mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74AC273, 74ACT273 Octal D-Type Flip-Flop

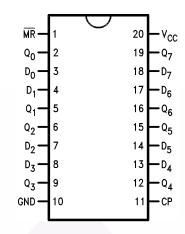
Features

- Ideal buffer for microprocessor or memory
- Eight edge-triggered D-type flip-flops
- Buffered common clock
- Buffered, asynchronous master reset
- See 377 for clock enable version
- See 373 for transparent latch version
- See 374 for 3-STATE version
- Outputs source/sink 24mA
- 74ACT273 has TTL-compatible inputs

General Description

The AC273 and ACT273 have eight edge-triggered D-type flip-flops with individual D-type inputs and Q outputs. The common buffered Clock (CP) and Master Reset ($\overline{\text{MR}}$) input load and reset (clear) all flip-flops simultaneously.

The register is fully edge-triggered. The state of each D-type input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output.

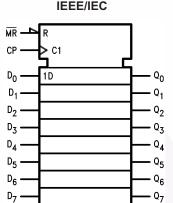

All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the MR input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Order Number	Package Number	Package Description
74AC273SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74AC273SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC273PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT273SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ACT273SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

All packages are lead free per JEDEC: J-STD-020B standard.

Connection Diagram



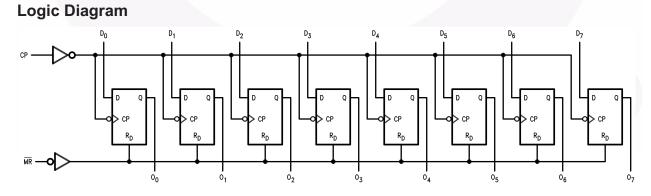
Pin Description

Pin Names	Description
D ₀ –D ₇	Data Inputs
MR	Master Reset
СР	Clock Pulse Input
Q ₀ –Q ₇	Data Outputs

 $\begin{array}{c|c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ &$

Logic Symbols

Mode Select-Function Table


		nputs	Outputs		
Operating Mode	MR	СР	D _n	Qn	
Reset (Clear)	L	Х	Х	L	
Load '1'	Н	~	Н	Н	
Load '0'	Н	~	L	L	

H = HIGH Voltage Level

 $\mathsf{L}=\mathsf{LOW}\ \mathsf{Voltage}\ \mathsf{Level}$

X = Immaterial

 \checkmark = LOW-to-HIGH Transition

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
I _{IK}	DC Input Diode Current	
	$V_{I} = -0.5V$	–20mA
	$V_{I} = V_{CC} + 0.5$	+20mA
VI	DC Input Voltage	-0.5V to V _{CC} + 0.5V
I _{OK}	DC Output Diode Current	
	$V_{O} = -0.5V$	–20mA
	$V_{\rm O} = V_{\rm CC} + 0.5 V$	+20mA
Vo	DC Output Voltage	-0.5V to V _{CC} + 0.5V
Io	DC Output Source or Sink Current	±50mA
I _{CC} or I _{GND}	DC V _{CC} or Ground Current per Output Pin	±50mA
T _{STG}	Storage Temperature	–65°C to +150°C
TJ	Junction Temperature	140°C

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	
	AC	2.0V to 6.0V
	ACT	4.5V to 5.5V
VI	Input Voltage	0V to V _{CC}
Vo	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	–40°C to +85°C
$\Delta V / \Delta t$	Minimum Input Edge Rate, AC Devices:	125mV/ns
	$V_{\rm IN}$ from 30% to 70% of $V_{\rm CC}, V_{\rm CC}$ @ 3.3V, 4.5V, 5.5V	
$\Delta V / \Delta t$	Minimum Input Edge Rate, ACT Devices:	125mV/ns
	V _{IN} from 0.8V to 2.0V, V _{CC} @ 4.5V, 5.5V	

N
4
5
5
Ő
N
273
ω
4ACT273
P
0
1
N
3
പ
\mathbf{O}
õ
_
_
Octal
octal
)ctal D-
)ctal D-
octal
)ctal D-
)ctal D-
ctal D-Type
ctal D-Type
octal D-Type Fli
octal D-Type Fl
ctal D-Type Flip-
octal D-Type Fli
ctal D-Type Flip-
ctal D-Type Flip-

DC Electrical Characteristics for AC

	Parameter			$T_A = 1$	-25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol		V _{CC} (V)	Conditions	Typ. G		uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	3.0	$V_{OUT} = 0.1V \text{ or}$	1.5	2.1	2.1	V
	Input Voltage	4.5	V _{CC} – 0.1V	2.25	3.15	3.15	1
		5.5		2.75	3.85	3.85	1
V _{IL}	Maximum LOW Level	3.0 V _{OUT} = 0.1V or		1.5	0.9	0.9	V
	Input Voltage		V _{CC} – 0.1V	2.25	1.35	1.35	1
		5.5		2.75	1.65	1.65	1
V _{OH}	Minimum HIGH Level	3.0	Ι _{ΟUT} = -50μΑ	2.99	2.9	2.9	V
	Output Voltage	4.5		4.49	4.4	4.4	1
		5.5		5.49	5.4	5.4	1
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -12\text{mA}$		2.56	2.46	-
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{mA}$		3.86	3.76	-
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{mA}^{(1)}$		4.86	4.76	
V _{OL}	Maximum LOW Level	3.0	Ι _{ΟUT} = 50μΑ	0.002	0.1	0.1	V
	Output Voltage	4.5		0.001	0.1	0.1	1
		5.5	-	0.001	0.1	0.1	1
		3.0	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 12 \text{mA}$		0.36	0.44	-
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24 \text{mA}$		0.36	0.44	-
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24 \text{mA}^{(1)}$		0.36	0.44	
I _{IN} ⁽²⁾	Maximum Input Leakage Current	5.5	$V_I = V_{CC}$, GND		±0.1	±1.0	μA
I _{OLD}	Minimum Dynamic	5.5	V _{OLD} = 1.65V Max.			75	mA
I _{OHD}	Output Current ⁽³⁾	5.5	V _{OHD} = 3.85V Min.			-75	mA
I _{CC} ⁽²⁾	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μΑ

Notes:

1. All outputs loaded; thresholds on input associated with output under test.

2. $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

3. Maximum test duration 2.0ms, one output loaded at a time.

				$T_A = H$	-25°C	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	V _{CC} (V)	Conditions	Typ. G		uaranteed Limits	Units
V _{IH}	Minimum HIGH Level	4.5	$V_{OUT} = 0.1V \text{ or}$	1.5	2.0	2.0	V
	Input Voltage	5.5	V _{CC} – 0.1V	1.5	2.0	2.0	
V _{IL}	Maximum LOW	4.5	$V_{OUT} = 0.1V$ or	1.5	0.8	0.8	V
	Level Input Voltage		V _{CC} – 0.1V	1.5	0.8	0.8	
V _{OH}	Minimum HIGH Level	4.5	Ι _{ΟUT} = -50μΑ	4.49	4.4	4.4	V
	Output Voltage	5.5		5.49	5.4	5.4	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{mA}$		3.86	3.76	
			$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OH} = -24 \text{mA}^{(4)}$		4.86	4.76	
V _{OL}	Maximum LOW	4.5	Ι _{ΟUT} = 50μΑ	0.001	0.1	0.1	V
	Level Output Voltage	5.5		0.001	0.1	0.1	
		4.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24 \text{mA}$		0.36	0.44	
		5.5	$V_{IN} = V_{IL} \text{ or } V_{IH},$ $I_{OL} = 24 \text{mA}^{(4)}$		0.36	0.44	
I _{IN}	Maximum Input Leakage Current	5.5	$V_I = V_{CC}, \text{ GND}$		±0.1	±1.0	μA
I _{CCT}	Maximum I _{CC} /Input	5.5	$V_{\rm I} = V_{\rm CC} - 2.1 V$	0.6		1.5	mA
I _{OLD}	Minimum Dynamic	5.5	$V_{OLD} = 1.65V$ Max.			75	mA
I _{OHD}	Output Current ⁽⁵⁾	5.5	V _{OHD} = 3.85V Min.			-75	mA
I _{CC}	Maximum Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND		4.0	40.0	μA

DC

Notes:

4. All outputs loaded; thresholds on input associated with output under test.

5. Maximum test duration 2.0ms, one output loaded at a time.

AC Electrical Characteristics for AC

			T _A = +25°C, C _L = 50pF		$\begin{array}{c} T_{A} = -40^{\circ}C\\ C_{L} = \end{array}$			
Symbol	Parameter	V _{CC} (V) ⁽⁶⁾	Min.	Тур.	Max.	Min.	Max.	Units
f _{MAX}	Maximum Clock Frequency	3.3	90	125		75		MHz
		5.0	140	175		125		
t _{PLH}	Propagation Delay,	3.3	4.0	7.0	12.5	3.0	14.0	ns
	Clock to Output	5.0	3.0	5.5	9.0	2.5	10.0	
t _{PHL}	Propagation Delay,	3.3	4.0	7.0	13.0	3.5	14.5	ns
	Clock to Output	5.0	3.0	5.0	10.0	2.5	11.0	
t _{PHL}	Propagation Delay,	3.3	4.0	7.0	13.0	3.5	14.0	ns
	MR to Output	5.0	3.0	5.0	10.0	2.5	10.5	

Note:

6. Voltage range 3.3 is $3.3V \pm 0.3V$. Voltage range 5.0 is $5.0V \pm 0.5V$.

AC Operating Requirements for AC

			T _A = 4 C _L =	+25°C, 50pF	$ T_A = -40^\circ C \text{ to } +85^\circ C, \\ C_L = 50 p F $	
Symbol	Parameter	V _{CC} (V) ⁽⁷⁾	Тур.	Gu	aranteed Minimum	Units
t _S	Setup Time, HIGH or LOW,	3.3	3.5	5.5	6.0	ns
	Data to CP	5.0	2.5	4.0	4.5	1
t _H	Hold Time, HIGH or LOW,	3.3	-2.0	0	0	ns
	Data to CP	5.0	-1.0	1.0	1.0	1
t _W	Clock Pulse Width, HIGH or LOW	3.3	3.5	5.5	6.0	ns
		5.0	2.5	4.0	4.5	1
t _W	MR Pulse Width, HIGH or LOW	3.3	2.0	5.5	6.0	ns
		5.0	1.5	4.0	4.5	
t _{rec}	Recovery Time, MR to CP	3.3	1.5	3.5	4.5	ns
		5.0	1.0	2.0	3.0	

Note:

7. Voltage range 3.3 is $3.3V \pm 0.3V$. Voltage range 5.0 is $5.0V \pm 0.5V$.

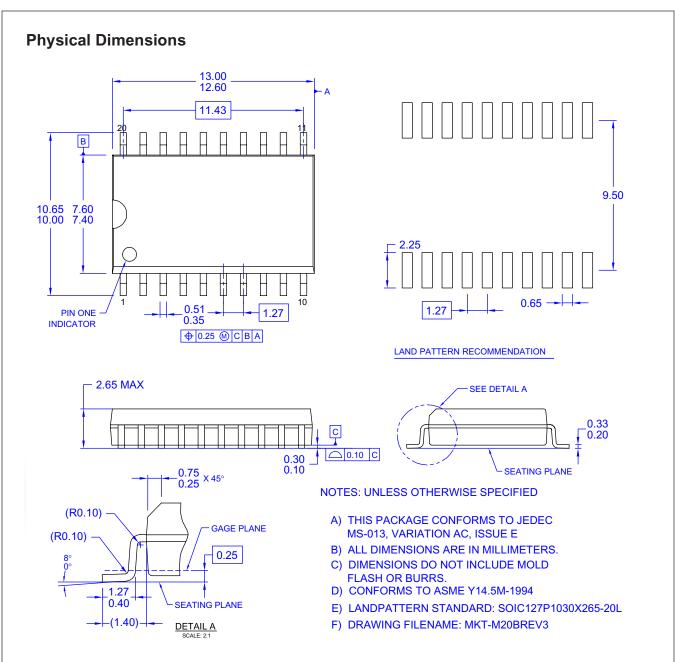
AC Electrical Characteristics for ACT

			T _A = +25°C, C _L = 50pF		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C,$ $C_{L} = 50\text{pF}$			
Symbol	Parameter	V _{CC} (V) ⁽⁸⁾	Min.	Тур.	Max.	Min.	Max.	Units
f _{MAX}	Maximum Clock Frequency	2.0	125	189		110		MHz
t _{PLH} , t _{PHL}	Propagation Delay, CP to Q _n	5.0	1.5	6.5	8.5	1.5	9.0	ns
t _{PHL}	Propagation Delay, MR to Q _n	5.0	1.5	7.0	9.0	1.5	8.5	ns

Note:

8. Voltage range 5.0 is $5.0V \pm 0.5V$.

AC Operating Requirements for ACT


			$ \begin{array}{ c c c c c } T_A = +25^{\circ}C, & T_A = -40^{\circ}C \ to \ +85^{\circ}C, \\ C_L = 50 pF & C_L = 50 pF \end{array} $			
Symbol	Parameter	V _{CC} (V) ⁽⁹⁾	Тур.	o. Guaranteed Minimum		Units
t _S	Setup Time, HIGH or LOW, D _n to CP	5.0	1.0	3.5	3.5	ns
t _H	Hold Time, HIGH or LOW, D _n to CP	5.0	-0.5	1.5	1.5	ns
t _W	Clock Pulse Width, HIGH or LOW	5.0	2.0	4.0	4.0	ns
t _W	MR Pulse Width, HIGH or LOW	5.0	1.5	4.0	4.0	ns
t _W	Recovery Time, MR to CP	5.0	0.5	3.0	3.0	ns

Note:

9. Voltage range 5.0 is $5.0V \pm 0.5V$.

Capacitance

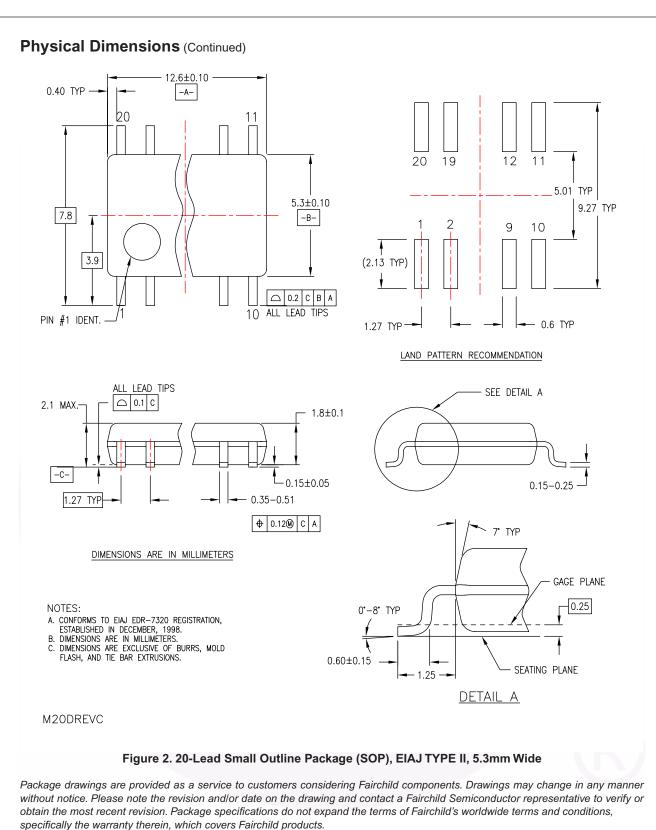
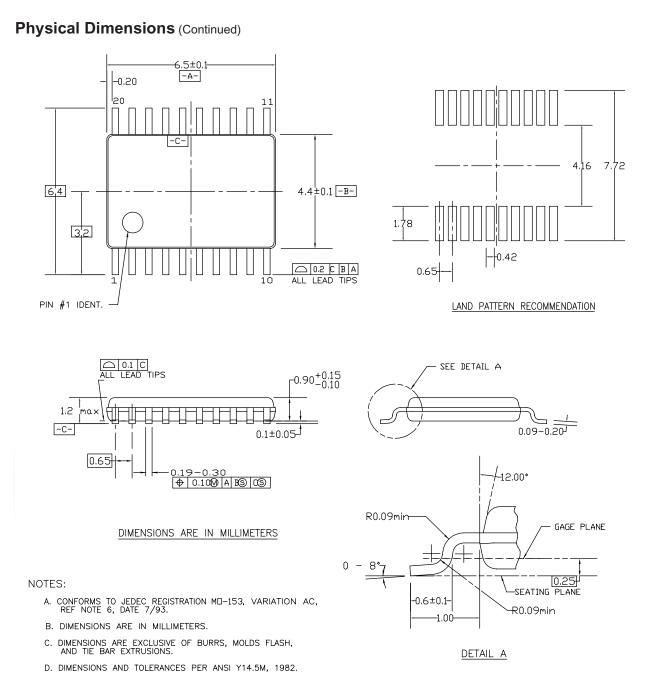

Symbol	Parameter	Conditions	Тур.	Units
C _{IN}	Input Capacitance	V _{CC} = OPEN	4.5	pF
C _{PD}	Power Dissipation Capacitance for AC	$V_{CC} = 5.0V$	50.0	pF
	Power Dissipation Capacitance for ACT		40.0	

Figure 1. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/ 74AC273, 74ACT273 — Octal D-Type Flip-Flop

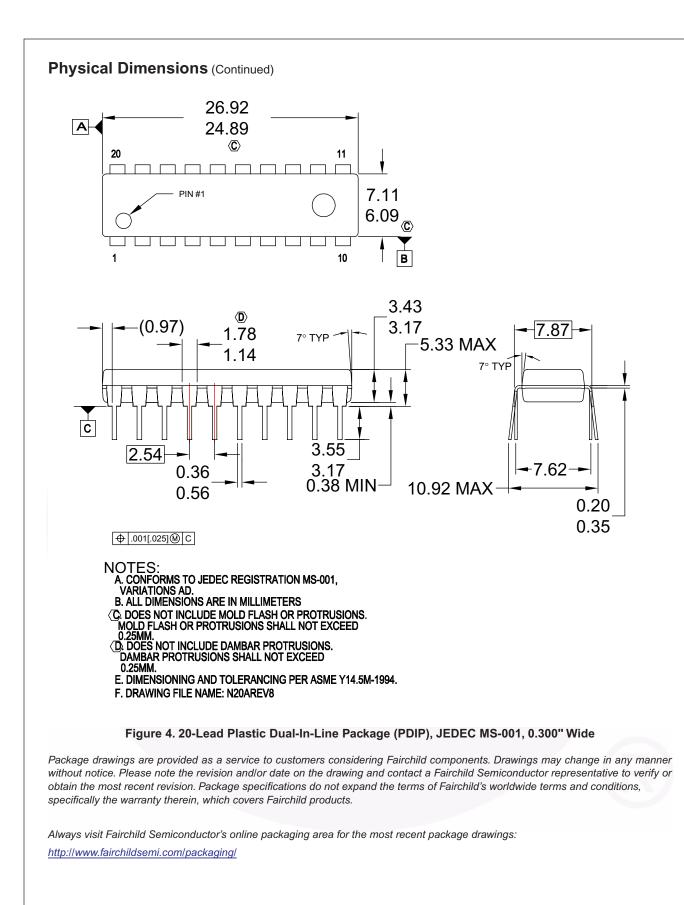


74AC273, 74ACT273 — Octal D-Type Flip-Flop

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

74AC273, 74ACT273 — Octal D-Type Flip-Flop


Figure 3. 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

MTC20REVD1

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

ACE $x^{@}$ Build it Now TM CorePLUS TM CROSSVOLT TM CTL TM Current Transfer Logic TM EcoSPARK [®] EZSWITCH TM * \overrightarrow{E} Fairchild [®] Fairchild	FPS [™] FRFET [®] Global Power Resource SM Green FPS [™] e-Series [™] GTO [™] <i>i-Lo[™]</i> IntelliMAX [™] ISOPLANAR [™] MGgaBuck [™] MICROCOUPLER [™] MicroFET [™] MicroFET [™] MicroFeX [™] MillerDrive [™] Motion-SPM [™] OPTOLOGIC [®] OPTOPLANAR [®]	PDP-SPM [™] Power220 [®] Power247 [®] POWEREDGE [®] Power-SPM [™] PowerTrench [®] Programmable Active Droop [™] QFET [®] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] SMART START [™] SMART START [™] SPM [®] STEALTH [™] SuperFET [™] SuperFCT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8	SyncFET [™] Figer Power Franchise [®] The Power Franchise [®] TinyBoost [™] TinyBoost [™] TinyBuck [™] TinyLogic [®] TINYOPTO [™] TinyPOWer [™] TinyPWM [™] TinyWire [™] SerDes [™] UHC [®] Ultra FRFET [™] UniFET [™] VCX [™]
---	--	--	---

* EZSWITCHTM and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition		
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improv the design.		
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.		

PRODUCT STATUS DEFINITIONS