

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

November 1988 Revised November 1999

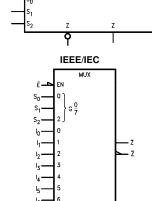
74AC151 • 74ACT151 8-Input Multiplexer

General Description

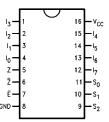
The AC/ACT151 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one line of data from up to eight sources. The AC/ACT151 can be used as a universal function generator to generate any logic function of four variables. Both true and complementary outputs are provided.

Features

- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- ACT151 has TTL-compatible inputs


Ordering Code:

Order Number	Package Number	Package Description			
74AC151SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body			
74AC151SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74AC151MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide			
74AC151PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
74ACT151SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body			
74ACT151SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
74ACT151PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			


Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

1 12 13 14 15 16 17

Logic Symbols

Connection Diagram

Pin Descriptions

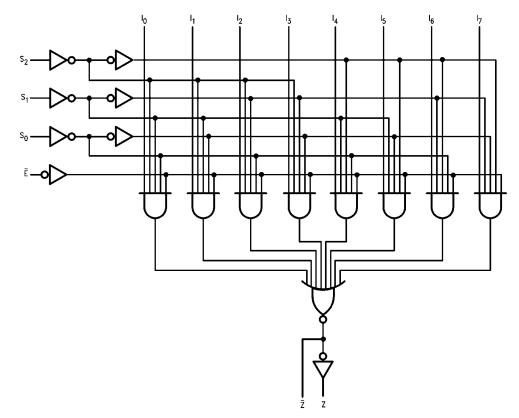
Pin Names	Description
I ₀ –I ₇	Data Inputs
S ₀ -S ₂	Select Inputs
Ē	Enable Input
Z	Data Output
Z	Inverted Data Output

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Truth Table

	In	Out	puts		
Ē	S ₂	S ₁	S ₀	Z	Z
Н	Х	Х	Х	Н	L
L	L	L	L	Ī ₀	I ₀
L	L	L	Н	Ī ₁	I ₁
L	L	Н	L	Ī ₂	l ₂
L	L	Н	Н	Ī ₃	I ₃
L	Н	L	L	$\overline{1}_4$	I_4
L	Н	L	Н	Ī ₅	I ₅
L	Н	Н	L	Ī ₆	I ₆
L	Н	Н	Н	$\overline{1}_7$	I ₇

H = HIGH Voltage Level


Functional Description

The AC/ACT151 is a logic implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, $S_0,\,S_1,\,S_2.$ Both true and complementary outputs are provided. The Enable input (\overline{E}) is active LOW. When it is not activated, the complementary output is HIGH and the true output is LOW regardless of all other inputs. The logic function provided at the output is:

$$\begin{split} Z &= \overline{E} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + \\ I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet \\ S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet S_2) \end{split}$$

The AC/ACT151 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the AC/ACT151 can provide any logic function of four variables and its complement.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

L = LOW Voltage Level

X = Immaterial

2.0V to 6.0V

4.5V to 5.5V

0V to V_{CC}

0V to V_{CC}

-40°C to +85°C

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{c} \text{V}_{\text{I}} = -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \\ \text{DC Input Voltage (V}_{\text{I}}) & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \end{array}$

DC Output Diode Current (I_{OK})

 $V_{O} = -0.5V$ -20 mA $V_{O} = V_{CC} + 0.5V$ +20 mA

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) $\pm 50 \text{ mA}$

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) $\pm 50 \text{ mA}$

Storage Temperature (T_{STG}) -65° C to +150°C Junction Temperature (T_{J})

PDIP 140

AC Devices
V_{IN} from 30%

Conditions

Input Voltage (V_I)

Output Voltage (V_O)

AC

ACT

Supply Voltage (V_{CC})

 V_{IN} from 30% to 70% of V_{CC}

Minimum Input Edge Rate $(\Delta V/\Delta t)$

Operating Temperature (T_A)

Recommended Operating

 $V_{CC} @ 3.3V, 4.5V, 5.5V$ 125 mV/ns

Minimum Input Edge Rate $(\Delta V/\Delta t)$

ACT Devices

 V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V 125 mV/n

140°C Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	v _{cc}	$T_A = -$	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Syllibol		(V)	(V) Typ		aranteed Limits	Ullits	Conditions	
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V	
		5.5	2.75	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}(\text{Note 2})$	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN} (Note 4)	Maximum Input Leakage Current	5.5		±0.1	±1.0	μА	$V_I = V_{CC}$, GND	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC} (Note 4)	Maximum Quiescent Supply Current	5.5		4.0	40.0	μΑ	V _{IN} = V _{CC} or GND	

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
Symbol	Farameter	(V)	Тур	Gı	aranteed Limits	Ullits	Conditions
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	2.0	2.0		or V _{CC} – 0.1V
V _{IL}	Maximum LOW Level	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V
	Input Voltage	5.5	1.5	0.8	0.8		or V _{CC} – 0.1V
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.49	5.4	5.4	l v	1 _{OUT} = -30 μA
		4.5 5.5		3.86 4.86	3.76 4.76	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -24 \text{ mA}$ $I_{OH} = -24 \text{ mA (Note 5)}$
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1		0.1
02	Output Voltage	5.5	0.001	0.1	0.1	V	I _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.44 0.44	V	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OL} = 24 \text{ mA}$ $I_{OL} = 24 \text{ mA (Note 5)}$
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	$V_I = V_{CC}$, GND
I _{CCT}	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_I = V_{CC} - 2.1V$
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent Supply Current	5.5		4.0	40.0	μА	V _{IN} = V _{CC} or GND

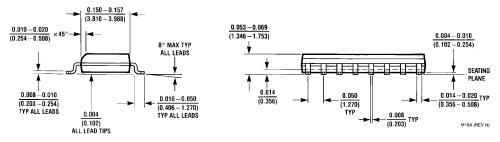
Note 5: All outputs loaded; thresholds on input associated with output under test.

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

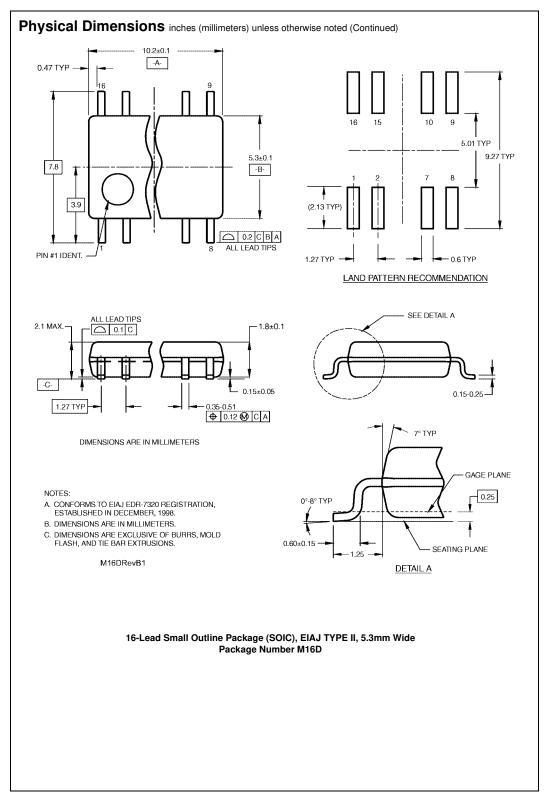
AC Electrical Characteristics for AC

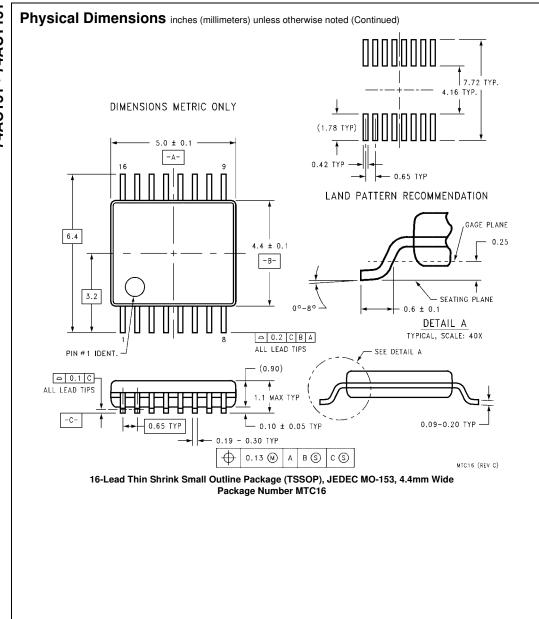
		V _{CC}		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}$	C to +85°C	
Symbol	Parameter	(V)	$C_L = 50 pF$			$C_L = 50 \text{ pF}$		Units
		(Note 7)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	3.0	11.5	18.0	3.0	20.0	20
	S_n to Z or \overline{Z}	5.0	2.5	8.5	13.0	2.0	15.0	ns
t _{PHL}	Propagation Delay	3.3	2.5	12.0	18.0	2.5	20.0	
	S_n to Z or \overline{Z}	5.0	2.0	8.5	13.0	1.5	15.0	ns
t _{PLH}	Propagation Delay	3.3	2.5	8.0	13.0	2.0	14.0	no
	E to Z or Z	5.0	2.0	6.0	10.0	1.5	11.0	ns
t _{PHL}	Propagation Delay	3.3	1.5	8.5	13.0	1.5	14.0	ns
	E to Z or Z	5.0	1.5	6.5	10.0	1.5	11.0	115
t _{PLH}	Propagation Delay	3.3	2.5	9.5	14.0	2.0	15.5	
	I_n to Z or \overline{Z}	5.0	1.5	7.0	10.5	1.5	11.0	ns
t _{PHL}	Propagation Delay	3.3	2.5	9.5	15.0	2.0	16.0	no
	I_n to Z or \overline{Z}	5.0	1.5	7.0	11.0	1.5	12.0	ns

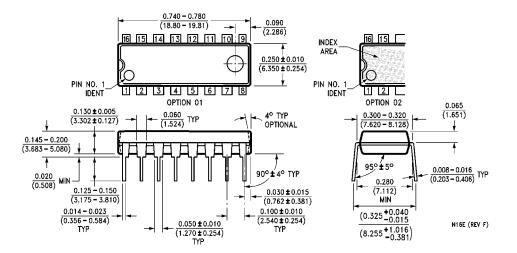
Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is $5.0V \pm 0.5V$


		V _{cc}		$T_A = +25$ °C $C_L = 50 \text{ pF}$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	(V)					50 pF	Units
		(Note 8)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay S _n to Z	5.0	3.5	12.5	15.5	3.0	17.0	ns
t _{PHL}	Propagation Delay S _n to Z	5.0	3.5	12.5	15.5	3.0	16.5	ns
t _{PLH}	Propagation Delay S_n to \overline{Z}	5.0	3.5	12.5	15.0	3.0	16.5	ns
t _{PHL}	Propagation Delay S_n to \overline{Z}	5.0	4.0	12.5	16.5	3.5	18.5	ns
t _{PLH}	Propagation Delay E to Z	5.0	2.5	6.0	9.5	2.5	10.0	ns
t _{PHL}	Propagation Delay E to Z	5.0	2.5	6.0	9.0	2.5	10.0	ns
t _{PLH}	Propagation Delay E to Z	5.0	2.5	6.0	8.5	2.5	9.5	ns
t _{PHL}	Propagation Delay E to Z	5.0	3.0	6.5	10.0	2.5	10.5	ns
t _{PLH}	Propagation Delay In to Z	5.0	3.5	7.5	11.5	3.0	12.5	ns
t _{PHL}	Propagation Delay I _n to Z	5.0	3.5	8.0	12.0	3.0	13.5	ns
t _{PLH}	Propagation Delay I_n to \overline{Z}	5.0	3.5	8.0	12.0	3.0	13.0	ns
t _{PHL}	Propagation Delay I_n to \overline{Z}	5.0	4.0	8.0	12.5	3.0	14.0	ns

Note 8: Voltage Range 5.0 is 5.0V ± 0.5V


Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	70.0	pF	$V_{CC} = 5.0V$



16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com