: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- 256×256 channel non-blocking switch
- Serial Telecom Bus Compatible (ST-BUS ${ }^{\circledR}$)
- 8 RX inputs- 32 channels at $64 \mathrm{Kbit} / \mathrm{s}$ per serial line
- 8 TX output- 32 channels at $64 \mathrm{Kbit} / \mathrm{s}$ per serial line
- Three-state serial outputs
- Microprocessor Interface (8-bit data bus)
- 3.3V Power Supply
- Available in 44-pin Plastic Leaded Chip Carrier (PLCC), 48-pin Small Shrink Outline Package (SSOP), and 44-pin Plastic Quad Flatpack (PQFP)
- Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- 3.3 V I/O with 5 V Tolerant Inputs

DESCRIPTION:

The IDT72V8980 is a ST-BUS ${ }^{\oplus}$ compatible digital switch controlled by a microprocessor. TheIDT72V8980 can handle as many as $256,64 \mathrm{Kbit} / \mathrm{s}$ input
and outputchannels. Those 256 channels are divided into 8 serial inputs and outputs, each of which consists of 32 channels ($64 \mathrm{Kbit} / \mathrm{sperchannel}$) to form a multiplexed $2.048 \mathrm{Mb} / \mathrm{s}$ stream.

FUNCTIONAL DESCRIPTION

A functional block diagram of the IDT72V8980 device is shown on below. The serial ST-BUS ${ }^{\circledR}$ streams operate continuously at $2.048 \mathrm{Mb} / \mathrm{s}$ and are arranged in 125μ s wide frames each containing 32,8 -bitchannels. Eight input (RX0-7) and eight output (TX0-7) serial streams are provided in the IDT72V8980 device allowing a complete 256×256 channel non-blocking switch matrix to be constructed. The serial interface clock $(\overline{\mathrm{C} 4 i})$ forthe device is 4.096 MHz .

The received serial data is internally converted to a parallel format by the onchip serial-to-parallel converters and stored sequentially ina256-position DataMemory. By usinganinternal counterthatis resetby the input8KHzframe pulse, $\overline{F 0 i}$, the incoming serial data streams can be framed and sequentially addressed.

FUNCTIONAL BLOCK DIAGRAM

NOTE:

1. The RESET Input is only provided on the SSOP package.

PIN CONFIGURATION

PLCC: 0.05 in . pitch, 0.65 in . x 0.65 in .
(J44-1, order code: J) TOP VIEW

PQFP: 0.80 mm pitch, $10 \mathrm{~mm} \times 10 \mathrm{~mm}$
(DB44-1, order code: DB) TOP VIEW

Package Type	Reference Identifier	Order Code
SSOP: 0.025in. pitch, 0.625in. x 0.295in.	SO48-1	PV

NOTES:

1. DNC - Do Not Connect
2. The RESET Input is only provided on the SSOP package.

PIN DESCRIPTIONS

SYMBOL	NAME	I/0	DESCRIPTION
GND	Ground.		Ground Rail.
Vcc	Vcc		+3.3 Volt Power Supply.
$\overline{\text { DTA }}$	Data Acknowledgment (Open Drain)	0	This active LOW output indicates that a data bus transfer is complete. A pull-up resistor is required at this output.
RX0-7	RX Input 0 to 7	1	Serial data input streams. These streams have 32 channels at data rates of $2.048 \mathrm{Mb} / \mathrm{s}$.
F0i	Frame Pulse	1	This input identifies frame synchronization signals formatted to ST-BUS ${ }^{\text {® }}$ specifications.
$\overline{\mathrm{C} 4}$	Clock	1	4.096 MHz serial clock for shifting data in and out of the data streams.
A0-A5	Address 0 to 5	I	These lines provide the address to IDT72V8980 internal registers.
DS	Data Strobe	1	This is the input for the active HIGH data strobe on the microprocessor interface. This input operates with $\overline{\mathrm{CS}}$ to enable the internal read and write generation.
R/W	Read/Write	1	This input controls the direction of the data bus lines (D0-D7) during a microprocessor access.
$\overline{\mathrm{CS}}$	Chip Select	1	Active LOW input enabling a microprocessor read or write of control register or internal memories.
D0-D7	Data Bus 0 to 7	I/O	These pins provide microprocessor access to data in the internal control register. Connection Memory HIGH, Connection Memory LOW and data memory.
TX0-7	TX Outputs 0 to 7	0	Serial data output streams. These streams are composed of $32,64 \mathrm{Kbit} / \mathrm{s}$ channels at data rates of $2.048 \mathrm{Mb} / \mathrm{s}$.
ODE	Output Drive Enable	1	This is an output enable for the TX0-7 serial outputs. If this input is LOW, TXO-7 are high-impedance. If this is HIGH, each channel may still be put into high-impedance by software control.
CCO	Control Channel Output	0	This output is a $2.048 \mathrm{Mb} / \mathrm{s}$ line which contains 256 bits per frame. The level of each bit is controlled by the contents of the CCO bit in the Connection Memory HIGH locations.
$\overline{\text { RESET }}$	Device Reset (Schmitt Trigger Input)	1	This input (active LOW) puts the IDT72V8980 in its reset state that clears the device internal counters, registers and brings TX0-7 and microport data outputs to a high-impedance state. The time constant for a power up reset circuit must be a minimum of five times the rise time of the power supply. In normal operation, the RESET pin must be held LOW for a minimum of 100 ns to reset the device.

FUNCTIONAL DESCRIPTION (Cont'd)

Data to be output on the serial streams may come from two sources: Data Memory orConnectionMemory. The Connection Memory is 16 bits wide and is split into two 8-bit blocks-Connection Memory HIGH and Connection Memory LOW. Each location in Connection Memory is associated with a particularchannel intheoutputstream soas to providea one-to-one correspondencebetweenthetwomemories. This correspondenceallowsforperchannel control for each TX output stream. In Processor Mode, data output on the TX stream is taken from the Connect Memory Low and originates from the microprocessor (Figure2). Where as in Connection Mode (Figure 1), data is read from Data Memory using the address in Connection Memory. Data destined for a particularchannel on the serial output stream is read during the previous channeltime slottoallow time formemory access and internal parallel-to-serial conversion.

CONNECTIONMODE

InConnectionMode, the addresses of input source for all output channels are stored in the Connect Memory Low. TheConnectMemory Low locations are mapped to corresponding 8-bit x 32 -channel output. The contents of the Data Memory at the selected address are then transferred to the parallel-toserial converters. By having the output channel to specify the input channel throughthe connectmemory, inputchannels canbebroadcastto several output channels.

PROCESSOR MODE

InProcessor Mode the CPU writes data to specific Connect Memory Low locationswhich are to be output on the TX streams. The contents of the Connect Memory Low are transferred to the parallel-to-serial converter one channel before it is to be output and are transmitted each frame to the output until it is changed by the CPU.

CONTROL

TheConnectMemory High bits (Table4) control the per-channelfunctions available inthe IDT72V8980. Outputchannels are selected into specificmodes such as: Processor Mode or Connection mode and Output Drivers Enabled or in three-state condition. There is also one bitto control the state of the CCO outputpin.

OUTPUT DRIVE ENABLE (ODE)

The ODE pin is the master output control pin. If the ODE inputis held LOW all TDM outputs will be placed in highimpedance regardless ConnectMemory High programming. However, ifODE isHIGH, the contents of ConnectMemory High control the output state on a per-channel basis.

DELAY THROUGH THE IDT72V8980

The transfer of informationfrom the input serial streams to the output serial streams results in adelaythroughthe device. ThedelaythroughtheIDT72V8980

device varies according to the combination of input and output streams and the movementwithinthe streamfrom channeltochannel. Datareceivedonaninput stream mustfirst be stored in Data Memory before it is sent out.

Asinformationenters the IDT72V8980 it mustfirstpass through an internal serial-to-parallel converter. Likewise, before data leaves the device, it must pass throughthe internal parallel-to-serial converter. This datapreparationhas an effect on the channel positioning in the frame immediately following the incomingframe - mainly, data cannotleave inthe same time slot, on inthe time slotimmediatelyfollowing. Therefore, informationthatisto beoutputinthe same channel position as the information is input, relative to the frame pulse, will be output in the following frame. As well, information switched to the channel immediately following the input channel will not be output in the time slot immediatelyfollowing butinthenexttimeslotallocatedtotheoutputchannel, one framelater.

Whether information can be output during a following timeslot after the information entered the IDT72V8980 depends on which RX streamthe channel information enters on and which TX stream the information leaves on. This situation is caused by the order in which inputstream information is placed into Data Memory and the order in which stream information is queued for output. Table 1 shows the allowable input/outputstream combinationsforthe minimum 2 channel delay.

SOFTWARECONTROL

If the A5 address line input is LOW then the IDT72V8980 Internal Control Register is addressed. If A5 input line is high, then the remaining address input lines areusedtoselectthe 32 possiblechannels perinputoroutputstream. The address input lines and the Stream Address bits (STA) of the Control register give the user the capability of selecting all positions of IDT72V8980 Data and Connection memories. The IDT72V8980 memory mapping is illustrated in Table 2 and Figure 3.

The data in the control register consists of Memory Select and Stream Addressbits, SplitMemory and ProcessorModebits. InSplitMemorymode (Bit 7 of the Control register) reads are from the Data Memory and writes are to the Connect Memory as specified by the Memory Select Bits (Bits 4 and 3 of the Control Register). The Memory Selectbits allow the Connect Memory High or LOW or the Data Memory to be chosen, and the Stream Address bits define internal memory subsections corresponding to input or output streams.

The Processor Enable bit (bit 6) places EVERY output channel on every outputstreamin ProcessorMode;i.e., the contents oftheConnectMemoryLOW (CML, see Table 5) are output on the TX output streams once every frame unless the ODE input pin is LOW. If PE bit is HIGH, then the IDT72V8980 behaves as ifbits2 (ChannelSource) and 0 (Output Enable) of every Connect Memory High (CMH)locationswere settoHIGH, regardless of the actual value. IfPE is LOW, then bit2 and 0 of each Connect Memory Highlocation operates normally. In this case, if bit 2 of the CMH is HIGH, the associated TX output channel is in Processor Mode. If bit2 of theCMH is LOW, then the contents of theCML define the source information (stream andchannel) of the time slotthat is to be switched to an output.

Figure 2. Processor Mode

IftheODE inputpin is LOW, then all the serial outputs are high-impedance. IfODE is HIGH, thenbit0 (OutputEnable) of theCMHlocation enables (fHIGH) or disables(ifLOW) the output stream and channel.

The contents of bit 1 (CCO) of each ConnectionMemory High Location (see Table4) is output on CCO pin once every frame. TheCCO pin is a $2.048 \mathrm{Mb} / \mathrm{s}$ output, which carries 256 bits. IfCCO bitis setHIGH, the corresponding bit on CCO output is transmitted HIGH. IfCCO is LOW, the corresponding bit on the CCO outputistransmittedinLOW. The contents ofthe256CCO bits oftheCMH are transmitted sequentially on to the CCO outputpin and are synchronous to the TX streams. Toallow for delay in any external control circuitry the contents of theCCO bitis output one channel before the corresponding channel on the TX streams. For example, the contents of CCO bitin position 0 (corresponding to TXO, CH0) is transmitted synchronously with the TX channel 31, bit7. Bit 1's of CMH for channel 1 of streams $0-7$ are outputsynchronously with TX channel 0 bits 7-0.

INITIALIZATION OF THE IDT72V8980

On initialization or power up, the contents of the Connection Memory High can be in any state. This is a potentially hazardous condition when multipleTX

TABLE 1 -INPUT STREAM TO OUTPUT

 STREAM COMBINATIONS THAT CAN PROVIDE THE MINIMUM 2-CHANNEL DELAY| Input | Output Stream |
| :---: | :---: |
| 0 | $1,2,3,4,5,6,7$ |
| 1 | $3,4,5,6,7$ |
| 2 | $5,6,7$ |
| 3 | 7 |
| 4 | $1,2,3,4,5,6,7$ |
| 5 | $3,4,5,6,7$ |
| 6 | $5,6,7$ |
| 7 | 7 |

outputs are tied together to form matrices. TheODE pin should be held low on power up to keep all outputs in the high impedance condition until the contents of the CMH are programmed.

During the microprocessorinitialization routine, the microprocessorshould program the desired active pathsthroughthe matrices, and putall otherchannels intothehighimpedance state. Care should be takenthat notwo connected TX outputs drivethebussimultaneously. WiththeCMH setup, the microprocessor controlling the matrices can bring the ODE signal high to relinquish high impedance state control to the Connection Memory High bits outputs.

RESET

The reset pin is designed to be used with board resetcircuitry. During reset the TX serial streams will be put into high-impedance and the state of internal registers and counters will be reset. As the connection memory can be in any state after a power up, the ODE pin should be used to hold the TX streams in high-impedance until the per-channel output enable control in the connection memory high is appropriately programmed. The maindifference between ODE and reset is, resetalters the state of the registers and counters where as ODE controls only the high-impedance state of the TX streams. $\overline{\text { RESET }}$ input is only provided on the SSOP package.

TABLE 2 - ADDRESS MAPPING

A5	A4	A3	A2	A1	A0	HEX ADDRESS	LOCATION
0	X	X	X	X	X	00-1F	Control Register ${ }^{(1)}$
1	0	0	0	0	0	20	Channel $0^{(2)}$
1	0	0	0	0	1	21	Channel $1^{(2)}$
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-
1	1	1	1	1	1	3F	Channel $31{ }^{(2)}$

NOTES:

1. Writing to the Control Register is the only fast transaction.
2. Memory and stream are specified by the contents of the Control Register.

Figure 3. Address Mapping

TABLE 3 - CONTROL REGISTER CONFIGURATION

TABLE 4 - CONNECTION MEMORY HIGH REGISTER

TABLE 5 - CONNECTION MEMORY LOW REGISTER

NOTE:

1. If bit 2 of the corresponding Connection HIGH location is 1 or bit 6 of the Control Register is 1 , then these entire 8 bits are output on the channel and stream associated with this location. Otherwise, the bits are used as indicated to define the source of the connection which is output on the channel and stream associated with this location.

ABSOLUTE MAXIMUM RATINGS
 (1)

Symbol	Parameter	Min.	Max.	Unit
Vcc	Symbol Voltage	-0.3	5	V
Vi	VoltageonDigital Inputs	GND -0.3	$\mathrm{Vcc}+0.5$	V
Vo	VoltageonDigital Outputs	$\mathrm{GND}-0.3$	$\mathrm{Vcc}+0.3$	V
IO	CurrentatDigital Outputs		20	mA
Ts	StorageTemperature	-55	+125	${ }^{\circ} \mathrm{C}$
PD	Package PowerDissapation		1	W

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ..$^{(1)}$	Max.	Unit
VCC	Positive Supply	3.0	-	3.6	V
VI	InputVoltage	0	-	5.25	V
TOP	OperatingTemperature Commercial	-40	25	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Min.	Typ. ${ }^{(1)}$	Max.	Units	Test Conditions
ICC	Supply Current	-	3	5	mA	Outputs Unloaded
VIH	InputHighVoltage	2.0	-	-	V	
VIL	InputLowVoltage	-	-	0.8	V	
IIL	InputLeakage	-	-	15	$\mu \mathrm{~A}$	VI between GND and VCC
CI	InputCapacitance	-	-	10	pF	
VOH	OutputHighVoltage	2.4	-	-	V	$\mathrm{IOH}=10 \mathrm{~mA}$
IOH	OutputHighCurrent	10	-	-	mA	Sourcing. VoH $=2.4 \mathrm{~V}$
VOL	OutputLowVoltage	-	-	0.4	V	IOL $=5 \mathrm{~mA}$
IOL	OutputLowCurrent	5	-	-	mA	Sinking. VoL $=0.4 \mathrm{~V}$
IOZ	High ImpedanceLeakage	-	-	5	$\mu \mathrm{~A}$	Vo between GND and VCC
CO	OutputPinCapacitance	-	-	10	pF	

NOTE:

1. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.

S1 is open circuit except when testing output levels or highimpedance states.

S2 is switched to Vcc or GND when testing output levels orhighimpedance states.

Figure 4. Output Load

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ - CLOCK TIMING

Symbol	Characteristics	Min.	Typ. $^{(2)}$	Max.	Unit
tCLK	Clock Period $^{(3)}$	-	244	-	ns
tCH	Clock Width High 2	-	122	-	ns
tCL	Clock Width Low	110	122	150	ns
tcT	Clock TransitionTime	-	20	-	ns
tFPS	Frame Pulse Setup Time	5	20	190	ns
tFPH	Frame Pulse Hold Time	5	20	190	ns
tFPW	FramePulseWidth	-	244	-	ns

NOTE:

1. Timing is over recommended temperature and power supply voltages.
2. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
3. Contents of Connection Memory are not lost if the clock stops, however, TX output go into the high impedance state.

Figure 5. Frame Alignment

Figure 6. Clock Timing

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ —SERIAL STREAM TIMING

Symbol	Characteristics	Min.	Typ. ${ }^{(2)}$	Max.	Unit	Test Conditions
ttaz	TX0-7 Delay - Active to High Z	-	30	45	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tTzA	TX0-7 Delay - High Z to Active	-	45	60	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
ttaA	TX0-7 Delay - Active to Active	-	40	60	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tToH	TX0-7 Hold Time	20	45	-	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
toed	Output Driver Enable Delay	-	45	60	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
txCH	External Control Hold Time	5	50	-	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
txCD	External Control Delay	-	15	30	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tsIs	Serial InputSetup Time	10	20	-	ns	
tSIH	Serial Input Hold Time	10	20	-	ns	
tRSZ	Reset to HighZ	5	30	-	ns	
tZRS	HighZ to Reset	0	-	-	ns	
tzDo	High Z to Valid Data	-	32	-	cycles	$\overline{\mathrm{C} 4 i}$ cycles
tRPW	ResetPulse Width	100	-	-	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$

NOTE:

1. Timing is over recommended temperature and power supply voltages.
2. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
3. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.

Figure 7. Serial Outputs and External Control

AC ELECTRICAL CHARACTERISTICS ${ }^{(1)}$ —PROCESSOR BUS

Symbol	Characteristics	Min.	Typ. ${ }^{(2)}$	Max.	Unit	Test Conditions
tcss	Chip SelectSetup Time	0	-	-	ns	
tRWS	Read/Write Setup Time	5	-	-	ns	
tads	Address Setup Time	5	-	-	ns	
takd	AcknowledgmentDelay Fast	-	40	60	ns	$\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
takd	Acknowledgment Delay Slow	-	-	4.5	cycles	$\overline{\text { C4i }}$ cycles ${ }^{(4)}$
trws	FastWrite DataSetup Time	10	-	-	ns	
tswD	Slow Write Data Delay	-	2.0	1.7	cycles	$\overline{\mathrm{C} 4 i}$ cycles
tRDS	Read DataSetup Time	-	-	0.5	cycles	$\overline{\mathrm{C4i}}$ cycles, $\mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tDht	DataHold Time Read	20	50	75	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tDHT	DataHold Time Write	10	-	-	ns	
trDZ	Read Datato High Impedance	10	50	-	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$
tCSH	Chip Select Hold Time	0	5	-	ns	
tRWH	Read/Write Hold Time	0	5	-	ns	
taDH	Address Hold Time	0	5	-	ns	
takH	Acknowledgment Hold Time	-	20	40	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{~K} \Omega^{(3)}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{pF}$

NOTE:

1. Timing is over recommended temperature and power supply voltages.
2. Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
3. High Impedance is measured by pulling to the appropriate rail with R_{L}, with timing corrected to cancel time taken to discharge C_{L}.
4. Processor accesses are dependent on the $\overline{\mathrm{C4i}}$ clock, and so some things are expressed as multiples of the $\overline{\mathrm{C} 4 i}$.

Figure 11. Processor Bus

ORDERING INFORMATION

DATASHEET DOCUMENT HISTORY

$05 / 23 / 2000$	pgs. 1, 2, and 11.
$08 / 18 / 2000$	pgs. 1, 2 and 11.
$01 / 24 / 2001$	pgs. 1 and 7.
$03 / 10 / 2003$	pg. 1.
$05 / 09 / 2003$	pgs. 1, 2 and 11.
$08 / 20 / 2003$	pg. 7.
$12 / 17 / 2012$	pg. 11

