

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

May 1992 Revised November 1999

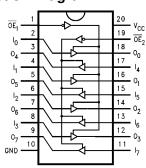
74ABT244

Octal Buffer/Line Driver with 3-STATE Outputs

General Description

The ABT244 is an octal buffer and line driver with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus-oriented transmitter/receiver.

Features


- Non-inverting buffers
- Output sink capability of 64 mA, source capability of 32 mA
- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Disable time less than enable time to avoid bus contention

Ordering Code:

Order Number Package Number		Package Description	
74ABT244CSC M20B 74ABT244CSJ M20D		20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body	
		20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide	
74ABT244CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide	
74ABT244CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	
74ABT244CPC N20A		20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide	

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	Output Enable Input
	(Active LOW)
I ₀ –I ₇	Inputs
O ₀ -O ₇	Outputs

Truth Table

OE ₁	I ₀₋₃	O ₀₋₃	OE ₂	I ₄₋₇	O ₄₋₇
Н	Х	Z	Н	Х	Z
L	Н	Н	L	Н	Н
L	L	L	L	L	L

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Immaterial
- Z = High Impedance

Absolute Maximum Ratings(Note 1)

 $\begin{array}{ll} \mbox{Storage Temperature} & -65\mbox{°C to } +150\mbox{°C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \end{array}$

 $\label{eq:continuous} \begin{array}{ll} \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{V}_{\mbox{CC}} \mbox{ Pin Potential to Ground Pin} & -0.5\mbox{V to } +7.0\mbox{V} \end{array}$

Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disabled or

Power-Off State -0.5V to 5.5V in the HIGH State -0.5V to V_{CC}

Current Applied to Output

 $\begin{array}{ll} \mbox{in LOW State (Max)} & \mbox{twice the rated I}_{\mbox{OL}} \mbox{ (mA)} \\ \mbox{DC Latchup Source Current} & -500 \mbox{ mA} \end{array}$

Over Voltage Latchup (I/O) 10V

Recommended Operating Conditions

Free Air Ambient Temperature -40°C to +85°C Supply Voltage +4.5V to +5.5V

Minimum Input Edge Rate ($\Delta V/\Delta t$)

Data Input 50 mV/ns
Enable Input 20 mV/ns

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation

under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Paramo	eter	Min	Тур	Max	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vo	Itage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5			V	Min	$I_{OH} = -3 \text{ mA}$
			2.0			V	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage				0.55			I _{OL} = 64 mA
I _{IH}	Input HIGH Current				1	μΑ	Max	V _{IN} = 2.7V (Note 4)
					1			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Br	reakdown Test			7	μΑ	Max	V _{IN} = 7.0V
I _{IL}	Input LOW Current				-1		Max	V _{IN} = 0.5V (Note 4)
					-1	μΑ	IVIAX	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	$I_{ID} = 1.9 \mu A$
								All Other Pins Grounded
l _{OZH}	Output Leakage Curre	ent			10	μΑ	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
l _{OZL}	Output Leakage Curre	ent			-10	μΑ	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
los	Output Short-Circuit C	urrent	-100		-275	mA	Max	V _{OUT} = 0.0V
I _{CEX}	Output High Leakage	Current			50	μΑ	Max	$V_{OUT} = V_{CC}$
I _{ZZ}	Bus Drainage Test				100	μΑ	0.0	V _{OUT} = 5.5V; All Others GND
Іссн	Power Supply Current				50	μΑ	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				50	μΑ	Max	$\overline{OE}_n = V_{CC}$
								All Others at V _{CC} or Ground
I _{CCT}	Additional I _{CO} /Input	Outputs Enabled			2.5	mA		$V_1 = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA	Max	Enable Input V _I = V _{CC} - 2.1V
		Outputs 3-STATE			50	μΑ		Data Input V _I = V _{CC} - 2.1V
								All Others at V _{CC} or Ground
I _{CCD}	Dynamic I _{CC}	No Load				mA/		Outputs OPEN
	(Note 4)				0.1	MHz	Max	$\overline{OE}_n = GND$, (Note 3)
								One Bit Toggling, 50% Duty Cycle

Note 3: For 8 bits toggling, $I_{CCD} < 0.8 \text{ mA/MHz}.$

Note 4: Guaranteed, but not tested.

DC Electrical Characteristics

(SOIC package)

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions $C_L = 50 \text{ pF,}$ $R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.5	0.8	V	5.0	T _A = 25°C (Note 5)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-1.3	-0.8		V	5.0	T _A = 25°C (Note 5)
V _{OHV}	Minimum HIGH Level Dynamic Output Voltage	2.7	3.1		V	5.0	T _A = 25°C (Note 7)
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	2.0	1.5		V	5.0	T _A = 25°C (Note 6)
V _{ILD}	Maximum LOW Level Dynamic Input Voltage		1.1	0.8	V	5.0	T _A = 25°C (Note 6)

Note 5: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

Note 6: Max number of data inputs (n) switching. n – 1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested.

Note 7: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics

(SOIC and SSOP package)

Symbol	Parameter		$T_A = +25^{\circ}$ C $V_{CC} = +5$ V $C_L = 50$ pF		$T_{A} = -55^{\circ}\text{C to } +125^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} - 5.5\text{V}$ $C_{L} = 50 \text{ pF}$		$T_A = -40$ °C to +85°C $V_{CC} = 4.5V-5.5V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	1.0	2.5	3.6	1.0	5.3	1.0	3.6	
t _{PHL}	Data to Outputs	1.0	2.3	3.6	1.0	5.0	1.0	3.6	ns
t _{PZH}	Output Enable	1.5	3.5	6.0	0.8	6.5	1.5	6.0	
t _{PZL}	Time	1.5	3.6	6.0	1.2	7.9	1.5	6.0	ns
t _{PHZ}	Output Disable	1.7	3.5	5.6	1.2	7.6	1.7	5.6	no
t_{PLZ}	Time	1.7	3.3	5.6	1.0	7.9	1.7	5.6	ns

Extended AC Electrical Characteristics

(SOIC package)

Symbol	$T_A-40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} -5.5\text{V}$ $C_L = 50 \text{ pF}$ $8 \text{ Outputs Switchin}$ (Note 8)		5V	V _{CC} = 4 C _L = 2	C to +85°C 5V-5.5V 250 pF Switching te 9)	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} -5.5\text{V}$ $C_L = 250 \text{ pF}$ 8 Outputs Switching (Note 10)		Units	
		Min	Тур	Max	Min	Max	Min	Max	
f _{TOGGLE}	Max Toggle Frequency		100						MHz
t _{PLH}	Propagation Delay	1.5		5.0	1.5	6.0	2.5	8.5	no
t _{PHL}	Data to Outputs	1.5		5.0	1.5	6.0	2.5	8.5	ns
t _{PZH}	Output Enable Time	1.5		6.5	2.5	7.5	2.5	10.0	
t _{PZL}		1.5		6.5	2.5	7.5	2.5	12.0	ns
t _{PHZ}	Output Disable Time	1.0		5.6	(Note 11)		(Note 11)		
t _{PLZ}		1.0		5.6					ns

Note 8: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 9: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 10: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

Note 11: The 3-STATE delays are dominated by the RC network (500 Ω , 250 pF) on the output and have been excluded from the datasheet.

Skew

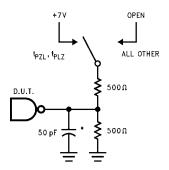
Symbol	Parameter	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} -5.5\text{V}$ $C_L = 50 \text{ pF}$ 8 Outputs Switching (Note 14) Max	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} -5.5\text{V}$ $C_L = 250 \text{ pF}$ 8 Outputs Switching (Note 15) Max	Units
t _{OSHL} (Note 12)	Pin to Pin Skew HL Transitions	0.8	1.8	ns
t _{OSLH} (Note 12)	Pin to Pin Skew LH Transitions	0.8	1.8	ns
t _{PS} (Note 16)	Duty Cycle LH–HL Skew	1.0	2.5	ns
t _{OST} (Note 12)	Pin to Pin Skew LH/HL Transitions	1.0	2.5	ns
t _{PV} (Note 13)	Device to Device Skew LH/HL Transitions	1.5	3.0	ns

Note 12: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (t_{OSHL}), LOW-to-HIGH (t_{OSLH}), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (t_{OST}). The specification is guaranteed but not tested.

Note 13: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested.

Note 14: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

Note 15: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.


Note 16: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.

Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0V$
C _{OUT} (Note 17)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$

Note 17: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

AC Loading

*Includes jig and probe capacitance

FIGURE 1. Standard AC Test Load

AC Waveforms

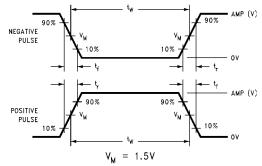


FIGURE 2. Test Input Signal Levels

Amplitude	Rep. Rate	t _W	t _r	t _f
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 3. Test Input Signal Requirements

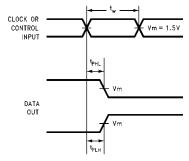


FIGURE 4. Propagation Delay, Pulse Width Waveforms

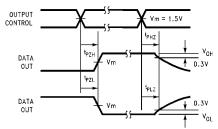


FIGURE 5. 3-STATE Output HIGH and LOW Enable and Disable Times

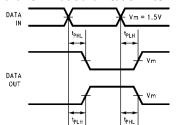


FIGURE 6. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

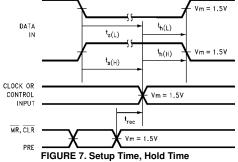
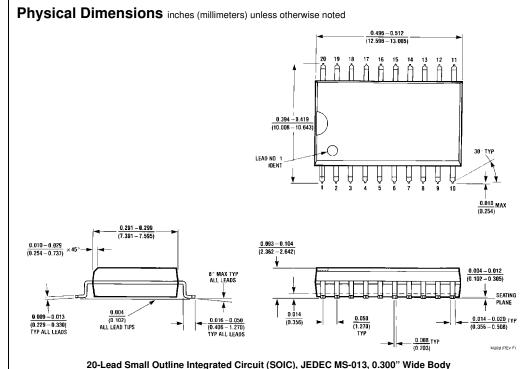
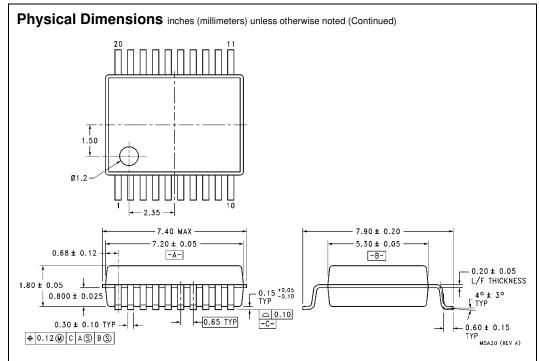
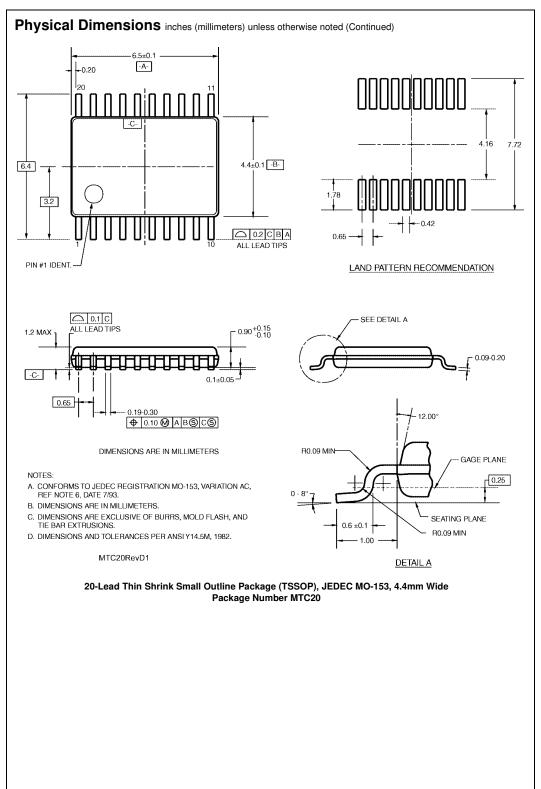
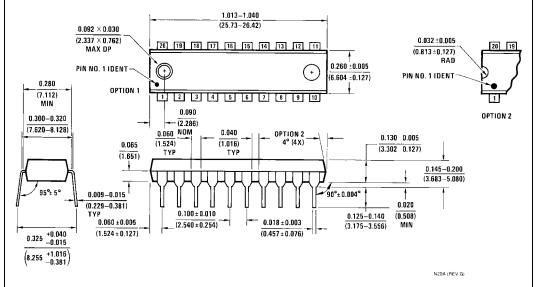




FIGURE 7. Setup Time, Hold Time and Recovery Time Waveforms



20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body Package Number M20B


Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 12.6±0.10 0.40 TYP --A-5.3±0.10 9.27 TYP 7.8 -B-3.9 0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT.-0.6 TYP 1.27 TYP LAND PATTERN RECOMMENDATION ALL LEAD TIPS SEE DETAIL A 0.1 C 1.8±0.1 -C-L _{0.15±0.05} 0.15-0.25 -1.27 TYP 0.35-0.51 ⊕ 0.12 **(** C A DIMENSIONS ARE IN MILLIMETERS GAGE PLANE 0.25 NOTES: A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60±0.15 SEATING PLANE 1.25 -M20DRevB1 DETAIL A 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide Package Number MSA20

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com