: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

74ACQ374，74ACTQ374 Quiet Series ${ }^{\text {TM }}$ Octal D－Type Flip－Flop with 3－STATE Outputs

Features

－ I_{CC} and I_{OZ} reduced by 50%
■ Guaranteed simultaneous switching noise level and dynamic threshold performance
■ Guaranteed pin－to－pin skew AC performance
－Improved latch－up immunity
■ Buffered positive edge－triggered clock
－3－STATE outputs drive bus lines or buffer memory address registers
■ Outputs source／sink 24 mA
■ Faster prop delays than the standard AC／ACT374

General Description

The ACQ／ACTQ374 is a high－speed，low－power octal D－type flip－flop featuring separate D－type inputs for each flip－flop and 3－STATE outputs for bus－oriented applica－ tions．A buffered Clock（CP）and Output Enable（ $\overline{\mathrm{OE}}$ ）are common to all flip－flops．
The ACQ／ACTQ374 utilizes FACT Quiet Series ${ }^{\text {TM }}$ tech－ nology to guarantee quiet output switching and improve dynamic threshold performance．FACT Quiet Series fea－ tures GTO ${ }^{\text {TM }}$ output control and undershoot corrector in addition to a split ground bus for superior performance．

Ordering Information

Order Number	Package Number	Package Description
74ACQ374SC	M20B	20－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－013，0．300＂Wide Body
74ACQ374SJ	M20D	20－Lead Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide
74ACTQ374SC	M20B	20－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－013，0．300＂Wide Body
74ACTQ374SJ	M20D	20－Lead Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide
74ACTQ374QSC	MQA20	20－Lead Quarter Size Outline Package（QSOP），JEDEC MO－137，0．150＂Wide

Device also available in Tape and Reel．Specify by appending suffix letter＂X＂to the ordering number．

Connection Diagram

Pin Description

Pin Names	Description
$D_{0}-D_{7}$	Data Inputs
$C P$	Clock Pulse Input
$\overline{O E}$	3－STATE Output Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	3－STATE Outputs

[^0]
Logic Symbol

IEEE/IEC

Functional Description

The ACQ/ACTQ374 consists of eight edge-triggered flipflops with individual D-type inputs and 3-STATE true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable ($\overline{\mathrm{OE}}$) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{\mathrm{OE}}$ is HIGH , the outputs go to the high impedance state. Operation of the $\overline{\mathrm{OE}}$ input does not affect the state of the flip-flops.

Truth Table

Inputs			Outputs
$\mathrm{D}_{\mathbf{n}}$	CP	$\overline{\mathbf{O E}}$	$\mathbf{O}_{\mathbf{n}}$
H	Ω	L	H
L	Ω	L	L
X	X	H	Z

$\mathrm{H}=$ HIGH Voltage Level
$\mathrm{L}=$ LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\mathrm{Z}=$ High Impedance
$\boldsymbol{\sim}=$ LOW-to-HIGH Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage	-0.5 V to +7.0 V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20 \mathrm{~mA} \\ & +20 \mathrm{~mA} \end{aligned}$
V_{1}	DC Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
IOK^{\prime}	DC Output Diode Current $\begin{aligned} & \mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -20 \mathrm{~mA} \\ & +20 \mathrm{~mA} \end{aligned}$
V_{O}	DC Output Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
I_{0}	DC Output Source or Sink Current	$\pm 50 \mathrm{~mA}$
$\mathrm{I}_{\text {CC }}$ or $\mathrm{I}_{\text {GND }}$	DC V ${ }_{\text {CC }}$ or Ground Current per Output Pin	$\pm 50 \mathrm{~mA}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
	DC Latch-Up Source or Sink Current	$\pm 300 \mathrm{~mA}$
TJ	Junction Temperature	$140^{\circ} \mathrm{C}$

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V_{CC}	Supply Voltage ACQ ACTQ	2.0 V to 6.0 V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	4.5 V to 5.5 V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage	0 V to V_{CC}
T_{A}	Operating Temperature	0 V to V_{CC}
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate, ACQ Devices: $\mathrm{V}_{\text {IN }}$ from 30% to 70% of $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}} @ 3.0 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\Delta \mathrm{V} / \Delta \mathrm{t}$	Minimum Input Edge Rate, ACTQ Devices: $V_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$	$125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics for ACQ

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
				Typ.		uaranteed Limits	
V_{IH}	Minimum HIGH Level Input Voltage	3.0	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.1	2.1	V
		4.5		2.25	3.15	3.15	
		5.5		2.75	3.85	3.85	
V_{IL}	Maximum LOW Level Input Voltage	3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.9	0.9	V
		4.5		2.25	1.35	1.35	
		5.5		2.75	1.65	1.65	
V_{OH}	Minimum HIGH Level Output Voltage	3.0	IOUT $=-50 \mu \mathrm{~A}$	2.99	2.9	2.9	V
		4.5		4.49	4.4	4.4	
		5.5		5.49	5.4	5.4	
		3.0	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}: \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \end{aligned}$		2.56	2.46	
		4.5	$\mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}$		3.86	3.76	
		5.5	$\mathrm{I}_{\mathrm{OH}}=-24 m A^{(1)}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	3.0	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$	0.002	0.1	0.1	V
		4.5		0.001	0.1	0.1	
		5.5		0.001	0.1	0.1	
		3.0	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.36	0.44	
		4.5	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$		0.36	0.44	
		5.5	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}^{(1)}$		0.36	0.44	
$\mathrm{I}_{\text {N }}{ }^{(3)}$	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
IOLD	Minimum Dynamic Output Current ${ }^{(2)}$	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
$\mathrm{I}_{\text {OHD }}$		5.5	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min.			-75	mA
$\mathrm{I}_{\mathrm{CC}}{ }^{(3)}$	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND		4.0	40.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Oz }}$	Maximum 3-STATE Leakage Current	5.5	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$		± 0.25	± 2.5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	Figures 1 \& $2^{(4)}$	1.1	1.5		V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	Figures 1 \& $2^{(4)}$	-0.6	-1.2		V
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	(5)	3.1	3.5		V
VILD	Maximum LOW Level Dynamic Input Voltage	5.0	(5)	1.9	1.5		V

Notes:

1. All outputs loaded; thresholds on input associated with output under test.
2. Maximum test duration 2.0 ms , one output loaded at a time.
3. I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{Cc}}$.
4. Max number of outputs defined as (n). Data inputs are driven 0 V to 5 V . One output @ GND.
5. Max number of data inputs (n) switching. ($n-1$) inputs switching $0 V$ to 5 V (ACQ). Input-under-test switching: 5 V to threshold $\left(\mathrm{V}_{\mathrm{ILD}}\right), 0 \mathrm{~V}$ to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right), \mathrm{f}=1 \mathrm{MHz}$.

DC Electrical Characteristics for ACTQ

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units
				Typ.		uaranteed Limits	
V_{IH}	Minimum HIGH Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	2.0	2.0	V
		5.5		1.5	2.0	2.0	
V_{IL}	Maximum LOW Level Input Voltage	4.5	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	1.5	0.8	0.8	V
		5.5		1.5	0.8	0.8	
V_{OH}	Minimum HIGH Level Output Voltage	4.5	$\mathrm{I}_{\text {OUT }}=-50 \mu \mathrm{~A}$	4.49	4.4	4.4	V
		5.5		5.49	5.4	5.4	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}: \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \end{aligned}$		3.86	3.76	V
		5.5	$\mathrm{I}_{\mathrm{OH}}=-24 m A^{(6)}$		4.86	4.76	
V_{OL}	Maximum LOW Level Output Voltage	4.5	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$	0.001	0.1	0.1	V
		5.5		0.001	0.1	0.1	
		4.5	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}}: \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \end{aligned}$		0.36	0.44	
		5.5	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}^{(6)}$		0.36	0.44	
$1 \mathrm{IN}^{(3)}$	Maximum Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$		± 0.1	± 1.0	$\mu \mathrm{A}$
I_{OZ}	Maximum 3-STATE Current	5.5	$\begin{aligned} & V_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$		± 0.25	± 2.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Maximum $\mathrm{ICC} / \mathrm{Input}{ }^{(3)}$	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$	0.6		1.5	mA
Iold	Minimum Dynamic Output Current ${ }^{(6)}$	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max.			75	mA
IOHD			$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min.			-75	mA
$\mathrm{I}_{\mathrm{CC}}{ }^{(3)}$	Maximum Quiescent Supply Current	5.5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND		4.0	40.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	Figures 1 \& $2^{(8)}$	1.1	1.5		V
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	Figures 1 \& $2^{(8)}$	-0.6	-1.2		V
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Level Dynamic Input Voltage	5.0	(9)	1.9	2.2		V
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Level Dynamic Input Voltage	5.0	(9)	1.2	0.8		V

Notes:

6. All outputs loaded; thresholds on input associated with output under test.
7. Maximum test duration 2.0 ms , one output loaded at a time.
8. Max number of outputs defined as (n). Data inputs are driven OV to 3V. One output @ GND
9. Max number of data inputs (n) switching. ($\mathrm{n}-1$) inputs switching 0 V to 3V (ACTQ). Input-under-test switching: 3 V to threshold $\left(\mathrm{V}_{\mathrm{ILD}}\right)$, 0 V to threshold $\left(\mathrm{V}_{\mathrm{IHD}}\right), \mathrm{f}=1 \mathrm{MHz}$.

AC Electrical Characteristics for ACQ

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(10)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	3.3	75			70		MHz
		5.0	90			85		
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay, CP to O_{n}	3.3	3.0	9.5	13.0	3.0	13.5	ns
		5.0	2.0	6.5	8.5	2.0	9.0	
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	3.3	3.0	9.5	13.0	3.0	13.5	ns
		5.0	2.0	6.5	8.5	2.0	9.0	
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	3.3	1.0	9.5	14.5	1.0	15.0	ns
		5.0	1.0	8.0	9.5	1.0	10.0	
$\mathrm{t}_{\text {OSHL }}, \mathrm{t}_{\text {OSLH }}$	Output to Output Skew, CP to $\mathrm{O}_{\mathrm{n}}{ }^{(11)}$	3.3		1.0	1.5		1.5	ns
		5.0		0.5	1.0		1.0	

Notes:

10. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$. Voltage range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$.
11. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSHL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Parameter guaranteed by design.

AC Operating Requirements for ACQ

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(12)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ.	Guaranteed Minimum		
t_{s}	Setup Time, HIGH or LOW, D_{n} to CP	3.3	0	3.0	3.0	ns
		5.0	0	3.0	3.0	
t_{H}	Hold Time, HIGH or LOW, D_{n} to CP	3.3	0	1.5	1.5	ns
		5.0	2.0	1.5	1.5	
$t_{\text {W }}$	CP Pulse Width, HIGH or LOW	3.3	2.0	4.0	4.0	ns
		5.0	2.0	4.0	4.0	

Note:

12. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$. Voltage range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

AC Electrical Characteristics for ACTQ

Symbol	Parameter	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})^{(13)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min.	Typ.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	5.0	85			80		MHz
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay, CP to O_{n}	5.0	2.0	7.0	9.0	2.0	9.5	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	5.0	2.0	7.5	9.0	2.0	9.5	ns
$\mathrm{t}_{\text {PHZ }}, \mathrm{t}_{\text {PLZ }}$	Output Disable Time	5.0	1.0	8.0	10.0	1.0	10.5	ns
$\mathrm{t}_{\text {OSHL }}$, $\mathrm{t}_{\text {OSLH }}$	Output to Output Skew, CP to $\mathrm{O}_{\mathrm{n}}{ }^{(14)}$	5.0		0.5	1.0		1.0	ns

Notes:

13. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.
14. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW ($\mathrm{t}_{\mathrm{OSLL}}$) or LOW-to-HIGH ($\mathrm{t}_{\mathrm{OSLH}}$). Parameter guaranteed by design.

AC Operating Requirements for ACTQ

Symbol	Parameter	$\mathrm{V}_{\mathrm{CC}}(\mathrm{V})^{(15)}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ.	Guaranteed Minimum		
t_{s}	Setup Time, HIGH or LOW, D_{n} to CP	5.0	0	3.0	3.0	ns
t_{H}	Hold Time, HIGH or LOW, $D_{n} \text { to } C P$	5.0	0	1.5	1.5	ns
t_{H}	CP Pulse Width, HIGH or LOW	5.0	2.0	4.0	4.0	ns

Note:

15. Voltage range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Capacitance

Symbol	Parameter	Conditions	Typ.	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$	4.5	pF
C_{PD}	Power Dissipation Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	42.0	pF

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:

Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope

Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF, 500Ω.
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and effect the results of the measurement.
5. Set the HFS generator input levels at 0 V LOW and 3 V HIGH for ACT devices and OV LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

Notes:

16. $\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\mathrm{OLP}}$ are measured with respect to ground reference.
17. Input pulses have the following characteristics: $\mathrm{f}=1 \mathrm{MHz}, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew $<150 \mathrm{ps}$.
Figure 1. Quiet Output Noise Voltage Waveforms
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:
■ Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
■ Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case active and enable transition.
■ Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$\mathrm{V}_{\text {ILD }}$ and $\mathrm{V}_{\text {IHD }}$:

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
■ First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as $V_{\text {ILD }}$.
■ Next decrease the input HIGH voltage level, V_{IH}, until the output begins to oscillate or steps out a min of 2ns. Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed $\mathrm{V}_{I H}$ limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\mathrm{IHD}}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

Figure 2. Simultaneous Switching Test Circuit

Physical Dimensions

Dimensions are in inches (millimeters) unless otherwise noted.

Figure 3. 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

LAND PATTERN RECOMMENDATION

M20DREVC
Figure 4. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions (Continued)
Dimensions are in millimeters unless otherwise noted.

MQA2OREVA

Figure 5. 20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide Package Number MQA20

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {® }}$	HiSeC ${ }^{\text {™ }}$	Programmable Active Droop ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {® }}$
Across the board. Around the world. ${ }^{\text {TM }}$	i-Lo ${ }^{\text {TM }}$	QFET ${ }^{\text {® }}$	TINYOPTOTM
ActiveArray ${ }^{\text {™ }}$	ImpliedDisconnect ${ }^{\text {TM }}$	QS ${ }^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
Bottomless ${ }^{\text {™ }}$	IntelliMAX ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyWire ${ }^{\text {™ }}$
Build it Now ${ }^{\text {TM }}$	ISOPLANAR ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {™ }}$	TruTranslation ${ }^{\text {TM }}$
CoolFET ${ }^{\text {™ }}$	MICROCOUPLER ${ }^{\text {TM }}$	RapidConfigure ${ }^{\text {TM }}$	μ SerDes ${ }^{\text {™ }}$
CROSSVOLT ${ }^{\text {TM }}$	MicroPak ${ }^{\text {TM }}$	RapidConnect ${ }^{\text {TM }}$	UHC ${ }^{\text {® }}$
CTL ${ }^{\text {TM }}$	MICROWIRE ${ }^{\text {TM }}$	ScalarPump ${ }^{\text {TM }}$	UniFET ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	MSX ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$
DOME ${ }^{\text {TM }}$	MSXProtm	SPM ${ }^{\text {® }}$	Wire ${ }^{\text {™ }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {™ }}$	OCX ${ }^{\text {™ }}$	STEALTH ${ }^{\text {™ }}$	
EcoSPARK ${ }^{\text {® }}$	OCXProm	SuperFET ${ }^{\text {TM }}$	
EnSigna ${ }^{\text {™ }}$	OPTOLOGIC ${ }^{\text {® }}$	SuperSOT ${ }^{\text {TM }}$ - 3	
FACT Quiet Series ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-6	
$\mathrm{FACT}^{\text {® }}$	PACMAN ${ }^{\text {™ }}$	SuperSOT ${ }^{\text {TM- }} 8$	
FAST ${ }^{\text {® }}$	РОРтм	SyncFET ${ }^{\text {TM }}$	
FASTr ${ }^{\text {TM }}$	Power220 ${ }^{\text {® }}$	TCM $^{\text {™ }}$	
FPS ${ }^{\text {TM }}$	Power247 ${ }^{\text {® }}$	The Power Franchise ${ }^{\text {® }}$	
FRFET ${ }^{\text {® }}$	PowerEdge ${ }^{\text {TM }}$	(1) ${ }^{\text {TM }}$	
GlobalOptoisolator ${ }^{\text {TM }}$	PowerSaver ${ }^{\text {TM }}$	TinyBoost ${ }^{\text {TM }}$	
GTO ${ }^{\text {™ }}$	PowerTrench ${ }^{\text {® }}$	TinyBuck ${ }^{\text {TM }}$	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS
Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

[^0]: FACT $^{T M}$ ，Quiet Series ${ }^{T M}$ ，FACT Quiet Series ${ }^{T M}$ ，and GTO ${ }^{T M}$ are trademarks of Fairchild Semiconductor Corporation．

