imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR

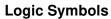
November 1988 Revised September 2003

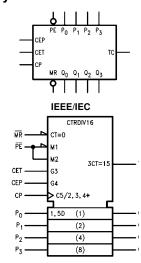
74AC161 • 74ACT161 Synchronous Presettable Binary Counter

74AC161 • 74ACT161 Synchronous Presettable Binary Counter

General Description

The AC/ACT161 are high-speed synchronous modulo-16 binary counters. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The AC/ACT161 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW.


Features


- I_{CC} reduced by 50%
- Synchronous counting and loading
- High-speed synchronous expansion
- Typical count rate of 125 MHz
- Outputs source/sink 24 mA
- ACT161 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description
74AC161SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74AC161SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC161MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC161PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT161SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74ACT161SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT161MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT161PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

MR —	1	\bigcirc	16	-v _{cc}
CP —	2		15	— TC
P0-	3		14	- 0 ₀
P1-	4		13	- Q ₁
P2-	5		12	- Q ₂
P3 -	6		11	- Q3
CEP —	7		10	- CET
GND -	8		9	- PE

Pin Descriptions

Pin Names	Description
CEP	Count Enable Parallel Input
CET	Count Enable Trickle Input
СР	Clock Pulse Input
MR	Asynchronous Master Reset Input
P ₀ -P ₃	Parallel Data Inputs
PE	Parallel Enable Inputs
Q ₀ –Q ₃	Flip-Flop Outputs
тс	Terminal Count Output

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Functional Description

The AC/ACT161 count in modulo-16 binary sequence. From state 15 (HHHH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the AC/ACT161) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset, parallel load, count-up and hold. Five control inputs-Master Reset, Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CP. With PE and MR HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

The AC/ACT161 use D-type edge-triggered flip-flops and changing the \overline{PE} , CEP, and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed.

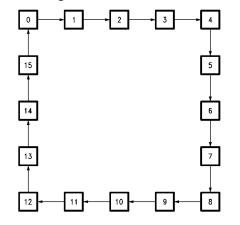
The Terminal Count (TC) output is HIGH when CET is HIGH and counter is in state 15. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways.

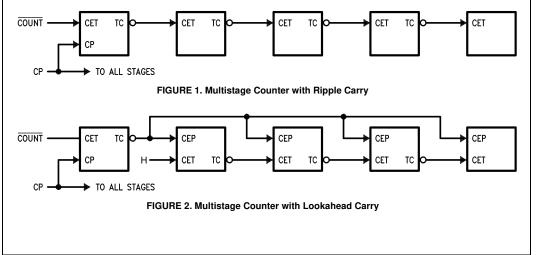
Figure 1 shows the connections for simple ripple carry, in which the clock period must be longer than the <u>CP</u> to <u>TC</u> delay of the first stage, plus the cumulative <u>CET</u> to <u>TC</u> delays of the intermediate stages, plus the <u>CET</u> to <u>CP</u> setup time of the last stage. This total delay plus setup time sets the upper limit on clock frequency. For faster clock rates, the carry lookahead connections shown in Figure 2 are recommended. In this scheme the ripple delay through the intermediate stages commences with the same clock that causes the first stage to tick over from max to min in the Up mode, or min to max in the Down mode, to start its final cycle. Since this final cycle requires 16 clocks to complete, there is plenty of time for the ripple to progress through the intermediate stages. The critical timing that limit

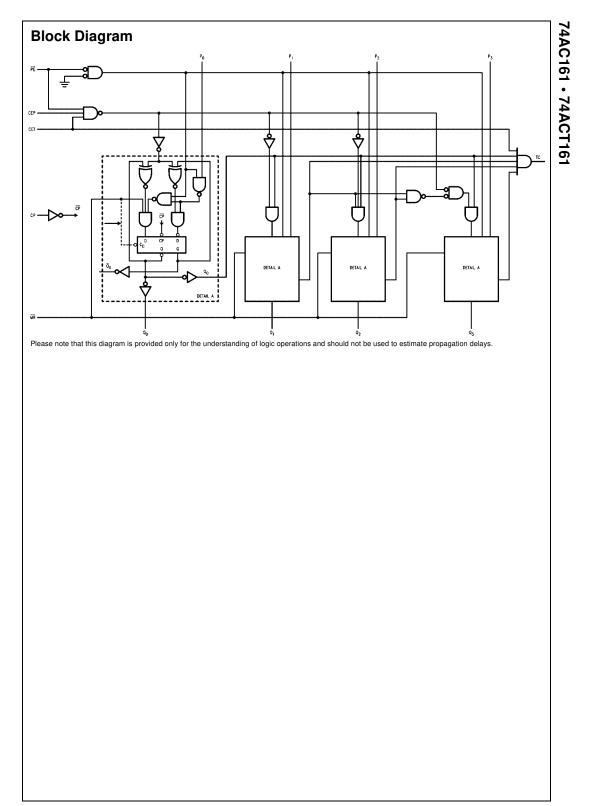
its the clock period is the CP to $\overline{\text{TC}}$ delay of the first stage plus the $\overline{\text{CEP}}$ to CP setup time of the last stage. The $\overline{\text{TC}}$ output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, registers or counters.

Logic Equations: Count Enable = CEP • CET • \overline{PE} TC = Q₀ • Q₁ • Q₂ • Q₃ • CET

Mode Select Table


PE	CET CEP		Action on the Rising Clock Edge ()
Х	Х	Х	Reset (Clear)
L	Х	Х	Load $(P_n \rightarrow Q_n)$
н	Н	н	Count (Increment)
н	L	Х	No Change (Hold)
н	Х	L	No Change (Hold)


H = HIGH Voltage Level


L = LOW Voltage Level

X = Immaterial

State Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V	Conditions	-
DC Input Diode Current (IIK)		Supply Voltage (V _{CC})	
$V_{I} = -0.5V$	–20 mA	AC	2.0V to 6.0V
$V_I = V_{CC} + 0.5V$	+20 mA	ACT	4.5V to 5.5V
DC Input Voltage (VI)	$-0.5V$ to $V_{CC} + 0.5V$	Input Voltage (V _I)	0V to V _{CC}
DC Output Diode Current (I _{OK})		Output Voltage (V _O)	0V to V _{CC}
$V_{O} = -0.5V$	–20 mA	Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
$V_O = V_{CC} + 0.5V$	+20 mA	Minimum Input Edge Rate ($\Delta V/\Delta t$)	
DC Output Voltage (V _O)	$-0.5V$ to $V_{CC} + 0.5V$	AC Devices	
DC Output Source		V_{IN} from 30% to 70% of V_{CC}	
or Sink Current (I _O)	±50 mA	V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns
DC V _{CC} or Ground Current		Minimum Input Edge Rate ($\Delta V/\Delta t$)	
per Output Pin (I _{CC} or I _{GND})	±50 mA	ACT Devices	
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	V _{IN} from 0.8V to 2.0V	
Junction Temperature (T_J)		V _{CC} @ 4.5V, 5.5V	125 mV/ns
PDIP	140°C	Note 1: Absolute maximum ratings are those valu to the device may occur. The databook specificat out exception, to ensure that the system design supply, temperature, and output/input loading var recommend operation of FACT ™circuits outside of	ions should be met, with- is reliable over its power iables. Fairchild does not

Recommended Operating

DC Electrical Characteristics for AC

Symbol	Parameter	V _{cc}	TA = -	+25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
Symbol		(V)	Тур		aranteed Limits	Units	Conditions
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$
		5.5	2.75	3.85	3.85		
VIL	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1 V$
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$
		5.5	2.75	1.65	1.65		
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9		
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$
		5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note 2
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$
		5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		$I_{OL} = 24 \text{ mA} \text{ (Note 2)}$
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC_2}$ GND
(Note 4)	Leakage Current					ματ	
I _{OLD}	Minimum Dynamic	5.5			75	mA	$V_{OLD} = 1.65V \text{ Max}$
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	$V_{OHD} = 3.85V$ Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$
(Note 4)	Supply Current	0.0		4.0	-10.0	μι	or GND

Note 2: All outputs loaded, infestiolds on input associated with outp

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

Symbol	Parameter	V _{CC}	TA = -	+25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
Symbol	Falaillelei	(V)	Тур	G	uaranteed Limits	Units	Conditions
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	v	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1 V$
	Input Voltage	5.5	1.5	0.8	0.8		or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	v	I _{OUT} = -50 μA
	Output Voltage	5.5	5.49	5.4	5.4	v	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 5)
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	v	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	v	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		$I_{OL} = 24 \text{ mA} \text{ (Note 5)}$
I _{IN}	Maximum Input	5.5		+0.1	+1.0	μA	$V_{I} = V_{CC}, GND$
	Leakage Current	5.5		±0.1	±1.0	μΛ	VI-VCC, GIVD
I _{CCT}	Maximum	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$
	I _{CC} /Input	5.5	0.0		1.5		
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min
ICC	Maximum Quiescent Supply Current	5.5		4.0	40.0	μA	V _{IN} = V _{CC} or GND

74AC161 • 74ACT161

Note 5: All outputs loaded; thresholds on input associated with output under test.

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for AC

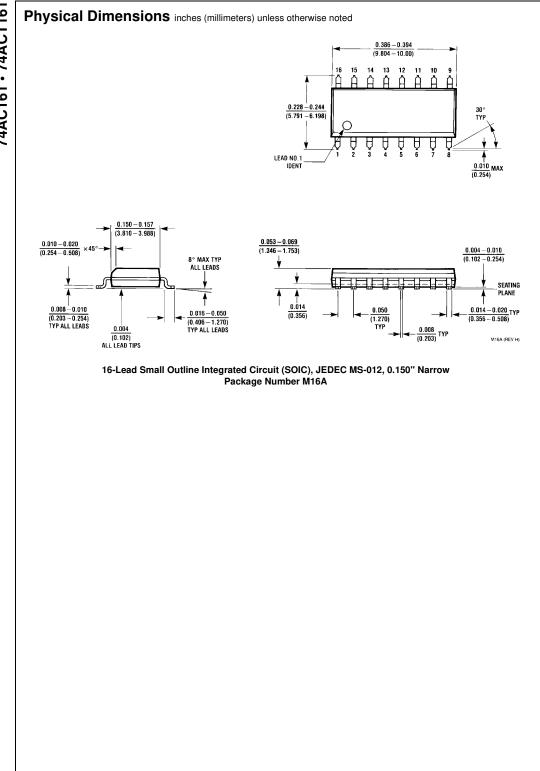
Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _I = 50 pF			$T_{A} = -40^{\circ}$ $C_{I} =$	Units	
		(Note 7)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Count	3.3	70	111		60		MHz
	Frequency	5.0	110	167		95		IVITIZ
t _{PLH}	Propagation Delay CP to Qn	3.3	2.0	7.0	12	1.5	13.5	ns
	(PE Input HIGH or LOW)	5.0	1.5	5.0	9.0	1.0	9.5	
t _{PHL}	Propagation Delay CP to Qn	3.3	1.5	7.0	12	1.5	13	
	(PE Input HIGH or LOW)	5.0	1.5	5.0	9.5	1.5	10	ns
t _{PLH}	Propagation Delay	3.3	3.0	9	15	2.5	16.5	
	CP to TC	5.0	2.0	6	10.5	1.5	11.5	ns
t _{PHL}	Propagation Delay	3.3	3.5	8.5	14	2.5	15.5	
	CP to TC	5.0	2.0	6.5	11	2.0	11.5	ns
t _{PLH}	Propagation Delay	3.3	2.0	5.5	9.5	1.5	11	
	CET to TC	5.0	1.5	3.5	6.5	1.0	7.5	ns
t _{PHL}	Propagation Delay	3.3	2.5	6.5	11	2.0	12.5	
	CET to TC	5.0	2.0	5	8.5	1.5	9.5	ns
t _{PHL}	Propagation Delay	3.3	2.0	6.5	12	1.5	13.5	
	MR to Q _n	5.0	1.5	5.5	9.5	1.5	10	ns
t _{PHL}	Propagation Delay	3.3	3.5	10	15	3.0	17.5	20
	MR to TC	5.0	2.5	8.5	13	2.5	13.5	ns

Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is $5.0V \pm 0.5V$

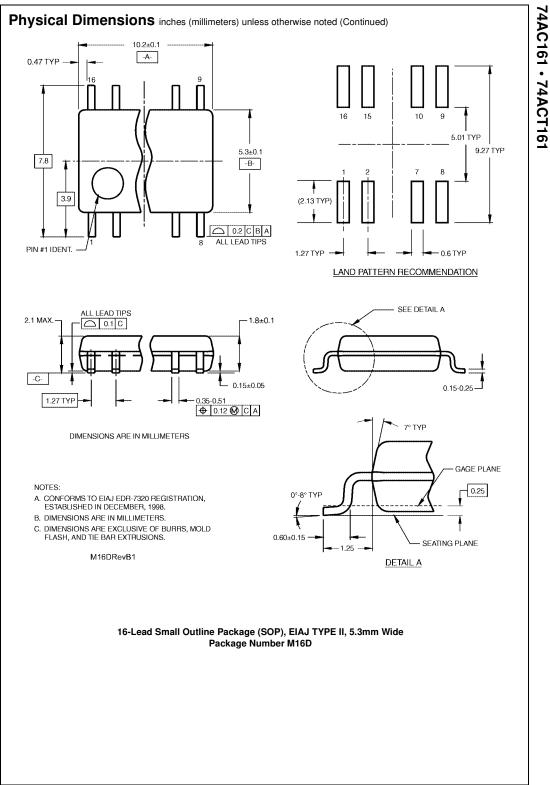
		V _{CC}	T _A =	+25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$		
Symbol	Parameter	(V)	C _L =	50 pF	C _L = 50 pF	Units	
-		(Note 8)	Тур	Guar	ranteed Minimum		
ts	Setup Time, HIGH or LOW	3.3	6.0	13.5	16		
	P _n to CP	5.0	3.5	8.5	10.5	ns	
t _H	Hold Time, HIGH or LOW	3.3	-7.0	-1	-0.5		
	P _n to CP	5.0	-4.0	0	0	ns	
t _S	Setup Time, HIGH or LOW	3.3	6.5	11.5	14		
	PE to CP	5.0	4.0	7.5	8.5	ns	
t _H	Hold Time, HIGH or LOW	3.3	-6.0	0	0	ns	
	PE to CP	5.0	-3.5	0.5	1		
ts	Setup Time, HIGH or LOW	3.3	3.0	6.0	7	ns	
	CEP or CET to CP	5.0	2.0	4.5	5		
t _H	Hold Time, HIGH or LOW	3.3	-3.5	0	0		
	CEP or CET to CP	5.0	-2	0	0.5	ns	
t _W	Clock Pulse Width	3.3	2.0	3.5	4		
	(Load) HIGH or LOW	5.0	2.0	2.5	3	ns	
tw	Clock Pulse Width	3.3	2.0	4.0	4.5		
	(Count) HIGH or LOW	5.0	2.0	3.0	3.5	ns	
tw	MR Pulse Width,	3.3	3.0	5.5	7.5		
	LOW	5.0	2.5	4.5	6.0	ns	
t _{REC}	Recovery Time		-2	-0.5	0		
-	MR to CP		-1	0	0.5	ns	

Note 8: Voltage Range 3.3 is $3.3V \pm 0.3V$

Voltage Range 5.0 is 5.0V $\pm\,0.5V$

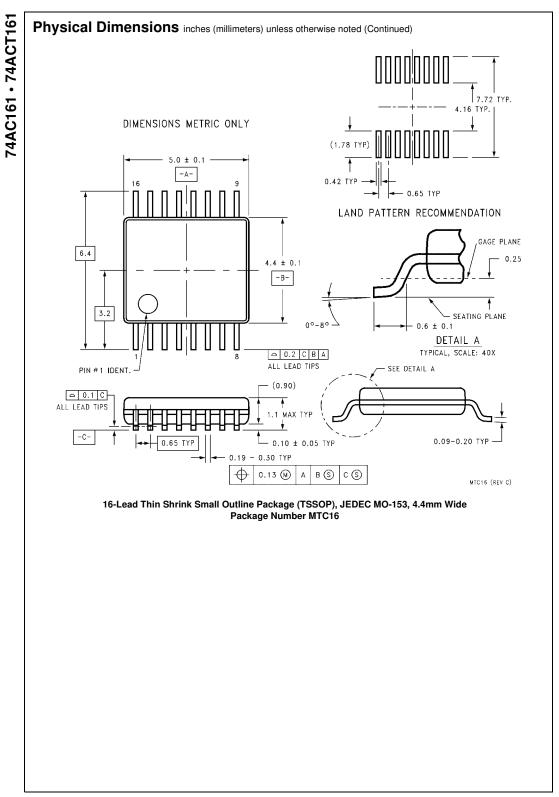

AC Electrical Characteristics for ACT

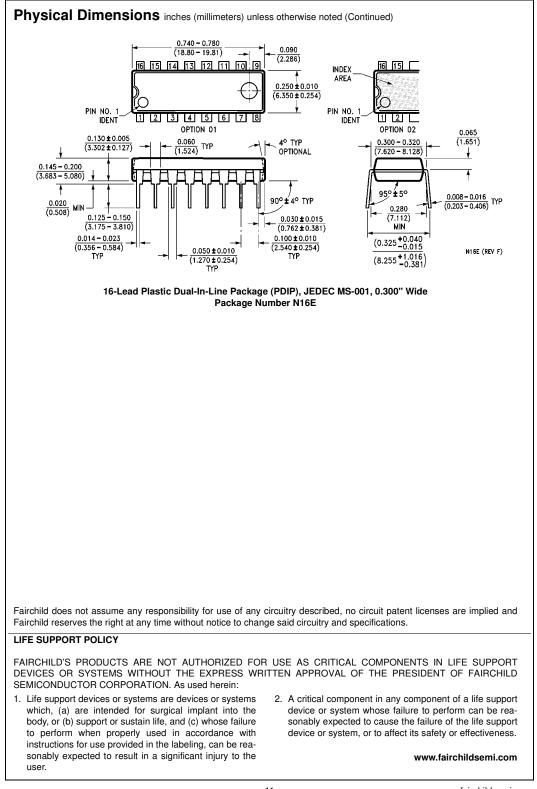
Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$		Units
		(Note 9)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Count Frequency	5.0	115	125		100		MHz
t _{PLH}	Propagation Delay CP to Q _n (PE Input HIGH or LOW)	5.0	1.5	5.5	9.5	1.5	10.5	ns
t _{PHL}	Propagation Delay CP to Q _n (PE Input HIGH or LOW)	5.0	1.5	6.0	10.5	1.5	11.5	ns
t _{PLH}	Propagation Delay CP to TC	5.0	2.0	7.0	11.0	1.5	12.5	ns
t _{PHL}	Propagation Delay CP to TC	5.0	1.5	8.0	12.5	1.5	13.5	ns
t _{PLH}	Propagation Delay CET to TC	5.0	1.5	5.5	8.5	1.5	10.0	ns
t _{PHL}	Propagation Delay CET to TC	5.0	1.5	6.5	9.5	1.5	10.5	ns
t _{PHL}	Propagation Delay MR to Q _n	5.0	1.5	6.0	10.0	1.5	11.0	ns
t _{PHL}	Propagation Delay MR to TC	5.0	2.5	8.0	13.5	2.0	14.5	ns


Note 9: Voltage Range 5.0 is $5.0V\pm0.5V$

Symbol	Parameter	V _{cc}		_A = +25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol		(V)		_L = 50 pF	$C_L = 50 \text{ pF}$	Units
	Ostur Time IIIOH and OW	(Note 10)	Тур	Gu	aranteed Minimum	
5	Setup Time, HIGH or LOW P _n to CP	5.0	4.0	9.5	11.5	ns
1	Hold Time, HIGH or LOW					
	P _n to CP	5.0	-5.0	0	0	ns
;	Setup Time, HIGH or LOW					
	PE to CP	5.0	4.0	8.5	9.5	ns
1	Hold Time, HIGH or LOW	5.0		0.5	-0.5	
	PE to CP	5.0	-5.5	-0.5	-0.5	ns
	Setup Time, HIGH or LOW	5.0	2.5	5.5	6.5	ns
	CEP or CET to CP	0.0	2.0	0.0	0.0	
ł	Hold Time, HIGH or LOW	5.0	-3.0	0	0	ns
	CEP or CET to CP			-	-	
V	Clock Pulse Width,	5.0	2.0	3.0	3.5	ns
	(Load) HIGH or LOW		<u> </u>			
V	Clock Pulse Width,	5.0	2.0	3.0	3.5	ns
	(Count) HIGH or LOW					
V	MR Pulse Width, LOW	5.0	3.0	3.0	7.5	ns
REC	Recovery Time	5.0	0	0	0.5	ns
PD	Power Dissipation Capacitance	45.0	0	pF	$V_{CC} = 5.0V$	

74AC161 • 74ACT161




74AC161 • 74ACT161

www.fairchildsemi.com

9

74AC161 • 74ACT161 Synchronous Presettable Binary Counter