## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## DATA SHEET

## 74ABT273A <br> Octal D-type flip-flop

## FEATURES

- Eight edge-triggered D-type flip-flops
- Buffered common clock
- Buffered asynchronous Master Reset
- Power-up reset
- See 74ABT377 for clock enable version
- See 74ABT373 for transparent latch version
- See 74ABT374 for 3-State version
- ESD protection exceeds 2000 V per Mil Std 833 Method 3015 and 200 V per machine model.


## DESCRIPTION

The 74ABT273A has eight edge-triggered D-type flip-flops with individual D inputs and Q outputs. The common buffered Clock (CP) and Master Reset (MR) inputs load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D input, one setup time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.

All outputs will be forced Low independent of Clock or Data inputs by a Low voltage level on the MR input. The device is useful for applications where the true output only is required and the CP and MR are common elements.

## QUICK REFERENCE DATA

| SYMBOL | PARAMETER | CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$ | TYPICAL | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation delay CP to Qn | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ | $\begin{aligned} & 3.0 \\ & 3.4 \end{aligned}$ | ns |
| $\mathrm{C}_{\text {IN }}$ | Input capacitance | $\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {cc }}$ | 3.5 | pF |
| $\mathrm{I}_{\mathrm{CCH}}$ | Total supply current | Outputs High; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | 150 | $\mu \mathrm{A}$ |

## ORDERING INFORMATION

| PACKAGES | TEMPERATURE RANGE | OUTSIDE NORTH AMERICA | NORTH AMERICA | DWG NUMBER |
| :--- | :---: | :---: | :---: | :---: |
| 20-Pin Plastic DIP | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $74 \mathrm{ABT273A} \mathrm{~N}$ | 74ABT273A N | SOT146-1 |
| 20-Pin plastic SO | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 74 ABT 273 A D | 74ABT273A D | SOT163-1 |
| 20-Pin Plastic SSOP Type II | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $74 \mathrm{ABT273A}$ DB | 74ABT273A DB | SOT339-1 |
| 20-Pin Plastic TSSOP Type I | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $74 \mathrm{ABT273A}$ PW | 7ABT273APW DH | SOT360-1 |

## PIN CONFIGURATION



## PIN DESCRIPTION

| PIN <br> NUMBER | SYMBOL | NAME AND FUNCTION |
| :---: | :---: | :--- |
| 11 | CP | Clock pulse input (active rising edge) |
| $3,4,7,8,13$, <br> $14,17,18$ | D0 - D7 | Data inputs |
| $2,5,6,9,12$, <br> $15,16,19$ | Q0-Q7 | Data outputs |
| 1 | MR | Master Reset input (active-Low) |
| 10 | GND | Ground (OV) |
| 20 | $\mathrm{~V}_{\mathrm{CC}}$ | Positive supply voltage |

LOGIC SYMBOL (IEEE/IEC)


LOGIC SYMBOL
$\square$

## LOGIC DIAGRAM



## FUNCTION TABLE

| INPUTS |  |  | OUTPUTS | OPERATING MODE |
| :---: | :---: | :---: | :---: | :--- |
| $\overline{\text { MR }}$ | CP | Dn | Q0- Q7 |  |
| L | X | X | L | Reset (clear) |
| H | $\uparrow$ | h | H | Load "1" |
| H | $\uparrow$ | l | L | Load "0" |

[^0]
## ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

| SYMBOL | PARAMETER | CONDITIONS | RATING | UNIT |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | DC supply voltage | -0.5 to +7.0 | V |  |
| $\mathrm{I}_{\mathrm{IK}}$ | DC input diode current | $\mathrm{V}_{\mathrm{I}}<0$ | -18 | mA |
| $\mathrm{~V}_{\mathrm{I}}$ | DC input voltage ${ }^{3}$ |  | -1.2 to +7.0 | V |
| $\mathrm{I}_{\text {OK }}$ | DC output diode current | $\mathrm{V}_{\mathrm{O}}<0$ | -50 | mA |
| $\mathrm{~V}_{\text {OUT }}$ | DC output voltage ${ }^{3}$ | output in Off or High state | -0.5 to +5.5 | V |
| $\mathrm{I}_{\text {OUT }}$ | DC output current | output in Low state | 128 | mA |
| $\mathrm{~T}_{\text {stg }}$ | Storage temperature range |  | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |

## NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

## RECOMMENDED OPERATING CONDITIONS

| SYMBOL | PARAMETER | LIMITS |  | UNIT |
| :---: | :--- | :---: | :---: | :---: |
|  |  | Min | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage | 4.5 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | Input voltage | 0 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage | 2.0 |  | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | Low-level input voltage |  | 0.8 | V |
| $\mathrm{I}_{\mathrm{OH}}$ | High-level output current |  | -32 | mA |
| $\mathrm{I}_{\mathrm{OL}}$ | Low-level output current |  | 64 | mA |
| $\Delta \mathrm{t} / \Delta \mathrm{V}$ | Input transition rise or fall rate | 0 | 10 | $\mathrm{~ns} / \mathrm{V}$ |
| $\mathrm{T}_{\mathrm{amb}}$ | Operating free-air temperature range | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |

## DC ELECTRICAL CHARACTERISTICS

| SYMBOL | PARAMETER | TEST CONDITIONS | LIMITS |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{T}_{\text {amb }}=+25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ |  |  |
|  |  |  | Min | Typ | Max | Min | Max |  |
| $\mathrm{V}_{\mathrm{IK}}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$ |  | -0.9 | -1.2 |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High-level output voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\text {IH }}$ | 2.5 | 2.9 |  | 2.5 |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ | 3.0 | 3.4 |  | 3.0 |  | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | 2.4 |  | 2.0 |  |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low-level output voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}$ |  | 0.42 | 0.55 |  | 0.55 | V |
| $\mathrm{V}_{\text {RST }}$ | Power-up output low voltage ${ }^{3}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$ |  | 0.13 | 0.55 |  | 0.55 | V |
| 1 | Input leakage current | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or 5.5 V |  | $\pm 0.01$ | $\pm 1.0$ |  | $\pm 1.0$ | $\mu \mathrm{A}$ |
| IOFF | Power-off leakage current | $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{1} \leq 4.5 \mathrm{~V}$ |  | $\pm 5.0$ | $\pm 100$ |  | $\pm 100$ | $\mu \mathrm{A}$ |
| $I_{\text {CEX }}$ | Output High leakage current | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$ |  | 5.0 | 50 |  | 50 | $\mu \mathrm{A}$ |
| 10 | Output current ${ }^{1}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ | -50 | -70 | -180 | -50 | -180 | mA |
| $\mathrm{I}_{\mathrm{CCH}}$ | Quiescent supply current | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=$ GND or $\mathrm{V}_{\mathrm{CC}}$ |  | 150 | 250 |  | 250 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CCL}}$ |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$ |  | 24 | 30 |  | 30 | mA |
| $\Delta_{\text {l }}$ | Additional supply current per input pin ${ }^{2}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; One data input at 3.4 V , other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  | 0.5 | 1.5 |  | 1.5 | mA |

## NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.

## AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{gathered}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$ |  |  |
|  |  |  | Min | Typ | Max | Min | Max |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum clock frequency | 1 | 250 | 350 |  | 250 |  | MHz |
| $\begin{aligned} & \text { tpLH } \\ & \text { tph } \end{aligned}$ | Propagation delay CP to Qn | 1 | $\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.4 \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 4.6 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$ | ns |
| $t_{\text {PHL }}$ | Propagation delay MR to Qn | 2 | 2.5 | 4.5 | 6.0 | 2.5 | 6.6 | ns |

## AC SETUP REQUIREMENTS

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \end{aligned}$ |  | $\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \\ \text { Min } \end{gathered}$ |  |
|  |  |  | Min | Typ |  |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Setup time, High or Low Dn to CP | 3 | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 0.6 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ |  |
| $\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$ | Hold time, High or Low Dn to CP | 3 | $\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$ | $\begin{aligned} & \hline-0.5 \\ & -0.5 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | Clock pulse width High or Low | 1 | $\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 0.8 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$ | ns |
| $\mathrm{t}_{\mathrm{w}}(\mathrm{L})$ | Master Reset pulse width, Low | 2 | 1.5 | 0.8 | 1.5 | ns |
| $t_{\text {REC }}$ | Recovery time MR to CP | 2 | 1.5 | 0.5 | 1.5 | ns |

## AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to 3.0 V
The shaded areas indicate when the input is permitted to change for predictable output performance.


Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency


Waveform 2. Master Reset Pulse Width, Master Reset to Output Delay and Master Reset to Clock Recovery Time

Dn


SF00191
Waveform 3. Data Setup and Hold Times

## TEST CIRCUIT AND WAVEFORMS




DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | $\underset{\max }{A}$ | $\mathrm{A}_{1}$ min. | $\underset{\max }{\mathbf{A}_{2}}$ | b | $\mathrm{b}_{1}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $e_{1}$ | L | $\mathrm{M}_{\mathrm{E}}$ | $\mathbf{M}_{\mathrm{H}}$ | w | $\mathbf{z a x}^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 4.2 | 0.51 | 3.2 | $\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 26.92 \\ & 26.54 \end{aligned}$ | $\begin{aligned} & 6.40 \\ & 6.22 \end{aligned}$ | 2.54 | 7.62 | $\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$ | $\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$ | $\begin{gathered} 10.0 \\ 8.3 \end{gathered}$ | 0.254 | 2.0 |
| inches | 0.17 | 0.020 | 0.13 | $\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$ | $\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$ | $\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$ | $\begin{aligned} & 1.060 \\ & 1.045 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 0.24 \end{aligned}$ | 0.10 | 0.30 | $\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$ | 0.01 | 0.078 |

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |  |
| SOT146-1 |  |  | SC603 |  | $-92-11-17$ |  |



DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | A max. | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $\mathrm{D}^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 2.65 | $\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 13.0 \\ & 12.6 \end{aligned}$ | $\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$ | 1.27 | $\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$ | 1.4 | $\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$ | 0.25 | 0.25 | 0.1 | $\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$ |
| inches | 0.10 | $\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$ | 0.01 | $\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$ | $\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$ | $\begin{aligned} & \hline 0.51 \\ & 0.49 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$ | 0.050 | $\begin{aligned} & 0.42 \\ & 0.39 \end{aligned}$ | 0.055 | $\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$ | $\begin{aligned} & 0.043 \\ & 0.039 \\ & \hline \end{aligned}$ | 0.01 | 0.01 | 0.004 | $\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$ |  |

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| SOT163-1 | IEC | JEDEC | EIAJ |  | $-92-11-17$ |  |



DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ <br> max. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}^{(1)}$ | $\mathbf{E}^{(1)}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{Q}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{z}^{(1)}$ | $\boldsymbol{\theta}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 2.0 | 0.21 | 1.80 | 0.25 | 0.38 | 0.20 | 7.4 | 5.4 | 0.6 | 7.9 | 1.25 | 1.03 | 0.9 | 0.2 | 0.13 | 0.1 | 0.9 | $8^{\circ}$ |
|  | 0.05 | 1.65 | 0.2 | 0.25 | 0.09 | 7.0 | 5.2 | 0.65 | 7.6 | 1.25 | 0.63 | 0.7 | 0.2 | $0^{\circ}$ |  |  |  |  |

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT339-1 |  | MO-150AE |  | - | $\begin{aligned} & 93-09-08-95-02-04 \end{aligned}$ |



DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ <br> max. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}^{(1)}$ | $\mathbf{E}^{(2)}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{Q}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{Z}^{(1)}$ | $\boldsymbol{\theta}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{m m}$ | 1.10 | 0.15 | 0.95 | 0.25 | 0.30 | 0.2 | 6.6 | 4.5 | 0.6 | 6.6 | 1.0 | 0.75 | 0.4 | 0.2 | 0.13 | 0.1 | 0.5 | $8^{\circ}$ |
|  | 0.05 | 0.80 | 0.19 | 0.1 | 6.4 | 4.3 |  | 6.2 |  | 0.2 | $0^{\circ}$ |  |  |  |  |  |  |  |

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |  |
| SOT360-1 |  | MO-153AC |  |  | $-93-06-16$ |  |

## DEFINITIONS

| Data Sheet Identification | Product Status | Definition |
| :---: | :---: | :--- |
| Objective Specification | Formative or in Design | This data sheet contains the design target or goal specifications for product development. Specifications <br> may change in any manner without notice. |
| Preliminary Specification | Preproduction Product | This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips <br> Semiconductors reserves the right to make changes at any time without notice in order to improve design <br> and supply the best possible product. |
| Product Specification | Full Production | This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes <br> at any time without notice, in order to improve design and supply the best possible product. |

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors

## 811 East Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

Philips Semiconductors and Philips Electronics North America Corporation register eligible circuits under the Semiconductor Chip Protection Act. © Copyright Philips Electronics North America Corporation 1995 All rights reserved. Printed in U.S.A.


[^0]:    $H=$ High voltage level
    $h=$ High voltage level one set-up time prior to the Low-to-High clock transition
    $\mathrm{L}=$ Low voltage level
    I = Low voltage level one set-up time prior to the Low-to-High clock transition
    X = Don't care
    $\uparrow=$ Low-to-High clock transition

