imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

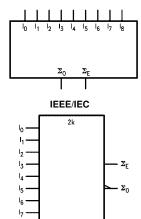
SEMICONDUCTOR

74AC280 9-Bit Parity Generator/Checker

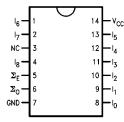
General Description

The AC280 is a high-speed parity generator/checker that accepts nine bits of input data and detects whether an even or an odd number of these inputs is HIGH. If an even number of inputs is HIGH, the Sum Even output is HIGH. If an odd number is HIGH, the Sum Even output is LOW. The Sum Odd output is the complement of the Sum Even output.

Ordering Code:


Order Number Package Number Package Description 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body 74AC280SC M14A 74AC280SJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

Features ■ I_{CC} reduced by 50%


AC280: 5962-92201

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

9-bit width for memory applications

November 1988

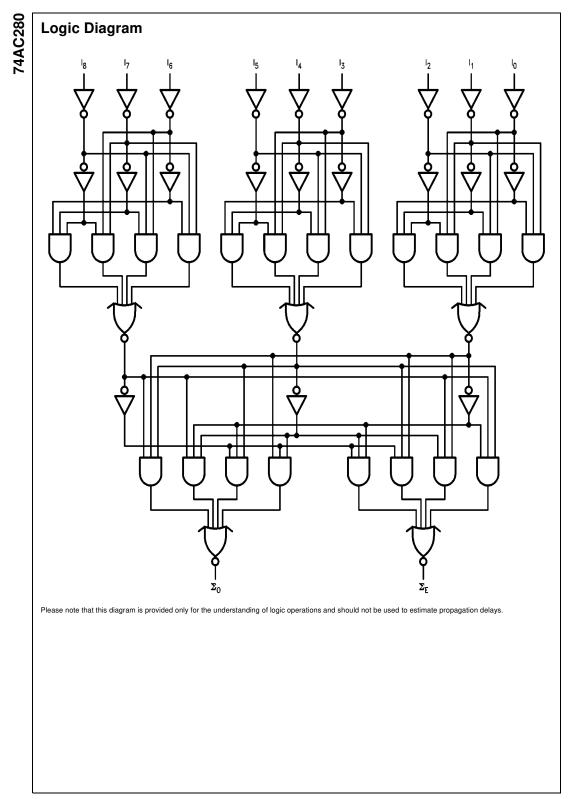
Revised November 1999

Pin Descriptions

Pin Names	Description			
I ₀ –I ₈	Data Inputs			
Σ_{O}	Odd Parity Output			
$\Sigma_{\rm E}$	Even Parity Output			

Truth Table

Number of	Outputs			
HIGH Inputs I ₀ –I ₈	Σ Even	ΣOdd		
0, 2, 4, 6, 8	Н	L		
1, 3, 5, 7, 9	L	Н		


H = HIGH Voltage Level L = LOW Voltage Level

FACT™ is a trademark of Fairchild Semiconductor Corporation.

© 1999 Fairchild Semiconductor Corporation DS009955

www.fairchildsemi.com

Connection Diagram

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	-0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	$-0.5V$ to $V_{CC} + 0.5V$
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
V_{IN} from 30% to 70% of V_{CC}	
V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns

74AC280

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, output/input loading variables. Fairchild does not recommend operation of FACT circuits outside databook specifications.

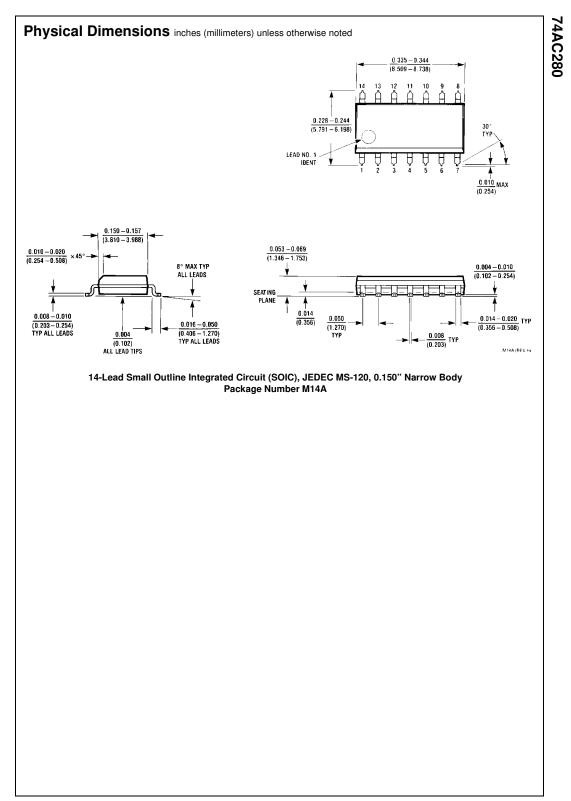
DC Electrical Characteristics

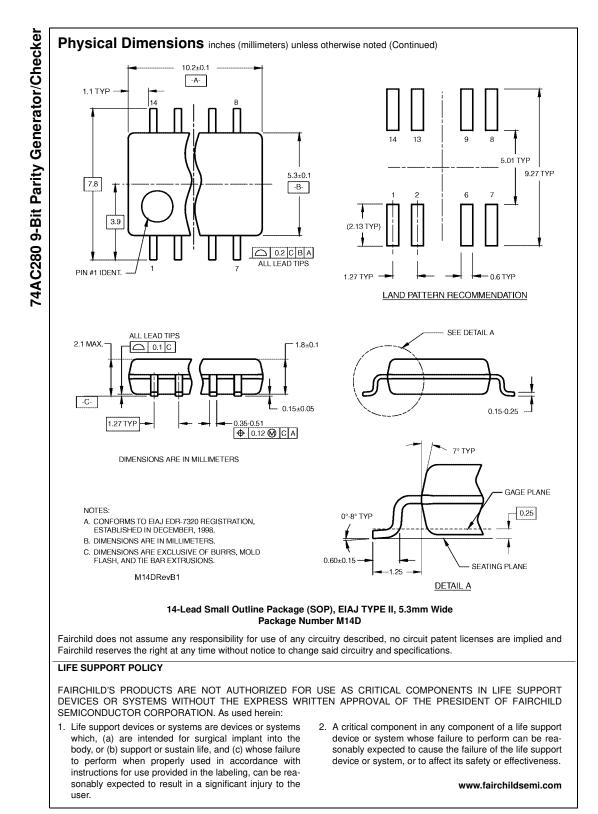
Symbol	Parameter	V _{cc}	V_{CC} $T_{A} = +25^{\circ}C$ $T_{A} = -40^{\circ}C \text{ to}+85^{\circ}C$		Units	Conditions	
Symbol		(V)	Тур	Gua	ranteed Limits	Units	Conditions
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$
		5.5	2.75	3.85	3.85		
VIL	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$
		5.5	2.75	1.65	1.65		
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9		
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$
		5.5	5.49	5.4	5.4		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1		
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$
		5.5	0.001	0.1	0.1		
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		3.0		0.36	0.44		I _{OL} = 12 mA
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_{I} = V_{CC}, GND$
	Leakage Current	0.0		±0.1	1.0	μιτ	1 00
I _{OLD}	Minimum Dynamic	5.5			75	mA	$V_{OLD} = 1.65V \text{ Max}$
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	$V_{OHD} = 3.85V$ Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$
(Note 4)	Supply Current	y Current 5.5		7.0	-10.0	μι	or GND

Note 2: All outputs loaded; thresholds on input associated with output un

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.


		v _{cc}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C		
Symbol	Parameter	(V)	$C_L = 50 \text{ pF}$		$C_L = 50 \text{ pF}$		Units		
		(Note 5)	Min	Тур	Max	Min	Max		
t _{PLH}	Propagation Delay	3.3	5.0	10.5	17.0	4.0	18.5		
t _{PHL}	I_n to Σ_E	5.0	3.0	7.5	13.0	2.0	14.5	ns	
t _{PLH}	Propagation Delay	3.3	5.0	12.0	17.0	4.0	18.5	ns	
t _{PHL}	I_n to Σ_0	5.0	3.0	8.5	13.0	2.0	14.5		


Note 5: Voltage range 3.3 is 3.3V \pm 0.3V. Voltage range 5.0 is 5.0V $\pm\,0.5$ V.

Capacitance

•				
Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	75.0	pF	$V_{CC} = 5.0V$

www.fairchildsemi.com

www.fairchildsemi.com