

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

October 1987 Revised January 2004

MM74C373 • MM74C374 3-STATE Octal D-Type Latch • 3-STATE Octal D-Type Flip-Flop

General Description

The MM74C373 and MM74C374 are integrated, complementary MOS (CMOS), 8-bit storage elements with 3-STATE outputs. These outputs have been specially designed to drive high capacitive loads, such as one might find when driving a bus, and to have a fan out of 1 when driving standard TTL. When a high logic level is applied to the OUTPUT DISABLE input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements.

The MM74C373 is an 8-bit latch. When LATCH ENABLE is high, the Q outputs will follow the D inputs. When LATCH ENABLE goes low, data at the D inputs, which meets the set-up and hold time requirements, will be retained at the outputs until LATCH ENABLE returns high again.

The MM74C374 is an 8-bit, D-type, positive-edge triggered flip-flop. Data at the D inputs, meeting the set-up and hold time requirements, is transferred to the Q outputs on positive-going transitions of the CLOCK input.

Both the MM74C373 and the MM74C374 are being assembled in 20-pin dual-in-line packages with 0.300" pin centers

Features

■ Wide supply voltage range: 3V to 15V
 ■ High noise immunity: 0.45 V_{CC} (typ.)

■ Low power consumption

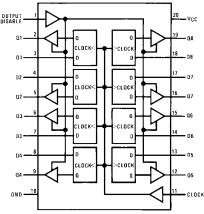
■ TTL compatibility:

Fan out of 1driving standard TTL

- Bus driving capability
- 3-STATE outputs
- Eight storage elements in one package
- Single CLOCK/LATCH ENABLE and OUTPUT DIS-ABLE control inputs
- 20-pin dual-in-line package with 0.300" centers takes half the board space of a 24-pin package

Ordering Code:

Order Number	Package Number	Package Description
MM74C373M (Note 1)	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74C373N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C374N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide


Note 1: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

MM74C373

Top View

MM74C374

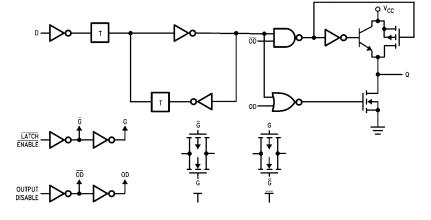
Top View

Truth Tables

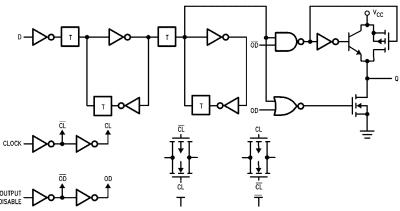
MM74C373

Output Disable	ENABLE	D	Q
L	Н	Н	Н
L	Н	L	L
L	L	Х	Q
Н	X	X	Hi-Z

MM74C374


Output	Clock	D	Q
Disable			
L	~	Н	Н
L	~	L	L
L	L	Х	Q
L	Н	Х	Q
Н	Х	Х	Hi-Z

 ^{∠ =} LOW-to-HIGH logic level transition
 Q = Preexisting output level
 Hi-Z = High impedance output state


L = LOW logic level H = HIGH logic level X = Irrelevant

Block Diagrams

MM74C373 (1 of 8 Latches)

MM74C374 (1 of 8 Flip-Flops)

Absolute Maximum Ratings(Note 2)

Voltage at Any Pin -0.3V to $V_{CC} + 0.3V$

Operating Temperature Range (T_A)

MM74C373 -55°C to $+125^{\circ}\text{C}$ Storage Temperature Range (T_S) -65°C to $+150^{\circ}\text{C}$

Power Dissipation

Dual-In-Line 700 mW Small Outline 500 mW

Absolute Maximum V_{CC} Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS	·			•	•
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 5V	3.5			V
		V _{CC} = 10V	8.0			
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5V			1.5	V
		$V_{CC} = 10V$			2.0	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$	4.5			V
		$V_{CC}=10V,\ I_{O}=-10\ \mu A$	9.0			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V$, $I_{O} = 10 \mu A$			0.5	V
		$V_{CC} = 10V$, $I_{O} = 10 \mu A$			1.0	V
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μΑ
loz	3-STATE Leakage Current	V _{CC} = 15V, V _O = 15V		0.005	1.0	^
		$V_{CC} = 15V, V_{O} = 0V$	-1.0	-0.005		μА
Icc	Supply Current	V _{CC} = 15V		0.05	300	μА
CMOS/LP	TTL INTERFACE	•				
V _{IN(1)}	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} - 1.5			V
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 4.75V$, $I_{O} = -360 \mu A$	V _{CC} - 0.4			V
		$V_{CC} = 4.75V, I_{O} = -1.6 \text{ mA}$	2.4			· ·
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 4.75V, I_{O} = 1.6 \text{ mA}$			0.4	V
OUTPUT [ORIVE (Short Circuit Current)	·			•	
I _{SOURCE}	Output Source Current	$V_{CC} = 5V$, $V_{OUT} = 0V$	-12	-24		mA
		T _A = 25°C (Note 3)				
I _{SOURCE}	Output Source Current	$V_{CC} = 10V, V_{OUT} = 0V$	-24	-48		mA
		T _A = 25°C (Note 3)				
I _{SINK}	Output Sink Current	V _{CC} = 5V, V _{OUT} = V _{CC}	6	12		mA
	(N-Channel)	T _A = 25°C (Note 3)				
I _{SINK}	Output Sink Current	$V_{CC} = 10V$, $V_{OUT} = V_{CC}$	24	48		mA
	(N-Channel)	T _A = 25°C (Note 3)				

Note 3: These are peak output current capabilities. Continuous output current is rated at 12 mA max.

AC Electrical Characteristics (Note 4)

MM74C373, $T_A = 25^{\circ}C,\ C_L = 50\ pF,\ t_r = t_f$ = 20 ns, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0} , t _{pd1}	Propagation Delay,	V _{CC} = 5V, C _L = 50 pF		165	330	
	LATCH ENABLE to Output	$V_{CC} = 10V, C_L = 50 pF$		70	140	
		$V_{CC} = 5V, C_L = 150 pF$		195	390	ns
		$V_{CC} = 10V, C_L = 150 pF$		85	170	
t _{pd0} , t _{pd1}	Propagation Delay Data	LATCH ENABLE = V _{CC}				
	In to Output	$V_{CC} = 5V, C_L = 50 pF$		155	310	
		$V_{CC} = 10V, C_L = 50 pF$		70	140	
		$V_{CC} = 5V, C_L = 150 pF$		185	370	ns
		$V_{CC} = 10V, C_L = 150 pF$		85	170	
t _{SET-UP}	Minimum Set-Up Time Data In	t _{HOLD} = 0 ns				
	to CLOCK/LATCH ENABLE	V _{CC} = 5V		70	140	
		V _{CC} = 10V		35	70	ns
f _{MAX}	Maximum LATCH ENABLE	V _{CC} = 5V	3.5	6.7		
	Frequency	V _{CC} = 10V	4.5	9.0		MHz
t _{PWH}	Minimum LATCH ENABLE	V _{CC} 5V		75	150	
	Pulse Width	V _{CC} = 10V		55	110	ns
t _r , t _f	Maximum LATCH ENABLE	$V_{CC} = 5V$		NA		116
	Rise and Fall Time	V _{CC} = 10V		NA		μs
t _{1H} , t _{0H}	Propagation Delay OUTPUT	$R_L = 10k, C_L = 5 pF$				
	DISABLE to High Impedance	V _{CC} = 5V		105	210	ns
	State (from a Logic Level)	V _{CC} = 10V		60	120	113
t _{H1} , t _{H0}	Propagation Delay OUTPUT	$R_L = 10k, C_L = 50 pF$				
	DISABLE to Logic Level	$V_{CC} = 5V$		105	210	ne
	(from High Impedance State)	V _{CC} = 10V		45	90	ns
t _{THL} , t _{TLH}	Transition Time	$V_{CC} = 5V, C_L = 50 pF$		65	130	
		$V_{CC} = 10V, C_L = 50 pF$		35	70	ns
		$V_{CC} = 5V, C_L = 150 pF$		110	220	
		$V_{CC} = 10V, C_L = 150 pF$		70	140	
C _{LE}	Input Capacitance	LE Input (Note 5)		7.5	10	pF
C _{OD}	Input Capacitance	OUTPUT DISABLE		7.5	10	pF
		Input (Note 5)				
C _{IN}	Input Capacitance	Any Other Input (Note 5)		5	7.5	pF
C _{OUT}	Output Capacitance	High Impedance		10	15	pF
		State (Note 5)				
C _{PD}	Power Dissipation Capacitance	Per Package (Note 6)		200		pF

Note 4: AC Parameters are guaranteed by DC correlated testing.

Note 5: Capacitance is guaranteed by periodic testing.

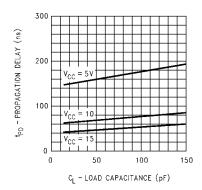
Note 6: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note

MM74C373 · MM74C374

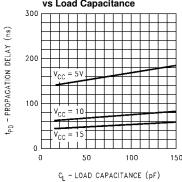
AC Electrical Characteristics (Note 7)

MM74C374, $T_A = 25^{\circ}C$, $C_L = 50$ pF, $t_r = t_f = 20$ ns, unless otherwise noted

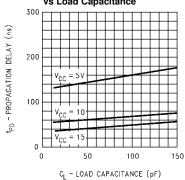
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0} , t _{pd1}	Propagation Delay,	$V_{CC} = 5V, C_L = 50 pF$		150	300	
	CLOCK to Output	$V_{CC} = 10V, C_L = 50 pF$		65	130	
		$V_{CC} = 5V, C_L = 150 pF$		180	360	ns
		$V_{CC} = 10V, C_L = 150 pF$		80	160	
t _{SET-UP}	Minimum Set-Up Time Data In	t _{HOLD} = 0 ns				
	to CLOCK/LATCH ENABLE	$V_{CC} = 5V$		70	140	
		$V_{CC} = 10V$		35	70	ns
t _{PWH} , t _{PWL}	Minimum CLOCK Pulse Width	V _{CC} = 5V		70	140	ns
		$V_{CC} = 10V$		50	100	115
f_{MAX}	Maximum CLOCK Frequency	V _{CC} = 5V	3.5	7.0		MHz
		$V_{CC} = 10V$	5	10		IVITZ
t _{1H} , t _{0H}	Propagation Delay OUTPUT	$R_L = 10k, C_L = 50 pF$				
	DISABLE to High Impedance	$V_{CC} = 5V$		105	210	ns
	State (from a Logic Level)	$V_{CC} = 10V$		60	120	115
t _{H1} , t _{H0}	Propagation Delay OUTPUT	$R_L = 10k, C_L = 50 pF$				
	DISABLE to Logic Level	$V_{CC} = 5V$		105	210	ns
	(from High Impedance State)	$V_{CC} = 10V$		45	90	
t _{THL} , t _{TLH}	Transition Time	V _{CC} = 5V, C _L = 50 pF		65	130	
		$V_{CC} = 10V, C_L = 50 pF$		35	70	ns
		$V_{CC} = 5V, C_L = 150 pF$		110	220	115
		$V_{CC} = 10V, C_L = 150 pF$		70	140	
t _r , t _f	Maximum CLOCK Rise	V _{CC} = 5V	15	>2000		110
	and Fall Time	$V_{CC} = 10V$	5	>2000		μs
C _{CLK}	Input Capacitance	CLOCK Input (Note 8)		7.5	10	pF
C _{OD}	Input Capacitance	OUTPUT DISABLE		7.5	10	pF
		Input (Note 8)				
C _{IN}	Input Capacitance	Any Other Input (Note 8)		5	7.5	pF
C _{OUT}	Output Capacitance	High Impedance		10	15	pF
		State (Note 8)				
C _{PD}	Power Dissipation Capacitance	Per Package (Note 9)		250		pF

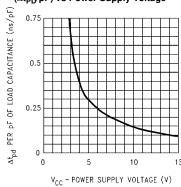

Note 7: AC Parameters are guaranteed by DC correlated testing.

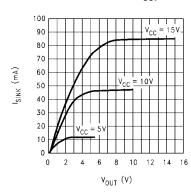
Note 8: Capacitance is guaranteed by periodic testing.

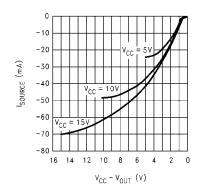

Note 9: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see Family Characteristics Application Note AN-90

Typical Performance Characteristics

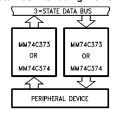

MM74C373 Propagation Delay, LATCH ENABLE to Output vs Load Capacitance


MM74C373 Propagation Delay, Data In to Output vs Load Capacitance

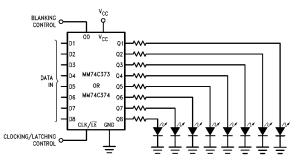

MM74C373 Propagation Delay, CLOCK to Output vs Load Capacitance


MM74C373, MM74C374 Change in Propagation Delay per pF of Load Capacitance (∆t_{PD}/pF) vs Power Supply Voltage

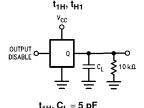
MM74C373, MM74C374 Output Sink Current vs V_{OUT}

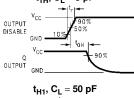


MM74C373, MM74C374 Source Current vs $V_{CC} - V_{OUT}$

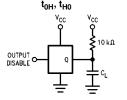


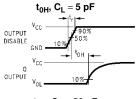
Typical Applications

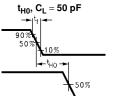

Data Bus Interfacing Element

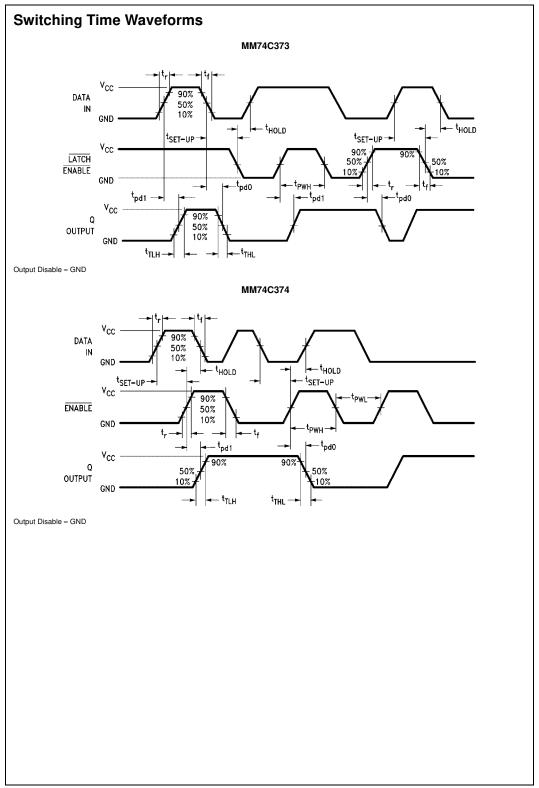


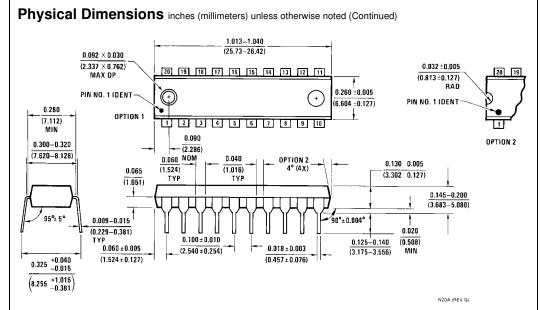
Simple, Latching, Octal, LED Indicator Driver with Blanking for Use as Data Display, Bus Monitor, μP Front Panel Display, Etc.




3-STATE Test Circuits and Switching Time Waveforms







20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com