bus is loaded with the $\overline{\mathrm{PAF}}$ status of multi-queue flow-control devices sequentially based on the rising edge of WCLK.
$\begin{aligned} & \overline{\mathrm{PRS}} \\ & \text { (T8) } \end{aligned}$	Partial Reset	LVTTL INPUT	APartial Resetcanbeperformedonasinglequeueselected withinthe multi-queuedevice.Beforea Partial Reset can be performed on a queue, that queue must be selected on both the write port and read port 2 clock cycles before the reset is performed. A Partial Reset is then performed by taking $\overline{\operatorname{PRS}}$ LOW for one WCLK cycle and one RCLK cycle. The Partial Reset will only reset the read and write pointers to the first memory location, none of the devices configuration will be changed.
Q[17:0] Qout(See Pin tablefordetails)	DataOutputBus	LVTTL OUTPUT	These are the 18 data outputpins. Data is read out of the device via these outputpins on the rising edge of RCLK provided that $\overline{R E N}$ is LOW, $\overline{O E}$ is LOW and the queue is selected. Due to bus matching not all outputs may be used, any unused outputs should not be connected.
$\begin{aligned} & \hline \text { RADEN } \\ & \text { (R14) } \end{aligned}$	Read Address Enable	LVTTL INPUT	The RADEN input is used in conjunction with RCLK and the RDADD address bus to select a queue to be read from. A queue addressed via the RDADD bus is selected on the rising edge of RCLK provided that RADEN is HIGH. RADEN should be asserted (HIGH) only during aqueue change cycle(s). RADEN should not be permanently tied HIGH. RADEN cannot be HIGH for the same RCLK cycle as ESTR. Note, that a readqueue selection cannotbe made, (RADEN mustNOT go active) until programming of the part has been completed and $\overline{\text { SENO }}$ has gone LOW.
$\begin{aligned} & \hline \text { RCLK } \\ & \text { (T10) } \end{aligned}$	Read Clock	LVTTL INPUT	When enabled by $\overline{R E N}$, the rising edge of RCLK reads datafrom the selected queue via the output bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK while RADEN is HIGH. A rising edge of RCLK in conjunction with ESTR and RDADD will also select the device to be placed on the $\overline{\text { PAEn bus during directflag operation. During polled flag operation the } \overline{\text { PAEn }} \text { bus is }}$ cycled with respect to RCLK and the ESYNC signal is synchronized to RCLK. The $\overline{\text { PAE }}$ and $\overline{\text { OV outputs }}$ are all synchronized to RCLK. During device expansion the EXO and EXI signals are based on RCLK. RCLK mustbe continuous and free-running.
RDADD [5:0] (See next page fordetails)	Read Address Bus	LVTTL INPUT	For the 4Q device the RDADD bus is 6 bits. The RDADD bus is a dual purpose address bus. The first function of RDADD is to selectaqueue to be readfrom. The leastsignificant 2bits ofthe bus, RDADD[1:0] are used to address 1 of 4 possiblequeues within a multi-queue device. Address pin, RDADD[2] provides the user with a Null-Q address. If the user does not wish to address one of the 4 queues, a Null-Q can be addressed usingthis pin. The Null-Q operation is discussed in more detail later. The mostsignificant 3 bits, RDADD[5:3] are used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. These 3 MSB's will address a device with the matching ID code. The address present

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/OTYPE	Description
RDADD [5:0] (Continued) (RDADD5-P16 RDADD4-P15 RDADD3-P14 RDADD2-N14 RDADD1-M16 RDADDO-M15)	Read Address Bus	LVTTL INPUT	on the RDADD bus will be selected on a rising edge of RCLK provided that RADEN is HIGH, (note, that data can be placed on to the Qout bus, read from the previously selected queue on this RCLK edge). On the next rising RCLK edge after a read queue select, a data word from the previous queue will be placed onto the outputs, Qout, regardless of the REN input. Two RCLK rising edges after read queue select, data will be placed on to the Qout outputs from the newly selected queue, regardless of $\overline{R E N}$ due to the firstwordfall through effect. The second function of the RDADD bus is to select the device of queues to be loaded on to the $\overline{\text { PAEn }}$ bus during strobed flag mode. The most significant 3 bits, RDADD[5:3] are again used to select 1 of 8 possible multi-queue devices thatmay be connected in expansion mode. Address bits RDADD[2:0] are don't care during device selection. The device address present onthe RDADD bus will be selected on the rising edge of RCLK provided that ESTR is HIGH, (note, that data can be placed on tothe Qoutbus, read fromthe previously selectedqueue onthis RCLKedge). Please refertoTable2fordetails on RDADD bus.
$\begin{array}{\|l} \hline \overline{\text { REN }} \\ (\mathrm{T} 11) \end{array}$	Read Enable	LVTTL INPUT	The $\overline{\text { REN }}$ input enables read operations from a selected queue based on a rising edge of RCLK. A queue to be read from can be selected via RCLK, RADEN and the RDADD address bus regardless of the state of $\overline{R E N}$. Datafrom anewlyselected queue will be available on the Qout outputbus onthe second RCLK cycle after queue selection regardless of $\overline{\operatorname{REN}}$ due to the FWFT operation. A read enable is not required to cycle the $\overline{\text { PAEn bus (in polled mode) or to select the device, (in direct mode). }}$
$\begin{array}{\|l} \hline \text { SCLK } \\ \text { (N3) } \end{array}$	Serial Clock	LVTTL INPUT	If serial programming of the multi-queue device has been selected during master reset, the SCLKinput clocks the serial data through the multi-queue device. Data setup on the Sl i inputis loaded intothe device on the rising edge of SCLK provided that SENT is enabled, LOW. When expansion of devices is performed the SCLK of all devices should be connected to the same source.
$\begin{aligned} & \overline{\mathrm{SENI}} \\ & \text { (M2) } \end{aligned}$	Serial InputEnable	LVTTL INPUT	During serial programming of a multi-queue device, data loaded onto the Sl input will be clocked into the part (via a rising edge of SCLK), provided the SEN input of that device is LOW. If multiple devices are cascaded, the $\overline{\text { SENl }}$ input should be connectedtothe $\overline{\text { SENO }}$ outputof the previous device. So when serial loading of a given device is complete, its SENO output goes LOW, allowing the next device in the chain to be programmed (SENO will follow $\overline{\text { SENI }}$ of a given device once thatdevice is programmed). The $\overline{\text { SENI }}$ input of the master device (or single device), should be controlled by the user.
$\begin{array}{\|l} \hline \overline{\mathrm{SENO}} \\ (\mathrm{M} 1) \end{array}$	Serial Output Enable	LVTTL OUTPUT	This output is used to indicate that serial programming or defaultprogramming of the multi-queue device has been completed. $\overline{\text { SENO }}$ follows $\overline{\mathrm{SENI}}$ once programming of a device is complete. Therefore, $\overline{\mathrm{SENO}}$ will go LOW after programming provided $\overline{\text { SENl }}$ is LOW, once $\overline{\text { SENI }}$ is taken HIGH again, $\overline{\text { SENO }}$ will also go HIGH. When the $\overline{S E N O}$ output goes LOW, the device is ready to begin normal read/write operations. If multiple devices are cascaded and serial programming of the devices will be used, the $\overline{\text { SENO }}$ output should be connected to the $\overline{S E N}$ input of the next device in the chain. When serial programming of the first device is complete, $\overline{\text { SENO }}$ will go LOW, thereby taking the $\overline{\text { SENI }}$ input of the next device LOW and so on throughout the chain. When a given device in the chain is fully programmed the $\overline{\text { SENO }}$ output essentially follows the $\overline{\mathrm{SEN}}$ input. The user should monitorthe $\overline{\mathrm{SENO}}$ output of the final device in the chain. When this output goes LOW, serial loading of all devices has been completed.
$\begin{aligned} & \hline \begin{array}{l} \text { SI } \\ (L 1) \end{array} \end{aligned}$	Serial In	LVTTL INPUT	During serial programming this pinis loaded with the serial datathat will configure the multi-queue devices. Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion mode the serial datainputisloaded into the firstdevice inachain. When thatdevice is loaded and its SENO has gone LOW, the data presenton SI will bedirectly outputtothe SO output. TheSO pin of the firstdevice connectstotheSI pin of the second and so on. The multi-queue device setup registers are shiftregisters.
$\begin{aligned} & \mathrm{SO} \\ & \text { (M3) } \end{aligned}$	Serial Out	LVTTL OUTPUT	This outputis used in expansion mode and allows serial data to be passed through devices in the chain to complete programming of all devices. The SI of a device connects to SO of the previous device in the chain. The SO of the final device in a chain should not be connected.
$\begin{aligned} & \hline \begin{array}{l} \text { TCK } \\ \text { (A8) } \end{array} \\ & \hline \end{aligned}$	JTAG Clock	LVTTL INPUT	Clock inputfor JTAG function. One of four terminals required by IEEE Standard 1149.1-1990. Test operations ofthe device are synchronous to TCK. Data from TMS and TDI are sampled on the rising edge of TCK and outputs change on the falling edge of TCK. If the JTAG function is not used this signal needs to be tied to GND.
TDI ${ }^{(2)}$ (B9)	JTAG TestData Input	LVTTL INPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, testdata serially loaded via the TDI on the rising edge of TCK to either the Instruction Register, ID Register and Bypass Register. An internal pull-up resistor forces TDI HIGH if left unconnected.

PIN DESCRIPTIONS (CONTINUED)

Symbol \& Pin No.	Name	I/O TYPE	Description
$\begin{aligned} & \begin{array}{l} \mathrm{TDO}^{(2)} \\ \text { (A9) } \end{array} \end{aligned}$	JTAG Test Data Output	LVTTL OUTPUT	One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded outputviatheTDO onthe falling edge of TCK from eitherthe Instruction Register, ID Register and Bypass Register. This output is high impedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states.
$\begin{aligned} & \mathrm{TMS}^{(2)} \\ & \text { (B8) } \\ & \hline \end{aligned}$	JTAGMode Select	LVTTL INPUT	TMS is a serial input pin. One offour terminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states. An internal pull-up resistorforces TMSHIGH ifleftunconnected.
$\begin{aligned} & \hline \mathrm{TRST}^{(2)} \\ & (\mathrm{C} 7) \end{aligned}$	JTAGReset	LVTTL INPUT	$\overline{\text { TRST }}$ is anasynchronous resetpinfortheJTAG controller. TheJTAGTAP controllerdoes notautomatically resetupon power-up, thus itmustbe resetby eitherthissignal orby setting TMS=HIGHforfive TCK cycles. If the TAP controller is not properly reset then the outputs will always be in high-impedance. If the JTAG function is used but the user does not want to use $\overline{T R S T}$, then $\overline{\text { TRST }}$ can be tied with $\overline{\mathrm{MRS}}$ to ensure proper queue operation. If the JTAG function is not used then this signal needs to be tied to GND. An internal pull-up resistor forces TRSTHIGH if left unconnected.
WADEN (P4)	Write Address Enable	LVTTL INPUT	The WADEN input is used in conjunction with WCLK and the WRADD address bus to select a queue to be written into. A queue addressed viatheWRADD bus is selected on the rising edge of WCLK provided thatWADEN is HIGH.WADEN should be asserted (HIGH) only during a queue change cycle(s). WADEN shouldnotbe permanentlytiedHIGH. WADEN cannotbeHIGH for the sameWCLK cycle as FSTR. Note, that a write queue selection cannotbe made, (WADEN mustNOT go active) until programming of the part has been completed and $\overline{\text { SENO }}$ has gone LOW.
WCLK (T7)	WriteClock	LVTTL INPUT	When enabled by $\overline{W E N}$, the rising edge of WCLK writes data into the selected queue via the input bus, Din. The queue to be written to is selected via the WRADD address bus and a rising edge of WCLK while WADEN is HIGH. A rising edge ofWCLKinconjunction withFSTR andWRADD will also select the device to be placed on the $\overline{\mathrm{PAF}}$ n bus during direct flag operation. During polled flag operation the $\overline{\mathrm{PAF}}$ n bus is cycled with respect to WCLK and the FSYNC signal is synchronized to WCLK. The $\overline{\mathrm{PAF}}, \overline{\mathrm{PAF}}$ and $\overline{\mathrm{FF}}$ outputs are all synchronized to WCLK. During device expansion the FXO and FXI signals are based on WCLK. The WCLK must be continuous and free-running.
$\overline{W E N}$ (T6)	Write Enable	LVTTL INPUT	The $\overline{W E N}$ input enables write operations to a selected queue based on a rising edge of WCLK. A queue to be written to can be selected via WCLK, WADEN and the WRADD address bus regardless of the state of $\overline{W E N}$. Data present on Din can be written to a newly selected queue on the second WCLK cycle after queue selection provided that $\overline{W E N}$ is LOW. A write enable is not required to cycle the $\overline{\mathrm{PAF}}$ nbus (in polled mode) or to select the device, (in direct mode).
WRADD [4:0] (WRADD4-T1 WRADD3-R1 WRADD2-R2 WRADD1-N1 WRADDO-N2)	Write Address Bus	LVTTL INPUT	For the 4Q device the WRADD bus is 5 bits. The WRADD bus is a dual purpose address bus. The first function ofWRADD is to selectaqueue to be writtento. The leastsignificant2bits ofthe bus, WRADD[1:0] are used to address 1 of 4 possible queues within a multi-queue device. The most significant 3 bits, WRADD[4:2] are used to select 1 of 8 possible multi-queue devices that may be connected in expansion mode. These 3 MSB's will address a device with the matching ID code. The address present on the WRADD bus will be selected on a rising edge of WCLK provided that WADEN is HIGH, (note, that data present on the Din bus can be written into the previously selected queue on this WCLK edge and on the next rising WCLK also, providing that $\overline{W E N}$ is LOW). Two WCLK rising edges after write queue select, data can be written into the newly selected queue. The secondfunction of the WRADD bus is to select the device of queues to beloaded on to the $\overline{\mathrm{PAF}}$ n bus during strobed flag mode. The mostsignificant 3bits, WRADD[4:2] are again used to select 1 of 8 possible multi-queue devices thatmay be connected in expansion mode. Address bitsWRADD[1:0] are don'tcare during device selection. The device address present on the WRADD bus will be selected on the rising edge of WCLK provided that FSTR is HIGH, (note, that data can be written into the previously selected queue on this WCLK edge). Please refer to Table 1 for details on the WRADD bus.
Vcc (See Pin tablefor details)	+3.3V Supply	Power	These are Vcc power supply pins and must all be connected to $\mathrm{a}+3.3 \mathrm{~V}$ supply rail.
GND (See Pin tablefor details)	Ground Pin	Ground	These are Ground pins and must all be connected to the GND supply rail.

NOTES:

1. Inputs should not change after Master Reset
2. These pins are for the JTAG port. Please refer to pages 45-49 and Figures 27-29.
**Please continue to next page for Pin Number Table.

PIN NUMBER TABLE

Symbol	Name	I/OTYPE	Pin Number
D[17:0] Din	DatalnputBus	LVTTL INPUT	D17-C1, D(16,15)-B(2,1), D(14-12)-A(1-3), D11-B3, D10-A4, D9-B4, D8-C4, D7-A5, D6-B5, D5-C5, D4-A6, D3-B6, D2-C6, D1-A7, D0-B7
Q[17:0] Qout	Data OutputBus	LVTTL OUTPUT	Q17-C15, Q16-D14, Q(15,14)-A(16,15), Q13-B15, Q12-A14, Q11-B14, Q10-C14, Q9-A13, Q8-B13, Q7-C13, Q6-A12, Q5-B12, Q4-C12, Q3-A11, Q2-B11, Q(1,0)-C(11,10)
VcC	+3.3 Supply	Power	$\mathrm{D}(4-13), \mathrm{E}(4-7,10-13), \mathrm{F}(4,5,12,13), \mathrm{G}(4,5,12,13), \mathrm{H}(4,13), \mathrm{J}(4,13), \mathrm{K}(4,5,12,13), \mathrm{L}(4,5,12,13)$, $\mathrm{M}(4-7,10-13), \mathrm{N}(4-13)$
GND	Ground Pin	Ground	$\mathrm{C}(2,3,8), \mathrm{D}(1-3), \mathrm{E}(1-3,8,9), \mathrm{F}(1-3-6-11), \mathrm{G}(1-3,6-11), \mathrm{H}(1-3,5-12), \mathrm{J}(1-3,5-12,14), \mathrm{K}(1-3,6-11,14)$, $\mathrm{L}(6-11,14), \mathrm{M}(8,9), \mathrm{N}(15,16), \mathrm{P}(1-3)$
DNC	DoNotConnect		$\mathrm{B} 16, \mathrm{C} 16, \mathrm{D}(15,16), \mathrm{E}(14-16), \mathrm{F}(14-16), \mathrm{G}(14-16), \mathrm{H}(14-16), \mathrm{J}(15,16), \mathrm{P}(6,7,111,12), \mathrm{R}(6,7,9-12), \mathrm{T}(12)$

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Com'I \& Ind'I	Unit
VTERM	Terminal Voltage with respect to GND	-0.5 to +4.5	V
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IOUT	DCOutputCurrent	-50 to +50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc $^{(1)}$	Supply Voltage(Com'//Ind'I)	3.15	3.3	3.45	V
GND	Supply Voltage(Com'//Ind'I)	0	0	0	V
VIH	InputHigh Voltage(Com'//Ind'I)	2.0	-	VcC +0.3	V
VIL	InputLow Voltage (Com'//Ind'I)	-	-	0.8	V
TA	OperatingTemperatureCommercial	0	-	+70	${ }^{\circ} \mathrm{C}$
TA	OperatingTemperatureIndustrial	-40	-	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}$, JEDEC JESD8-A compliant.

DC ELECTRICALCHARACTERISTICS

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	Min.	Max.	Unit
$\mathrm{ILI}^{(1)}$	InputLeakageCurrent	-10	10	$\mu \mathrm{~A}$
$\mathrm{ILO}^{(2)}$	OutputLeakageCurrent	-10	10	$\mu \mathrm{~A}$
VoH	Output Logic "1" Voltage, $\mathrm{IOH}=-8 \mathrm{~mA}$	2.4	-	V
VoL	Output Logic "0" Voltage, $\mathrm{IOL}=8 \mathrm{~mA}$	-	0.4	V
$\mathrm{ICC1}^{(3,4,5)}$	Active Power Supply Current	-	100	mA
$\mathrm{ICC2}^{(3,6)}$	Standby Current	-	mA	

NOTES:

1. Measurements with $0.4 \leq \mathrm{VIN} \leq \mathrm{Vcc}$.
2. $\overline{\mathrm{OE}} \geq \mathrm{VIH}, 0.4 \leq$ VOUT $\leq \mathrm{VCC}$
3. Tested with outputs open (Iout $=0$).
4. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz .
5. Typical $\mathrm{IcC1}=16+3.14^{\star} \mathrm{fs}+0.02^{*} \mathrm{CL} \mathrm{L}^{*} \mathrm{fs}$ (in mA) with $\mathrm{VCC}=3.3 \mathrm{~V}$, $\mathrm{tA}=25^{\circ} \mathrm{C}$, fs $=$ WCLK frequency $=$ RCLK frequency (in MHz, using TTL levels), data switching at $\mathrm{fs} / 2$, $\mathrm{CL}=$ capacitive load (in pF).
6. RCLK and WCLK, toggle at 20 MHz .

The following inputs should be pulled to GND: WRADD, RDADD, WADEN, RADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs. The following inputs should be pulled to Vcc: $\overline{\mathrm{WEN}}, \overline{\mathrm{REN}}, \overline{\mathrm{SENI}}, \overline{\mathrm{PRS}}, \overline{\mathrm{MRS}}, \mathrm{TDI}, \mathrm{TMS}$ and $\overline{\text { TRST }}$. All other inputs are don't care, and should be pulled HIGH or LOW.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
$\mathrm{CIN}^{(2)}$	Input Capacitance	$\mathrm{VIN}_{\mathrm{IN}}=0 \mathrm{~V}$	10	pF
Cout $^{(1,2)}$	Output Capacitance	Vout = OV	10	pF

NOTES:

1. With output deselected, $(\overline{\mathrm{OE}} \geq \mathrm{VIH})$.
2. Characterized values, not currently tested.

AC TEST LOADS

Figure 2a. AC Test Load

Figure 2b. Lumped Capacitive Load, Typical Derating

AC TEST CONDITIONS

Input Pulse Levels Input Rise/Fall Times
Input Timing ReferenceLevels
OutputReferenceLevels
OutputLoad

```
GND to 3.0V
    1.5ns
    1.5V
    1.5V
    See Figure 2a & 2b
```


OUTPUT ENABLE \& DISABLE TIMING

AC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter				T ${ }^{\prime}$ (1)	Unit
		IDT72V51233L6 IDT72V51243L6 IDT72V51553L6		$\begin{aligned} & \hline \text { IDT72V51233L7-5 } \\ & \text { IDT72V51243L7-5 } \\ & \text { IDT72V51553L7-5 } \end{aligned}$		
		Min.	Max.	Min.	Max.	
fs	Clock Cycle Frequency (WCLK \& RCLK)	-	166	-	133	MHz
tA	Data Access Time	0.6	3.7	0.6	4	ns
tclk	Clock Cycle Time	6	-	7.5	-	ns
tCLKH	Clock High Time	2.7	-	3.5	-	ns
tCLKL	Clock Low Time	2.7	-	3.5	-	ns
DS	Data Setup Time	2	-	2.0	-	ns
DH	DataHold Time	0.5	-	0.5	-	ns
tens	Enable Setup Time	2	-	2.0	-	ns
tenh	Enable Hold Time	0.5	-	0.5	-	ns
tRS	ResetPulseWidth	10	-	10	-	ns
tRSS	ResetSetup Time	15	-	15	-	ns
tRSR	Reset Recovery Time	10	-	10	-	ns
tPRSS	Partial ResetSetup	2.0	-	2.5	-	ns
tPRSH	Partial ResetHold	0.5	-	0.5	-	ns
tolz ($\left.\overline{O E}-Q_{n}\right)^{(2)}$	OutputEnable to Outputin Low-Impedance	0.6	3.7	0.6	4	ns
tohz ${ }^{(2)}$	OutputEnable to Outputin High-Impedance	0.6	3.7	0.6	4	ns
toe	Output Enableto Data Output Valid	0.6	3.7	0.6	4	ns
fic	Clock Cycle Frequency (SCLK)	-	10	-	10	MHz
tSCLK	Serial Clock Cycle	100	-	100	-	ns
tSCKH	Serial Clock High	45	-	45	-	ns
tSCKL	Serial Clock Low	45	-	45	-	ns
tsDS	Serial Data InSetup	20	-	20	-	ns
tsDH	Serial Data In Hold	1.2	-	1.2	-	ns
tSENS	Serial Enable Setup	20	-	20	-	ns
tSENH	Serial Enable Hold	1.2	-	1.2	-	ns
tSDO	SCLK to Serial Data Out	-	20	-	20	ns
tSENO	SCLK to Serial Enable Out	-	20	-	20	ns
tsDOP	Serial Data Out Propagation Delay	1.5	3.7	1.5	4	ns
tSENOP	Serial Enable Propagation Delay	1.5	3.7	1.5	4	ns
tPCWQ	Programming Completeto Write Queue Selection	20	-	20	-	ns
tPCRQ	Programming Complete to Read Queue Selection	20	-	20	-	ns
tAS	Address Setup	2.5	-	3.0	-	ns
taH	Address Hold	1	-	1	-	ns
twfF	Write Clock to Full Flag	-	3.7	-	5	ns
trov	Read Clock to Output Valid	-	3.7	-	5	ns
tsTS	StrobeSetup	2	-	2	-	ns
tSTH	StrobeHold	0.5	-	0.5	-	ns
tos	QueueSetup	2	-	2.5	-	ns
tor	Queue Hold	0.5	-	0.5	-	ns
twaF	WCLK to $\overline{\text { PAF }}$ flag	0.6	3.7	0.6	4	ns
tRAE	RCLK to $\overline{\text { PAE flag }}$	0.6	3.7	0.6	4	ns
tPAF	Write Clock to Synchronous Almost-Full Flag Bus	0.6	3.7	0.6	4	ns
tPAE	Read Clock to Synchronous Almost-Empty Flag Bus	0.6	3.7	0.6	4	ns

NOTES:

1. Industrial temperature range product for the $7-5 n$ is available as a standard device. All other speed grades available by special order.
2. Values guaranteed by design, not currently tested.

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

(Commercial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$;Industrial: $\mathrm{VCC}=3.3 \mathrm{~V} \pm 0.15 \mathrm{~V}, \mathrm{TA}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; JEDEC JESD8-A compliant)

Symbol	Parameter	CommercialIDT72V51233L6IDT72V51243L6IDT72V51553L6		Com'I \& Ind'\|(1)IDT72V51233L7-5IDT72V51243L7-5IDT72V51553L7-5		Unit
		Min.	Max.	Min.	Max.	
tPAELZ ${ }^{(2)}$	RCLK to $\overline{\text { PAE }}$ Flag Bus to Low-Impedance	0.6	3.7	0.6	4	ns
tPAEHZ ${ }^{(2)}$	RCLK to $\overline{\text { PAE Flag Bus to High-Impedance }}$	0.6	3.7	0.6	4	ns
tPAFLZ ${ }^{(2)}$	WCLK to $\overline{\text { PAF }}$ Flag Bus to Low-Impedance	0.6	3.7	0.6	4	ns
tPAFHZ ${ }^{(2)}$	WCLK to $\overline{\text { PAF }}$ Flag Bus to High-Impedance	0.6	3.7	0.6	4	ns
tFFHZ ${ }^{(2)}$	WCLK to Full Flag to High-Impedance	0.6	3.7	0.6	4	ns
tFFLZ ${ }^{(2)}$	WCLK to Full Flag to Low-Impedance	0.6	3.7	0.6	4	ns
tovLz ${ }^{(2)}$	RCLK to Output Valid Flag to Low-Impedance	0.6	3.7	0.6	4	ns
tovHz ${ }^{(2)}$	RCLK to Output Valid Flag to High-Impedance	0.6	3.7	0.6	4	ns
tFSYNC	WCLK to $\overline{\text { PAF }}$ Bus Sync to Output	0.6	3.7	0.6	4	ns
texo	WCLK to $\overline{\text { PAF }}$ Bus Expansion to Output	0.6	3.7	0.6	4	ns
teSYNC	RCLK to $\overline{\text { PAE }}$ Bus Sync to Output	0.6	3.7	0.6	4	ns
texo	RCLK to $\overline{\text { PAE }}$ Bus Expansion to Output	0.6	3.7	0.6	4	ns
tSkEW1	SKEW time between RCLK and WCLK for $\overline{\bar{F}}$ and $\overline{\mathrm{OV}}$	4.5	-	5.75	-	ns
tSKEW2	SKEW time between RCLK and WCLK for $\overline{\overline{\text { PAF }} \text { and }} \overline{\overline{\text { PAE }}}$	6	-	7.5	-	ns
tSKEW3	SKEW time between RCLK and WCLK for $\overline{\mathrm{PAF}}[0: 7]$ and $\overline{\mathrm{PAE}}[0: 7]$	6	-	7.5	-	ns
tSKEW4	SKEW time between RCLK and WCLK for $\overline{\mathrm{OV}}$	6	-	7.5	-	ns
txIS	Expansion InputSetup	1.0	-	1.3	-	ns
txil	Expansion Input Hold	0.5	-	0.5	-	ns

NOTES:

1. Industrial temperature range product for the $7-5 n$ is available as a standard device. All other speed grades available by special order.
2. Values guaranteed by design, not currently tested.

FUNCTIONAL DESCRIPTION

MASTERRESET

A Master Reset is performed by toggling the $\overline{M R S}$ input from HIGH to LOW to HIGH. During a master resetall internal multi-queue device setup and control registers are initialized and require programming either serially by the uservia the serial port, or using the default settings. During a master reset the state of the following inputs determine the functionality of the part, these pins should be held HIGH or LOW.

FM - Flag bus Mode
IW, OW-Bus Matching options
MAST - Master Device
ID0, 1, 2 - Device ID
DFM - Programming mode, serial or default
DF - Offset value for $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{PAF}}$
Onceamaster resethastaken place, the device mustbe programmedeither serially or via the default method before any read/write operations can begin.

See Figure 4, Master Resetfor relevant timing.

PARTIALRESET

APartial Resetis ameans by whichtheusercan resetboth the read and write pointers of a single queue that has been setup within a multi-queue device. Before a partial resetcantake placeonaqueue, the respective queue mustbe selected onboththe read portand write portaminimum of2RCLKand2WCLK cyclesbeforethe $\overline{\mathrm{PRS}}$ goes LOW. The partial resetisthenperformed by toggling the $\overline{\mathrm{PRS}}$ inputfrom HIGHtoLOW toHIGH, maintaining the LOW stateforatleast oneWCLKandoneRCLKcycle. Oncea partial resethastakenplace a minimum of 3WCLK and3RCLK cycles mustoccurbefore enabled writes or reads can occur.

A Partial Reset only resets the read and write pointers of a given queue, a partial reset will noteffectthe overall configuration and setup of the multi-queue device and its queues.
See Figure 5, Partial Resetfor relevant timing.

SERIAL PROGRAMMING

The multi-queue flow-control device is afully programmable device, providing the user with flexibility in how queues are configured interms of the number of queues, depth of each queue and position of the $\overline{\mathrm{PAF}} / \overline{\mathrm{PAE}}$ flags within respective queues. All userprogramming is done viathe serial portafteramaster reset has taken place. Internally the multi-queue device has setup registers which must be serially loaded, these registers contain values for every queue within the device, such as the depth and $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offset values. The IDT72V51233/72V51243/72V51253 devices are capable of up to 4 queues and therefore contain 4 sets of registers for the setup of each queue.
During aMasterResetiftheDFM (DefaultMode)inputisLOW, thenthe device will require serial programming by the user. It is recommended that the user utilize a 'C' program provided by IDT, this program will prompt the user for all information regarding the multi-queue setup. The program will then generate a serial bit stream which should be serially loaded into the device via the serial port. Forthe IDT72V51233/72V51243/72V51253devices the serial programming requires atotal number of serially loadedbits perdevice,(SCLK cycles with SENI enabled), calculated by: 19+(Qx72) where Qisthe number of queues the userwishes to setup withinthe device. Please refertothe separate Application Note, AN-303for recommended control of the serial programming port.

Once the master reset is complete and $\overline{\mathrm{MRS}}$ is HIGH, the device can be serially loaded. Data present on the SI (serial in), input is loaded into the serial port on a rising edge of SCLK (serial clock), provided that $\overline{\text { SENI }}$ (serial in enable), is LOW. Once serial programming of the device has been successfully
completed the device will indicate this viathe $\overline{\mathrm{SENO}}$ (serial outputenable) going active, LOW. Upon detection of completion of programming, the user should ceaseall programming andtake $\overline{\text { SENl }}$ inactive, HIGH. Note, $\overline{\text { SENO follows } \overline{\mathrm{SENI}}}$ once programming of a device is complete. Therefore, $\overline{\text { SENO }}$ will goLOW after programming provided $\overline{\mathrm{SENI}}$ is LOW, once $\overline{\mathrm{SENI}}$ is taken HIGH again, $\overline{\mathrm{SENO}}$ will also goHIGH. Theoperation of the SO outputis similar, when programming of a given device is complete, the SO output will follow the SI input.
Ifdevicesarebeingusedinexpansion modethe serial ports of devicesshould becascaded. The user canloadall devices viathe serial inputportcontrol pins, $\mathrm{SI} \& \overline{\mathrm{SENI}}$, of the first device in the chain. Again, the user may utilize the ' C ' programto generate the serial bit stream, the program prompting the userfor the number of devices to be programmed. The $\overline{\mathrm{SENO}}$ and SO (serial out) of the first device should be connected to the $\overline{\mathrm{SENI}}$ and SI inputs of the second device respectively and so on, withthe $\overline{\mathrm{SENO}} \& \mathrm{SO}$ outputs connecting to the $\overline{\text { SENI }} \&$ Sl inputs of all devices throughthe chain. All devices inthechain should beconnectedtoacommonSCLK. Theserial outputportofthefinaldevice should be monitored by the user. When $\overline{\text { SENO }}$ of the final device goes LOW, this indicates that serial programming of all devices has been successfully completed. Upon detection of completion of programming, the user should ceaseall programming and take $\overline{\text { SENI }}$ of the first device in the chain inactive, HIGH.
As mentioned, the first device inthechainhas its serial inputport controlled by the user, this is the first device to have its internal registers serially loaded by the serial bit stream. When programming of this device is complete it will take its SENO output LOW and bypass the serial data loaded on the SI input to its SO output. The serial input of the second device inthe chain is now loaded with the data from the SO of the first device, while the second device has its $\overline{\mathrm{SENI}}$ input LOW. This process continues through the chain until all devices are programmed and the $\overline{S E N O}$ of the final device goes LOW.

Once all serial programming has been successfully completed, normal operations, (queue selections on the read and write ports) may begin. When connected in expansion mode, the IDT72V51233/72V51243/72V51253 devices require atotal number of serially loaded bits per device to complete serial programming, (SCLK cycles with $\overline{S E N I}$ enabled), calculated by: $n[19+($ Qx72)] where Q is the number of queues the user wishes to setup within the device, where n is the number of devices in the chain.
See Figure 6, Serial PortConnectionand Figure 7, Serial Programmingfor connection andtiming information.

DEFAULTPROGRAMMING

During a Master Reset if the DFM (Default Mode) input is HIGH the multiqueue device will be configured for default programming, (serial programming is not permitted). Default programming provides the user with a simpler, however limited means by which to setup the multi-queue flow-control device, rather than using the serial programming method. The default mode will configure a multi-queue device such that the maximum number of queues possible are setup, with all ofthe parts available memory blocksbeing allocated equally between the queues. The values of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets is determined by the state of the DF (default) pin during a master reset.

For the IDT72V51233/72V51243/72V51253 devices the defaultmode will setup4 queues, each queue configured asfollows: For the IDT72V51233 with x 9 input and x 9 output ports, $16,384 \mathrm{x} 9$. If one or both ports is $\mathrm{x} 18,8,192 \mathrm{x}$ 18. For the IDT72V51243 with $x 9$ input and $x 9$ output ports, $32,768 \times 9$. If one or both ports is $\mathrm{x} 18,16,384 \times 18$. For the IDT72V51253 with x 9 input and x 9 outputports, $65,536 \times 9$. Ifone orboth ports is $\times 18,32,768 \times 18$. Forboth devices the value of the $\overline{\mathrm{PAE}} / \overline{\mathrm{PAF}}$ offsets is determined at master reset by the state of the DF input. IfDF is LOW thenboththe $\overline{\mathrm{PAE}} \& \overline{\mathrm{PAF}}$ offset will be 8 , ifHIGH then the value is 128 .

When configuring the IDT72V51233/72V51243/72V51253 devices in default mode the user simply has to apply WCLK cycles after a master reset, until SENO goesLOW, thissignalsthatdefaultprogrammingiscomplete. Theseclock cycles are required for the device to load its internal setup registers. When a single multi-queue device is used, the completion of device programming is signaled by the $\overline{\text { SENO }}$ output of a device going from HIGH to LOW. Note, that $\overline{\text { SENI }}$ mustbeheldLOW when a device is setup for defaultprogramming mode.
When multi-queue devices are connected in expansion mode, the $\overline{\text { SENI }}$ of thefirstdeviceinachaincanbeheldLOW. The $\overline{S E N O}$ of adevice shouldconnect to the $\overline{\mathrm{SENI}}$ of the next device in the chain. The $\overline{\mathrm{SENO}}$ of the final device is used to indicate that default programming of all devices is complete. When the final $\overline{\text { SENO }}$ goes LOW normal operations may begin. Again, all devices will be programmed with their maximum number of queues and the memory divided equally between them. Please refer to Figure 8, Default Programming.

WRITE QUEUE SELECTION \& WRITE OPERATION

The IDT72V51233/72V51243/72V51253 multi-queue flow-control devices have up to 4 queues that data can be written into viaa common write portusing the data inputs, Din, write clock, WCLK and write enable, $\overline{\mathrm{WEN}}$. The queue address present on the write address bus, WRADD during a rising edge on WCLK while write address enable, WADEN is HIGH, is the queue selected for write operations. The state of $\overline{W E N}$ is don'tcare during the write queue selection cycle. The queue selection only has to be made on a single WCLK cycle, this will remain the selected queue until another queue is selected, the selected queue is always the last queue selected.
The write port is designed such that 100\% bus utilization can be obtained. This means that data can be written into the device on every WCLK rising edge including the cycle that a new queue is being addressed. When a new queue is selected for write operations the address for that queue must be present on
theWRADD bus during a rising edge ofWCLK provided thatWADEN is HIGH. A queue to be writtentoneed only be selected on a single rising edge ofWCLK. All subsequent writes will be written to that queue until a new queue is selected. Aminimum of 2WCLKcycles mustoccurbetweenqueue selectionsonthe write port. On the nextWCLK rising edge the write port discrete full flag will update to show the full status of the newly selected queue. On the second rising edge of WCLK, data present on the datainputbus, Din can be written into the newly selected queue provided that $\overline{W E N}$ is LOW and the new queue is not full. The cycle ofthequeueselection and thenextcycle will continue to write data present onthe data inputbus, Din into the previous queue provided thatWEN is active LOW.
If $\overline{W E N}$ is HIGH, inactive for these 2 clock cycles, then data will not be written in to the previous queue.
Ifthe newly selected queue is full atthe point of its selection, then writesto that queue will be prevented, a full queue cannot be written into.

In the 4 queue multi-queue device the WRADD address bus is 5 bits wide. The least significant 2 bits are used to address one of the 4 available queues within a single multi-queue device. The mostsignificant 3 bits are used when a device is connected in expansion mode, up to 8 devices can be connected in expansion, each device having its own 3 bit address. The selected device istheonefor whichtheaddressmatchesa3bitID code, whichisstatically setup on the ID pins, ID0, ID1, and ID2 of each individual device.

Note, theWRADD bus is also used in conjunction with FSTR (almostfull flag busstrobe), toaddressthealmostfullflagbus of a respective deviceduring direct mode of operation.

Refer to Table 1, for Write Address bus arrangement. Also, refer to Figure 9, Write Queue Select, Write Operation and Full flag Operation and Figure 11, Full Flag Timing Expansion Modefor timing diagrams.

TABLE 1 - WRITE ADDRESS BUS, WRADD[4:0]

Operation	WCLK	WADEN	FSTR	WRADD[4:0]	
Write Queue Select		1	0	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	10 Write Queue Address (2 bits = 4 Queues)
$\overline{\text { PAFn Flag Bus }}$ Device Select		0	1	$\begin{array}{\|ccc} 4 & 3 & 2 \\ \text { Device Select } \\ \text { (Compared to } \\ \text { ID0,1,2) } \end{array}$	$\begin{array}{ll} 1 & 0 \\ x & x \end{array}$

READ QUEUE SELECTION \& READ OPERATION

Themulti-queue flow-control device has up to 4 queues that datais readfrom via a common read port using the data outputs, Qout, read clock, RCLK and read enable, $\overline{\mathrm{REN}}$. An output enable, $\overline{\mathrm{OE}}$ control pin is also provided to allow High-Impedance selection of the Qout data outputs. The multi-queue device read portoperates in a modesimilarto "FirstWord Fall Through" onatraditional IDT FIFO, but with the added feature of data output pipelining. This data pipelining on the output port allows the user to achieve 100% bus utilization, which is the ability to read out a data word on every rising edge of RCLK regardless of whether a new queue is being selected for read operations.
Thequeue address presentonthe readaddress bus, RDADD during arising edge on RCLK while read address enable, RADEN is HIGH, is the queue selected for read operations. A queue to be read from need only be selected on a single rising edge of RCLK. All subsequent reads will be read from that queue until a new queue is selected. A minimum of 2 RCLK cycles must occur betweenqueue selections onthe read port. Datafrom thenewly selectedqueue will be present on the Qout outputs after 2 RCLK cycles plus an access time, provided that $\overline{\mathrm{O}}$ is active, LOW. On the same RCLK rising edge that the new queue is selected, data can still be read from the previously selected queue, provided that $\overline{R E N}$ is LOW, active and the previous queue is not empty on the following rising edge of RCLK a word will be read from the previously selected queue regardless of $\overline{R E N}$ due to the fall through operation, (provided the queue is notempty). Rememberthat $\overline{\text { OE }}$ allowsthe userto placethe Qout, data output bus into High-Impedance and the data can be read onto the output register regardless of $\overline{\mathrm{OE}}$.
When a queue is selected on the read port, the next word available in that queue (provided that the queue is not empty), will fall through to the output register after2RCLK cycles. As mentioned, inthe previous 2 RCLK cycles to the new data being available, data can still be read from the previous queue,
providedthatthequeue is notempty. Atthe point of queue selection, the2-stage internal data pipeline is loaded with the last word from the previous queue and thenextword from the new queue, boththese words will fall throughtothe output register consecutively upon selection of the new queue. This pipelining effect provides the user with 100% busutilization, butbrings aboutthe possibility that a "NULL" queue may be required within a multi-queue device. Null queue operation is discussed in the next section on.
If anempty queue is selectedfor read operations on the rising edge of RCLK, onthe sameRCLKedgeandthefollowingRCLKedge,2final reads will bemade from the previous queue, provided that $\overline{\text { REN }}$ is active, LOW. OnthenextRCLK rising edge a read from the new queue will not occur, because the queue is empty. The last word inthe data output register (from the previous queue), will remainthere, but the outputvalid flag, $\overline{\mathrm{OV}}$ will go HIGH , to indicate that the data present is no longer valid.

The RDADD bus is also used in conjunction with ESTR (almost empty flag busstrobe), to address the almostempty flag bus of a respective device during direct mode of operation. In the 4 queue multi-queue device the RDADD address bus is 6 bits wide. The leastsignificant 2 bits are used to address one of the 4 available queues within a single multi-queue device. The 3rd least significantbitis used to selecta "Null" Queue. During a Null-Qselection the2 LSB's are don't care. The Null-Q is seen as an empty queue on the read port. Null-Q operation is discussed in more detail in a separate section. The most significant 3 bits are used when a device is connected in expansion mode, up to 8 devices can be connected in expansion, each device having its own 3 bit address. The selected device is the one for which the address matches a 3bit ID code, which is statically setup on the ID pins, ID0, ID1, and ID2 of each individual device.
Referto Table2, for Read Address bus arrangement. Also, refer to Figures 12,14\& 15 for read queue selection and read portoperationtiming diagrams.

TABLE 2 - READ ADDRESS BUS, RDADD[5:0]

Operation	RCLK	RADEN	ESTR	RDADD[5:0]		
Read Queue Select		1	0	$5 \quad 4 \quad 3$ Device Select (Compared to ID0,1,2)	$\begin{aligned} & \quad 2 \\ & \begin{array}{l} \text { Null-Q } \\ \text { Select Pin } \end{array} \end{aligned}$	10 Read Queue Address (2 bits = 4 Queues)
Flag Bus Device Selection		0	1	$\begin{array}{\|ccc} 5 & 4 & 3 \\ \text { Device Select } \\ \text { (Compared to } \\ \text { ID0, } 1,2) \end{array}$		$\begin{aligned} & 10 \\ & x \quad x \end{aligned}$

NULL QUEUE OPERATION (OF THE READ PORT)

Pipelining of data to the output portenables the device to provide 100\% bus utilizationinstandardmode. Datacanbe readoutofthemulti-queueflow-control device on every RCLK cycle regardless of queue switches or other operations. The device architecture is such that the pipeline is constantly filled with the next words in a selected queue to be read out, again providing 100% bus utilization. This type of architecture does assume that the user is constantly switching queues such that during a queue switch, the last data word required from the previous queue will fall through the pipeline to the output.

Note, thatif reads cease attheempty boundary of aqueue, thenthe lastword will automatically flow through the pipeline to the output.

The Null-Q is selected via read port address space RDADD[2]. The RDADD[5:0] bus should be addressed with $x x x 1 x x$, this address is the Null-Q. A null queue can be selected when no further reads are required from a previously selected queue. Changingto a null queue will continue to propagate data in the pipeline to the previous queue's output. The Null-Q can remain selecteduntila databecomes availablein anotherqueuefor reading. TheNull-Q can be utilized in either standard or packet mode.

Note: If the user switches the read port to the null queue, this queue is seen as and treated as an empty queue, therefore after switching to the null queue the last word from the previous queue will remain in the output register and the $\overline{\mathrm{OV}}$ flag will go HIGH, indicating data is not valid.

The Null queue operation only has significance to the read port of the multiqueue, it is a means to force data through the pipeline to the output. Null-Q selection and operation has no meaning on the write port of the device. Also, refer to Figure 16, Read Operation and Null Queue Select for diagram.

BUS MATCHING OPERATION

Bus Matching operation between the input portand output port is available. During amaster reset of the multi-queuethestate of the two setuppins, IW (Input Width) and OW (OutputWidth) determine the input and outputportbus widths as per the selections shown in Table 3, "Bus Matching Set-up". 9 bit bytes or 18 bit words can be written into and read form the queues. When writing to or reading from the multi-queue in a bus matching mode, the device orders data in a "Little Endian" format. See Figure 3, Bus Matching Byte Arrangementfor details.

The Full flag and Almost Full flag operation is always based on writes and reads of data widths determined by the write port width. For example, ifthe input port is $x 18$ and the output port is $x 9$, then two data reads from a full queue will be required to cause the full flag to go HIGH (queue not full). Conversely, the OutputValidflagand AlmostEmptyflag operations are always based on writes and reads of data widths determined by the read port. For example, if the input port is $x 9$ and the output portis $\times 18$, two write operations will be required to cause the output valid flag of an empty queue to go LOW, output valid (queue is not empty).

Note, that the input port serves all queues within a device, as does the output port, therefore the inputbus width to all queues is equal (determined by the input portsize) and the output bus width from all queues is equal (determined by the outputportsize).

TABLE 3 - BUS-MATCHING SET-UP

IW	OW	Write Port	Read Port
0	0	x 18	x 18
0	1	x 18	x 9
1	0	x 9	x 18
1	1	x 9	x 9

FULL FLAG OPERATION

The multi-queueflow-control device provides a single Full Flag output, $\overline{\mathrm{FF}}$. The $\overline{F F}$ flag output provides a full status of the queue currently selected on the write port for write operations. Internally the multi-queue flow-control device monitors andmaintains astatus ofthefull condition ofall queues withinit, however only the queue thatis selected for write operations hasitsfull status outputto the FF flag. This dedicated flag is often referred to as the "active queue full flag".

When queue switches are being made on the write port, the $\overline{F F}$ flag output will switch to the new queue and provide the user with the new queue status, onthecycle after a new queue selection is made. The user then has afull status for the new queue one cycle ahead of the WCLK rising edge that data can be written into the new queue. That is, a new queue can be selected on the write port via the WRADD bus, WADEN enable and a rising edge of WCLK. On the nextrising edge ofWCLK, the $\overline{F F}$ flag output will show the full status of the newly selected queue. On the second rising edge of WCLK following the queue selection, data can be written into the newly selected queue provided that data and enable setup \& hold times are met.
Note, the $\overline{F F}$ flag will provide status of a newly selected queue one WCLK cycle after queue selection, which is one cyclebefore datacan be writtentothat queue. This preventstheuserfrom writing datatoaqueuethatisfull, (assuming that a queue switch has been made to a queue that is actually full).
The FF flagis synchronous totheWCLK and alltransitions of the $\overline{F F}$ flagoccur based onarising edge ofWCLK. Internally themulti-queue device monitors and keeps a record of the full status for all queues. It is possible that the status of a $\overline{\text { FF flag maybe changing internally eventhoughthatflag is not the active queue }}$ flag (selected on the write port). A queue selected on the read port may experience a change of its internal full flag status based on read operations.

See Figure 9, Write Queue Select, Write Operation and Full Flag Operation and Figure 11, Full Flag Timing in Expansion Modefor timing information.

EXPANSION MODE-FULL FLAG OPERATION

When multi-queue devices are connected in Expansion mode the $\overline{F F}$ flags of all devices should be connected together, such that a system controller monitoring and managing the multi-queue devices write port only looks at a single $\overline{F F}$ flag (as opposed to a discrete $\overline{F F}$ flag for each device). This $\overline{F F}$ flag is only pertinent to the queue being selected for write operations at that time. Remember, that when in expansion mode only one multi-queue device canbe written to at any moment in time, thus the $\overline{\mathrm{FF}}$ flag provides status of the active queue on the write port.

Thisconnection of flag outputsto createa single flag requires thatthe $\overline{F F}$ flag outputhave aHigh-Impedance capability, such that when aqueue selection is made only a single device drives the $\overline{\mathrm{FF}}$ flag bus and all other $\overline{\mathrm{FF}}$ flag outputs connected to the $\overline{F F}$ flag bus are placed into High-Impedance. The user does nothave to select this High-Impedance state, a given multi-queueflow-control device will automatically placeits $\overline{F F}$ flagoutputinto High-Impedance whennone of its queues are selected for write operations.
When queues withina single deviceare selectedfor write operations, the $\overline{\mathrm{FF}}$ flag output of that device will maintain control of the $\overline{F F}$ flag bus. Its $\overline{F F}$ flag will simply updatebetween queue switches to show the respective queuefull status.

Themulti-queue device placesits $\overline{F F}$ flag outputintoHigh-Impedancebased onthe3bitID codefound inthe3mostsignificantbits of the write queue address bus, WRADD. Ifthe3mostsignificantbits ofWRADD matchthe3bitID codesetup on the static inputs, ID0, ID1 and ID2 then the $\overline{F F}$ flag output of the respective device will be in a Low-Impedance state. If they do not match, then the $\overline{F F}$ flag output of the respective device will be in a High-Impedance state. See Figure 11, Full Flag Timing in Expansion Modefor details of flag operation, including when more than one device is connected in expansion.

OUTPUTVALIDFLAG OPERATION

The multi-queue flow-control device provides a single Output Valid flag output, $\overline{\mathrm{OV}}$. The $\overline{\mathrm{OV}}$ provides an empty status or data output valid status for the data word currently available on the output register of the read port. The rising edge of an RCLK cyclethat places new dataonto the output register of the read port, also updates the $\overline{\mathrm{OV}}$ flag to show whether or not that new data word is actually valid. Internally the multi-queue flow-control device monitors and maintains a status of the empty condition of all queues withinit, however only the queuethat is selected for read operations has its outputvalid (empty) status output to the $\overline{\mathrm{OV}}$ flag, giving a valid status for the word being read at that time.

The nature of the first word fall through operation means that when the last data word is read from a selected queue, the $\overline{\mathrm{OV}}$ flag will go HIGH on the next enabled read, that is, on the next rising edge of RCLK while $\overline{R E N}$ is LOW.
When queue switches are being madeon the read port, the $\overline{\mathrm{OV}}$ flag will switch to show status of the new queue in line with the data outputfrom the new queue. When a queue selection is made the first data from that queue will appear on the Qout data outputs2RCLK cycles later, the $\overline{\mathrm{OV}}$ will change state to indicate validity of the data from the newly selected queue on this $2^{\text {nd }}$ RCLK cycle also. The previous cycles will continue to output data from the previous queue and the $\overline{\mathrm{OV}}$ flag will indicate the status of those outputs. Again, the $\overline{\mathrm{OV}}$ flag always indicates status for the data currently present on the output register.

The $\overline{\mathrm{OV}}$ flagis synchronoustotheRCLKandall transitions of the $\overline{\mathrm{OV}}$ flagoccur based ona rising edge of RCLK. Internally the multi-queue device monitors and keeps a record of the output valid (empty) status for all queues. It is possible that the status of an $\overline{\mathrm{OV}}$ flag may bechanging internally even thoughthat respective flag is not the active queue flag (selected on the read port). A queue selected on the write portmay experience a change of its internal $\overline{\mathrm{OV}}$ flag status based on write operations, that is, data may be written into that queue causing it to become "notempty".

See Figure 12, Read Queue Select, Read Operationand Figure 13, Output Valid Flag Timingfor details of the timing.

EXPANSION MODE - OUTPUT VALID FLAG OPERATION

When multi-queue devices are connected in Expansion mode, the $\overline{\mathrm{OV}} f l a g s$ of all devices should be connected together, such that a system controller monitoring and managing the multi-queue devices read port only looks at a single $\overline{\mathrm{OV}}$ flag (as opposed to a discrete $\overline{\mathrm{OV}}$ flag for each device). This $\overline{\mathrm{OV}}$ flag is only pertinent to the queue being selected for read operations at that time. Remember, that when in expansion mode only one multi-queue device can be read from at any moment intime, thus the $\overline{\mathrm{OV}}$ flag provides status of the active queue on the read port.

This connection of flag outputs to create a single flag requires that the $\overline{\mathrm{OV}}$ flag outputhave aHigh-Impedance capability, such that when aqueue selection is made only a single device drives the $\overline{\mathrm{OV}}$ flag bus and all other $\overline{\mathrm{OV}}$ flag outputs connected to the $\overline{\mathrm{OV}}$ flag bus are placed into High-Impedance. The user does nothave to select this High-Impedance state, a given multi-queueflow-control device willautomatically place its $\overline{\mathrm{OV}}$ flagoutputinto High-Impedancewhennone of its queues are selected for read operations.

When queues withinasingle device are selectedfor read operations, the $\overline{\mathrm{OV}}$ flag output of that device will maintain control of the $\overline{\mathrm{OV}}$ flag bus. Its $\overline{\mathrm{OV}}$ flag will simply update between queue switches to show the respective queue output validstatus.

The multi-queuedevice placesits $\overline{\mathrm{OV}}$ flag outputinto High-Impedancebased onthe3bitID codefound inthe 3 mostsignificantbits of the read queue address bus, RDADD. Ifthe3mostsignificantbits of RDADDmatchthe3bitID codesetup on the static inputs, ID0, ID1 and ID2 then the $\overline{\mathrm{OV}}$ flag output of the respective device will be inaLow-Impedance state. If they do not match, then the $\overline{\mathrm{OV}}$ flag output of the respective device will be in aHigh-Impedance state. See Figure

13, Output Valid Flag Timingfor details of flag operation, including when more than one device is connected in expansion.

ALMOST FULL FLAG

As previously mentioned the multi-queue flow-control device provides a singleProgrammable AlmostFullflagoutput, $\overline{\mathrm{PAF}}$. The $\overline{\mathrm{PAF}}$ flagoutputprovides a status of the almostfull conditionfor the active queue currently selected onthe write port for write operations. Internally the multi-queue flow-control device monitors and maintains a status of the almostfull condition of all queues within it, however only the queue that is selected forwrite operations has its full status outputtothe $\overline{\mathrm{PAF}}$ flag. This dedicatedflagisoften referredtoasthe "activequeue almost full flag". The position of the $\overline{\mathrm{PAF}}$ flag boundary within a queue can be at any point within that queues depth. This location can be user programmed via the serial port or one of the default values (8 or 128) can be selected if the userhas performed default programming.

As mentioned, every queue within a multi-queue device has its own almost full status, when a queue is selected on the write port, this status is outputviathe $\overline{\text { PAF flag. The } \overline{P A F}}$ flag valueforeach queue is programmed during multi-queue device programming (along with the number of queues, queue depths and almostempty values). The $\overline{\text { PAF }}$ offset value, m, for a respective queue can be programmed to be anywhere between '0' and 'D', where 'D' is the total memory depthforthat queue. The $\overline{\mathrm{PAF}}$ value of different queues withinthe same device canbedifferent values.

When queue switches are being made on the write port, the $\overline{\text { PAF }}$ flag output will switch to the new queue and provide the user with the new queue status, on the second cycle after a new queue selection is made, on the same WCLK cycle that data can actually be written to the new queue. That is, a new queue can be selected on the write port via the WRADD bus, WADEN enable and a rising edge of WCLK. On the second rising edge of WCLK following a queue selection, the $\overline{\mathrm{PAF}}$ flagoutput will show the full status of the newly selected queue. The $\overline{\mathrm{PAF}}$ is flag output is double register buffered, so when a write operation occursatthealmostfull boundary causing the selected queue statustogoalmost full the $\overline{\mathrm{PAF}}$ will go LOW2WCLK cycles after the write. The same is true when a read occurs, there will be a 2 WCLK cycle delay after the read operation.
So the $\overline{\mathrm{PAF}}$ flag delays are:
from a write operation to $\overline{\text { PAF }}$ flag LOW is 2 WCLK + twaF
The delay from a read operation to $\overline{\text { PAF }}$ flag HIGH istSKEW $2+$ WCLK + twAF Note, if tSKEW is violated there will be one added WCLK cycle delay.
The $\overline{\text { PAF }}$ flag is synchronous to the WCLK and all transitions of the $\overline{\text { PAF }}$ flag occur based on a rising edge of WCLK. Internally the multi-queue device monitors and keeps a record of the almostfull status for all queues. It is possible that the status of $a \overline{P A F}$ flag maybe changing internally even though that flag is not the active queue flag (selected on the write port). Aqueue selected on the read portmay experience a change of its internal almostfullflag status based on read operations. The multi-queue flow-control device also provides a duplicate of the $\overline{\mathrm{PAF}}$ flag on the $\overline{\mathrm{PAF}}[3: 0]$ flag bus, this will be discussed in detail in a later section of the data sheet.

See Figures 18 and 19 for Almost Full flag timing and queue switching.

ALMOSTEMPTY FLAG

As previously mentioned the multi-queue flow-control device provides a single Programmable Almost Empty flag output, $\overline{\text { PAE }}$. The $\overline{\text { PAE }}$ flag output provides a status of the almost empty condition for the active queue currently selected onthe read port for read operations. Internally the multi-queue flowcontrol device monitors and maintains a status of the almostempty condition of all queues withinit, however only the queue that is selected for read operations has its empty status outputto the $\overline{\mathrm{PAE}} \mathrm{flag}$. This dedicated flag is often referred toasthe "activequeuealmostempty flag". The position ofthe $\overline{\text { PAE }}$ flagboundary
within aqueue can be at any point within that queues depth. This location can be user programmed viathe serial portor one of the default values (8 or 128) can be selected ifthe userhas performed default programming.

As mentioned, every queue within a multi-queue device has its own almost empty status, when a queue is selected on the read port, this status is output via the $\overline{\mathrm{PAE}}$ flag. The $\overline{\mathrm{PAE}}$ flag value for each queue is programmed during multi-queue device programming (along with the number of queues, queue depths and almostfull values). The $\overline{\text { PAE }}$ offsetvalue, n, for a respective queue can be programmed to be anywhere between '0' and ' D ', where ' D ' is the total memory depth for that queue. The $\overline{\mathrm{PAE}}$ value of different queues within the same device can be different values.

When queue switches are being made on the read port, the $\overline{\text { PAE }}$ flagoutput will switch to the new queue and provide the user with the new queue status, onthe second cycle after a new queue selection is made, on the same RCLK cyclethat data actually falls through to the output registerfrom the new queue. That is, a new queue can be selected on the read port via the RDADD bus, RADEN enable and arising edge of RCLK. On the second risingedge of RCLK following a queue selection, the data wordfrom the new queue will be available atthe output register and the $\overline{\text { PAE }}$ flag output will show the empty status of the
newly selected queue. The $\overline{\mathrm{PAE}}$ is flag output is double register buffered, so when a read operation occurs at the almost empty boundary causing the selected queue status to go almostempty the $\overline{\mathrm{PAE}}$ will go LOW2RCLK cycles after the read. The same is true when a write occurs, there will be a 2 RCLK cycle delay after the write operation.

So the $\overline{\text { PAE }}$ flag delays are:
from a read operation to $\overline{\text { PAE }}$ flag $L O W$ is 2 RCLK + tRAE
The delay from a write operationto $\overline{\text { PAE flag HIGHistSKEW2 }+ \text { RCLK }+ \text { tRAE }}$
Note, if tSKEW is violated there will be one added RCLK cycle delay.
The $\overline{\text { PAE }}$ flag is synchronous to the RCLK and all transitions of the $\overline{\text { PAE }}$ flag occur based on a rising edge of RCLK. Internally the multi-queue device monitors and keepsarecord ofthealmostemptystatusforall queues. Itispossible that the status of a $\overline{P A E}$ flag maybe changing internally eventhoughthatflag is not the active queue flag (selected on the read port). A queue selected on the write portmay experienceachange of its internalalmostemptyflagstatusbased on write operations. The multi-queue flow-control device also provides a duplicate of the $\overline{\text { PAE }}$ flag on the $\overline{\text { PAE }[3: 0] ~ f l a g ~ b u s, ~ t h i s ~ w i l l ~ b e ~ d i s c u s s e d ~ i n ~ d e t a i l ~}$ in a later section of the data sheet.

See Figures 20 and 21 for Almost Empty flag timing and queue switching.

TABLE 4 - FLAG OPERATION BOUNDARIES \& TIMING

Output Valid, $\overline{\text { OV }}$ Flag Boundary	
I/O Set-Up	$\overline{\mathrm{OV}}$ Boundary Condition
In18 to out18 or $\operatorname{In} 9$ to out9 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OV}}$ Goes LOW after $1^{\text {st }}$ Write (seenote belowfortiming)
In18 to out9) (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{\mathrm{OV}}$ Goes LOW after $1^{\text {st }}$ Write (see note belowfortiming)
In9 to out18 (Both ports selectedforsamequeue when the $1^{\text {st }}$ Word is written in)	$\overline{O V}$ Goes LOW after 2nd Write (see note belowfortiming)

NOTE:

1. $\overline{\mathrm{O}} \mathrm{V}$ Timing

Assertion:
Write to $\overline{\mathrm{VV}}$ LOW: tSKEW1 + RCLK + trov
If tSKEW1 is violated there may be 1 added clock: SSKEW1 +2 RCLK + tROV De-assertion:
Read Operation to OV HIGH: tROV

Full Flag, FF Boundary	
I/O Set-Up	FF Boundary Condition
In18 to out18 or $\operatorname{In} 9$ to out9 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D+1 Writes (see note below for timing)
In18 to out18 or $\operatorname{In} 9$ to out9 (Write portonly selected forqueue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note below fortiming)
In18 to out9 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note below for timing)
In18 to out9 (Write port only selectedforqueue when the $1^{\text {st }}$ Word is written in)	$\overline{F F}$ Goes LOW after D Writes (see note below fortiming)
In9 to out18 (Both ports selectedfor samequeue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after ([D+1] x 2) Writes (see note belowfortiming)
In9 to out18 (Write port only selectedforqueue when the $1^{\text {st }}$ Word is written in)	FF Goes LOW after (D x 2) Writes (see note below for timing)

NOTE:
D = Queue Depth
$\overline{\mathrm{FF}}$ Timing
Assertion:
Write Operation to FF LOW: twFF
De-assertion:
Read to $\overline{F F}$ HIGH: tSKEW1 + twFF
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF

TABLE 4 - FLAG OPERATION BOUNDARIES \& TIMING (CONTINUED)

Programmable Almost Empty Flag, $\overline{\text { PAE }}$ Boundary	
I/O Set-Up	$\overline{\text { PAE Assertion }}$
In18 to out18 or In9 to out9 (Both ports selected for same queue whenthe $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after n+2 }}$ Writes (see note below for timing)
In18 to out9 (Both ports selectedfor same queue whenthe $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after } n+1}$ Writes (see note below fortiming)
In9 to out18 (Both ports selectedfor same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAE Goes HIGH after }}$ ([n+2] x 2) Writes (seenote belowfortiming)

NOTE

$\mathrm{n}=$ Almost Empty Offset value.
Default values: if DF is LOW at Master Reset then $n=8$ if DF is HIGH at Master Reset then $n=128$
$\overline{\mathrm{PA}} \overline{\mathrm{E}}$ Timing
Assertion: Read Operation to $\overline{\text { PAE }}$ LOW: 2 RCLK + tRAE
De-assertion: Write to $\overline{\text { PAE HIGH: tSKEW2 + RCLK + tRAE }}$
If tSKEW2 is violated there may be 1 added clock: tSKEW $2+2$ RCLK + tRAE

Programmable Almost Empty Flag Bus, $\overline{\text { PAE }}$ Boundary	
I/O Set-Up	PAEn Boundary Condition
In18 to out18 or $\operatorname{In} 9$ to out9 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ $\mathrm{n}+2$ Writes (seenote below fortiming)
In18 to out18 or $\operatorname{In} 9$ to out9 (Write port only selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ $\mathrm{n}+1$ Writes (see note below fortiming)
In18 to out9	PAEn Goes HIGH after $n+1$ Writes (see below fortiming)
In9 to out18 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ ([n+2] x 2) Writes (see note below fortiming)
In9 to out18 (Write port only selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAEn Goes HIGH after }}$ ([$n+1] \times 2$) Writes (seenote below fortiming)
NOTE: $\mathrm{n}=$ Almost Empty Offset value.	
$\overline{\text { PAEEn Timing }}$	
Assertion: Read Operation to $\overline{\text { PAEn LOW: } 2 \text { RCLK }}$ + tPAE	
De-assertion: Write to $\overline{\text { PAEn HIGH: tSKEW }}+$ RCLK $^{*}+$ tPAE If tSKEW 3 is violated there may be 1 added clock: tSKEW $3+2$ RCLK* + tPAE	
* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion there may be one additional RCLK clock cycle delay.	

NOTE:

$\mathrm{n}=$ Almost Empty Offset value.
Default values: if DF is LOW at Master Reset then $\mathrm{n}=8$ if DF is HIGH at Master Reset then $n=128$

$\overline{\text { PAEn Timing }}$

Assertion: Read Operation to $\overline{\text { PAE }}$ LOW: 2 RCLK* + tPAE
De-assertion: Write to $\overline{\text { PAEn HIGH: tSKEW3 }+ \text { RCLK* }+ \text { tPAE }}$
If tSKEW3 is violated there may be 1 added clock: tSKEW3 +2 RCLK* + tPAE

* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion there may be one additional RCLK clock cycle delay.

Programmable Almost Full Flag, $\overline{\text { PAF }}$ \& $\overline{\text { PAF }}$ n Bus Boundary	
I/O Set-Up	$\overline{\text { PAF }}$ \& $\overline{\text { PAFn }}$ Boundary
In18 to out18 or In9 to out9 (Both ports selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAF/PAFn }}$ Goes LOW after D+1-mWrites (seenote belowfortiming)
In18 to out18 or In9 to out9 (Write portonly selected for same queue when the $1^{\text {st }}$ Word is written in until the boundary is reached)	$\overline{\text { PAF/PAFn Goes LOW after }}$ D-mWrites (see note belowfortiming)
In18 to out9	$\overline{\text { PAF/PAFn }}$ Goes LOW after D-mWrites(seebelowfortiming
In9 to out18	$\overline{\text { PAF }} / \overline{\mathrm{PAF}}$ G Goes LOW after ([D+1-m] x 2) Writes (see note below fortiming)

NOTE:
D = Queue Depth
$m=$ Almost Full Offset value.
Default values: if DF is LOW at Master Reset then $m=8$ if DF is HIGH at Master Reset then $m=128$

PAF Timing

Assertion: Write Operation to $\overline{\text { PAF LOW: } 2 \text { WCLK + tWAF }}$
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + twAF If tSKEW2 is violated there may be 1 added clock: tSKEW $2+2$ WCLK + tWAF

$\overline{\mathrm{P} A} \overline{\mathrm{~F}}$ n Timing

Assertion: Write Operation to PAFn LOW: 2 WCLK* + tPAF
De-assertion: Read to $\overline{\text { PAFn HIGH: tSKEW3 }}+$ WCLK $^{*}+$ tPAF
If tSKEW3 is violated there may be 1 added clock: tSKEW3 +2 WCLK $^{*}+$ tPAF

* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion there may be one additional WCLK clock cycle delay.

$\overline{\text { PAFn FLAG BUS OPERATION }}$

TheIDT72V51233/72V51243/72V51253 multi-queue flow-control devices can be configured for up to 4 queues, each queue having its own almost full status. An activequeue hasitsflagstatus outputtothediscreteflags, $\overline{\mathrm{FF}}$ and $\overline{\mathrm{PAF}}$, on the write port. Queues that are not selected for a write operation can have their $\overline{\text { PAF }}$ status monitored via the $\overline{\mathrm{PAF}}$ b bus. The $\overline{\mathrm{PAF}}$ nflag bus is 4 bits wide, so that all 4 queues can have their status output to the bus. When a single multi-queue device is used anywhere from 1 to 4 queues may be set-up within the part, each queue having its own dedicated $\overline{\mathrm{PAF}}$ flagoutput onthe $\overline{\mathrm{PAF}}$ nbus. Queues 1 through 4 have their $\overline{\text { PAF }}$ status to $\overline{\text { PAF }}[0]$ through $\overline{\text { PAF }}[3]$ respectively. If less than 4 queues are used then only the associated $\overline{\mathrm{PAF}}$ outputs will be required, unused $\overline{\mathrm{PAF}}$ noutputs will be don't care outputs. When devices are connected in expansion mode the $\overline{\mathrm{PAF}}$ f flag bus can also be expanded beyond 4 bits to produce a wider $\overline{\text { PAF }}$ bus that encompasses all queues.

Alternatively, the 4 bit $\overline{\text { PAF }}$ nflag bus of each device canbeconnectedtogether toform a single 4 bitbus, i.e. $\overline{\operatorname{PAF}[0] ~ o f ~ d e v i c e ~} 1$ will connect to $\overline{\mathrm{PAF}}[0]$ of device 2 etc. When connecting devices in this manner the $\overline{\text { PAF }}$ can only be driven by a single device at any time, (the $\overline{\text { PAF }}$ n outputs of all other devices must be inhighimpedance state). There are two methods by which the user can select which device has control of the bus, these are "Direct" (Addressed) mode or "Polled" (Looped) mode, determined by the state of the FM (flag Mode) input during a Master Reset.

PAFn BUS EXPANSION - DIRECT MODE

If FM is LOW at Master Reset then the PAFn bus operates in Direct (addressed) mode. In directmodetheusercanaddress the device they require to control the $\overline{\mathrm{PAF}}$ nbus. The address present on the 3 mostsignificant bits of the WRADD[4:0] address bus with FSTR ($\overline{\mathrm{PAF}}$ flag strobe), HIGH will be selected as the device on a risingedge of WCLK. So to address the firstdevice in a bank of devices the WRADD[4:0] address should be "000xx" the second device "001xx" andsoon. The3mostsignificantbits oftheWRADD[4:0]address bus correspondtothe device ID inputs ID[2:0]. The $\overline{\text { PAF }}$ nbus will change status toshow thenew device selected 1 WCLK cycleafter device selection. Note, that if a read or write operation is occurring to a specific queue, say queue ' x ' on the same cycle as a $\overline{\text { PAF }}$ n bus switch to the device containing queue ' x ', then there may be an extraWCLK cycle delay before that queues status is correctly shown on the respective output of the $\overline{\text { PAF }}$ bus. However, the "active" $\overline{\text { PAF }}$ flag will show correct status at all times.

Devices can be selected on consecutive WCLK cycles, that is the device controlling the $\overline{\mathrm{PAF}}$ n bus can change every WCLK cycle. Also, data present onthe inputbus, Din, canbe written into aqueue onthe sameWLCK rising edge that a device is being selected on the $\overline{\mathrm{PAF}}$ bus, the only restriction being that a write queue selection and $\overline{\mathrm{PAF}}$ nbus selection cannotbe made on the same cycle.

PAFn BUS EXPANSION- POLLED MODE

IfFM is HIGH atMaster Resetthenthe $\overline{\text { PAFnbus operates in Polled (Looped) }}$ mode. In polled mode the $\overline{\mathrm{PAF}}$ nbus automatically cycles through the devices connected in expansion. In expansion mode one device will be set as the Master, MAST inputtiedHIGH, all other devices will have MAST tied LOW. The master device is the first device to take control of the $\overline{\text { PAF }}$ n bus and place the $\overline{\text { PAF }}$ status of its queues onto the bus on the first rising edge of WCLKafter the $\overline{\mathrm{MRS}}$ inputgoes HIGH onceaMaster Reset iscomplete. TheFSYNC($\overline{\text { PAF }}$ sync pulse) output of the first device (master device), will be HIGH for one cycle of WCLK indicating that it is has control of the $\overline{\mathrm{PAF}}$ n bus for that cycle.

The device also passes a "token" onto the next device in the chain, the next device assuming control of the $\overline{\mathrm{PAF}}$ nbus on the nextWCLK cycle. This token
passing is done via the FXO outputs and FXI inputs of the devices (" $\overline{\mathrm{PAF}} \mathrm{n}$ Expansion Out" and "PAFn Expansion In"). The FXO output of the first device connecting to the FXI input of the second device in the chain, the FXO of the second device connects to the FXI of the third device and so on. The FXO of the final device in achain connects to the FXI of the first device, sothat once the $\overline{\text { PAF }} n$ bus has cycled through all devices control is again passed to the first device. TheFXO outputof adevice will beHIGHfortheWCLK cycleithas control of the bus.

Please refer to Figure $24, \overline{\mathrm{PAF}} n$ Bus-Polled Modefortiming information.

$\overline{\text { PAEn FLAG BUS OPERATION }}$

The IDT72V51233/72V51243/72V51253 multi-queueflow-control devices can be configuredfor upto 4 queues, each queue having its own almostempty status. An activequeuehasitsflagstatusoutputtothediscreteflags, $\overline{\mathrm{OV}}$ and $\overline{\mathrm{PAE}}$, on the read port. Queues that are not selected for a read operation can have their $\overline{\text { PAE }}$ status monitored viathe $\overline{\mathrm{PAE}}$ bus. The $\overline{\mathrm{PAE}}$ nflag bus is 4 bits wide, so that all 4 queues can have their status output to the bus.

When asingle multi-queue device is used anywhere from 1 to 4 queues may be set-up withinthe part, eachqueue having its owndedicated PAEnflagoutput on the $\overline{\mathrm{PAE}}$ bus. Queues 1 through 4 havetheir $\overline{\mathrm{PAE}}$ statusto $\overline{\mathrm{PAE}}[0]$ through $\overline{\text { PAE }[3] ~ r e s p e c t i v e l y . ~ I f ~ l e s s ~ t h a n ~} 4$ queues are used then only the associated $\overline{\text { PAEn outputs will be required, unused } \overline{\text { PAE }} \text { outputs will be don'tcare outputs. }}$ When devices are connected in expansion mode the $\overline{\text { PAE }}$ flag bus can also be expanded beyond 4 bits to produce a wider $\overline{\text { PAEn }}$ bus that encompasses allqueues.
Alternatively, the 4bit $\overline{\text { PAEnflag bus of each device canbeconnectedtogether }}$ to form a single 4 bitbus, i.e. $\overline{\text { PAE }[0] ~ o f ~ d e v i c e ~} 1$ will connectto $\overline{\operatorname{PAE}}[0]$ of device 2 etc. Whenconnecting devices inthis mannerthe $\overline{\mathrm{PAE}}$ bus can only be driven by a single device at any time, (the $\overline{\text { PAEn outputs of all other devices must be }}$ in high impedance state). There are two methods by which the user can select which device has control of the bus, these are "Direct" (Addressed) mode or "Polled" (Looped) mode, determined by the state of the FM (flag Mode) input during a Master Reset.

$\overline{\text { PAEn BUS EXPANSION- DIRECT MODE }}$

If FM is LOW at Master Reset then the $\overline{\text { PAEn }}$ bus operates in Direct (addressed) mode. In directmode the usercan address the device they require to control the $\overline{\mathrm{PAE}}$ bus. The address present on the 3 mostsignificant bits of the RDADD[5:0] address bus with ESTR ($\overline{\mathrm{PAE}}$ flag strobe), HIGH will be selected as the device on a rising edge of RCLK. So to address the first device in a bank of devices the RDADD[5:0] address should be "000xx" the second device "001xx" and soon. The3mostsignificantbits of the RDADD[5:0] address buscorrespondtothe device ID inputs ID[2:0]. The $\overline{\text { PAEn }}$ bus will changestatus to show the new device selected 1 RCLK cycle after device selection. Note, that if a read or write operation is occurring to a specific queue, say queue ' x ' on the same cycle as a $\overline{\text { PAEn bus switch to the device containing queue ' } x \text { ', then }}$ there may be an extra RCLK cycle delay before that queues status is correctly shown on the respective output of the $\overline{\text { PAE }}$ bus. However, the "active" $\overline{\text { PAE }}$ flag will show correct status at all times.

Devices can be selected on consecutive RCLK cycles, that is the device controlling the $\overline{\text { PAEn }}$ bus can changeevery RCLK cycle. Also, data can be read out of a queue on the same RCLK rising edge that a device is being selected onthe $\overline{\mathrm{PAE}}$ bus, the only restriction being thata readqueue selectionand $\overline{\mathrm{PAE}}$ n bus selection cannot be made on the same cycle.

PAEn BUS EXPANSION- POLLED MODE

If FM is HIGH at Master Reset then the $\overline{\text { PAEn bus operates in Polled }}$ (Looped) mode. In polled mode the $\overline{\text { PAE }}$ bus automatically cycles through
the devices connected in expansion. In expansion mode one device will be set as the Master, MAST input tied HIGH, all other devices will have MAST tied LOW. The master device is the first device to take control of the $\overline{\text { PAE }}$ bus and place the $\overline{\mathrm{PAE}}$ status of its queues onto the bus on the first rising edge of RCLK after the $\overline{M R S}$ input goes HIGH once a Master Reset is complete. The ESYNC($\overline{\mathrm{PAE}}$ sync pulse) output of the first device(masterdevice), will beHIGH for one cycle of RCLK indicating that it is has control of the $\overline{\text { PAEn bus for that }}$ cycle.

The device also passes a "token" onto the next device in the chain, the next device assuming control of the $\overline{\text { PAE }}$ bus on the next RCLK cycle. This token
passing is done via the EXO outputs and EXI inputs of the devices ("PAEn Expansion Out" and "PAEn Expansion In"). The EXO output of the first device connecting to the EXI input of the second device in the chain, the EXO of the second device connects to the EXI of the third device and so on. The EXO of the final device in achain connects to the EXI of the first device, sothat oncethe $\overline{\text { PAEn bus has cycled through all devices control is again passed to the first }}$ device. The EXO outputofadevice will beHIGHfortheRCLKcycleithascontrol of the bus.

Please refer to Figure 25, $\overline{\mathrm{PAE}} n$ Bus-Polled Modefortiming information.

