imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

November 1988 Revised August 2000 74AC648 Octal Transceiver/Register with 3-STATE Outputs

74AC648 **Octal Transceiver/Register with 3-STATE Outputs**

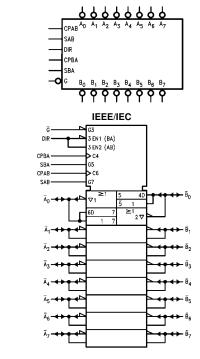
General Description

FAIRCHILD

SEMICONDUCTOR

The AC648 consists of registered bus transceiver circuits, with outputs, D-type flip-flops and control circuitry providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Data on the A or B bus will be loaded into the respective registers on the LOW-to-HIGH transition of the appropriate clock pin (CPAB or CPBA). The four fundamental data handling functions available are illustrated in Figure 1, Figure 2, Figure 3, and Figure 4.

Features


- Independent registers for A and B buses
- Multiplexed real-time and stored data transfers
- 3-STATE outputs
- 300 mil slim dual-in-line package
- Outputs source/sink 24 mA
- Inverted data to output

Ordering Code:

Order Number	Package Number	Package Description
74AC648SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74AC648SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

by appending su

Logic Symbols

Connection Diagram

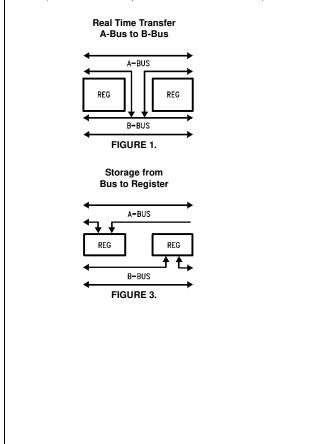
		$\overline{\mathbf{O}}$		
CPAB —	1		24	-v _{cc}
SAB —	2		23	- СРВА
DIR —	3		22	— SBA
Ā0 —	4		21	— Ĝ
Ā1-	5		20	— Ē ₀
Ā2 —	6		19	— Ē1
Ā3-	7		18	— Ē ₂
Ā4 -	8		17	— Ē3
Ā ₅ —	9		16	— ₿ ₄
Ā ₆ —	10		15	— B ₅
Ā7-	11		14	— B ₆
GND —	12		13	— Ē ₇

Pin Descriptions

Pin Names	Description
$\overline{A}_0 - \overline{A}_7$	Data Register A Inputs,
	Data Register A 3-STATE Outputs
B ₀ - B ₇	Data Register B Inputs,
	Data Register B 3-STATE Outputs
CPAB, CPBA	Clock Pulse Inputs
SAB, SBA	Transmit/Receive Inputs
DIR, G	Output Enable Inputs

FACT™ is a trademark of Fairchild Semiconductor Corporation.

© 2000 Fairchild Semiconductor Corporation DS010133 www.fairchildsemi.com


74AC648

		Inp	uts			Data I/O	(Note 1)	Function
G	DIR	СРАВ	СРВА	SAB	SBA	A ₀ –A ₇	B ₀ –B ₇	
Н	Х	H or L	H or L	Х	Х			Isolation
Н	Х	~	Х	х	х	Input	Input	Clock A _n Data into A Register
н	Х	Х	~	х	Х			Clock B _n Data into B Register
L	Н	Х	Х	L	Х			A _n to B _n —Real Time (Transparent Mode)
L	н	~	Х	L	Х	Input	Output	Clock A _n Data into A Register
L	н	H or L	Х	н	Х			A Register to B _n (Stored Mode)
L	н	~	Х	н	Х			Clock A_n Data into A Register and Output to B_n
L	L	Х	Х	Х	L			B _n to A _n —Real Time (Transparent Mode)
L	L	Х	~	Х	L	Output	Input	Clock B _n Data into B Register
L	L	Х	H or L	х	н			B Register to A _n (Stored Mode)
L	L	х	~	х	н			Clock B _n Data into B Register and Output to A _n

H = HIGH Voltage Leve L = LOW Voltage Level

X = Irrelevant _ = LOW-to-HIGH Transition

Note 1: The data output functions may be enabled or disabled by various signals at the \overline{G} and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock inputs.

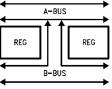


FIGURE 2.

Transfer from Register to Bus

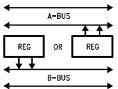
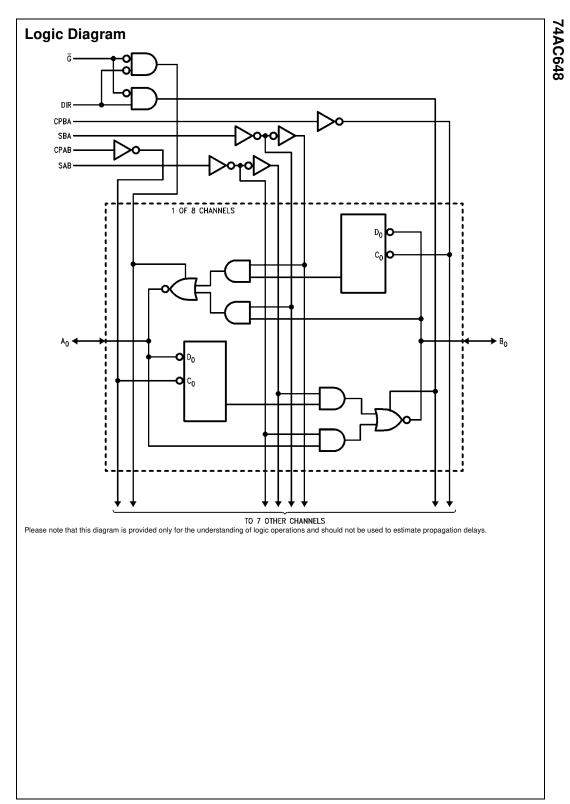



FIGURE 4.

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_1 = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	$-0.5V$ to $V_{CC} + 0.5V$
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	$-0.5V$ to $V_{CC} + 0.5V$
DC Output Source	
or Sink Current (I _O)	± 50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	\pm 50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Minimum Input Edge Rate ($\Delta V/\Delta t$)	125 mV/ns
V_{IN} from 30% to 70% of V_{CC}	
V _{CC} @ 3.3V, 4.5V, 5.5V	

Note 2: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics

Symbol	Parameter	V _{cc}	T _A =	+ 25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Symbol	Falameter	(V)	Тур	Gu	aranteed Limits	Units	Contantions	
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$	
		5.5	2.75	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		2.56	2.46		I _{OH} = -12 mA	
		4.5		3.86	3.76	V	I _{OH} = -24 mA	
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 3)	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		0.36	0.44		I _{OL} = 12 mA	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 3)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_I = V_{CC}, GND$	
(Note 5)	Leakage Current			20.1		μι		
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 4)	5.5			-75	mA	$V_{OHD} = 3.85V$ Min	
I _{CC}	Maximum Quiescent	5.5		8.0	80.0	μA	$V_{IN} = V_{CC}$	
(Note 5)	Supply Current	0.0		0.0	00.0	μι	or GND	
I _{OZT}	Maximum I/O						V_{I} (OE) = V_{IL} , V_{IH}	
	Leakage Current	5.5		±0.6	±6.0	μA	$V_I = V_{CC}, GND$	
		1					$V_O = V_{CC}, GND$	

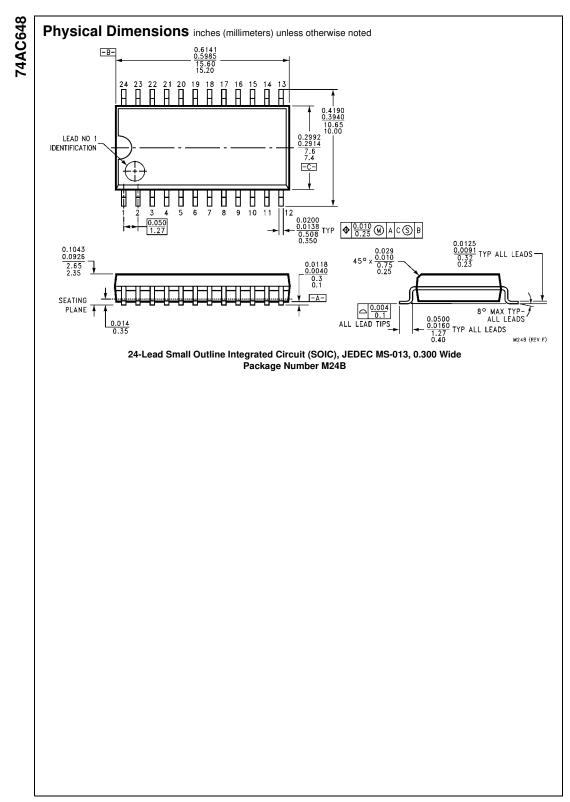
Note 3: All outputs loaded; thresholds on input associated with output under test.

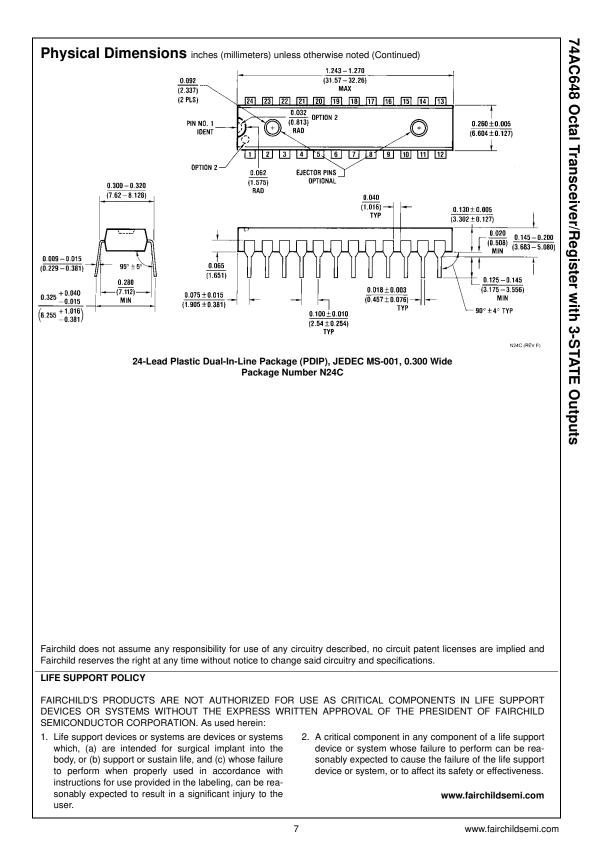
Note 4: Maximum test duration 2.0 ms, one output loaded at a time.

Note 5: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

		V _{CC}	T _A = +25°C			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		
Symbol	Parameter	(V)	C _L = 50 pF			C _L = 50 pF		Units
		(Note 6)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	1.5	10.0	15.5	1.5	17.0	
	Clock to Bus	5.0	1.5	7.0	11.0	1.5	12.0	ns
t _{PHL}	Propagation Delay	3.3	1.5	8.5	13.5	1.5	14.5	
	Clock to Bus	5.0	1.5	6.0	10.5	1.5	11.5	ns
t _{PLH}	Propagation Delay	3.3	1.5	6.0	10.0	1.5	11.0	
	Bus to Bus	5.0	1.5	4.0	7.0	1.0	7.5	ns
t _{PHL}	Propagation Delay	3.3	1.5	5.5	9.0	1.5	10.0	20
	Bus to Bus	5.0	1.5	3.5	7.5	1.0	8.0	ns
t _{PLH}	Propagation Delay	3.3	1.5	7.5	12.5	1.5	14.0	
	SBA or SAB to An or Bn	5.0	1.5	5.5	9.0	1.5	10.0	ns
	(with A _n or B _n HIGH or LOW)							
t _{PHL}	Propagation Delay	3.3	1.5	7.5	12.5	1.5	14.0	
	SBA or SAB to An or Bn	5.0	1.5	5.5	9.5	1.5	10.5	ns
	(with A _n or B _n HIGH or LOW)							
t _{PZH}	Enable Time	3.3	1.5	6.5	11.0	1.0	11.5	20
	G to A _n or B _n	5.0	1.5	5.0	8.0	1.0	9.0	ns
t _{PZL}	Enable Time	3.3	1.5	7.0	11.0	1.0	12.5	20
	G to A _n or B _n	5.0	1.5	5.0	8.0	1.0	9.0	ns
t _{PHZ}	Disable Time	3.3	1.5	7.5	12.0	1.0	13.0	ns
	G to A _n or B _n	5.0	1.5	6.0	10.0	1.0	11.0	115
t _{PLZ}	Disable Time	3.3	1.5	7.0	11.5	1.0	12.5	ns
	G to A _n or B _n	5.0	1.5	5.5	9.0	1.0	10.0	115
t _{PZH}	Enable Time	3.3	1.5	6.0	12.5	1.0	14.0	ns
	DIR to A _n or B _n	5.0	1.5	4.5	9.5	1.0	10.5	115
t _{PZL}	Enable Time	3.3	1.5	6.5	13.0	1.5	14.5	ns
	DIR to A _n or B _n	5.0	1.5	4.5	9.0	1.0	10.5	115
t _{PHZ}	Disable Time	3.3	1.5	7.0	11.5	1.0	13.5	200
	DIR to A _n or B _n	5.0	1.5	5.5	9.0	1.0	10.0	ns
t _{PLZ}	Disable Time	3.3	1.5	7.0	13.5	1.5	15.0	200
	DIR to A _n or B _n	5.0	1.5	5.0	9.5	1.0	10.0	ns

Note 6: Voltage Range 3.3 is 3.3V \pm 0.3V; Voltage Range 5.0 is 5.0V \pm 0.5V


AC Operating Requirements


Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_L = 50 \text{ pF}$	Units
		(Note 7)	Тур	Guar	anteed Minimum	
t _S	Setup Time, HIGH or LOW,	3.3	2.0	3.0	3.5	ns
	Bus to Clock	5.0	1.5	2.0	2.0	115
t _H	Hold Time, HIGH or LOW,	3.3	-1.5	0	0	
	Bus to Clock	5.0	-0.5	1.0	1.0	ns
tw	Clock Pulse Width	3.3	2.0	3.5	4.0	20
	HIGH or LOW	5.0	2.0	3.0	3.0	ns

Note 7: Voltage Range 3.3 is 3.3V \pm 0.3V; Voltage Range 5.0 is 5.0V \pm 0.5V

Capacitance

Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	65.0	pF	$V_{CC} = 5.0V$
C _{I/O}	Input/Output Capacitance	15.0	pF	$V_{CC} = 5.0V$

