imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

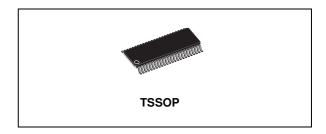
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74ACT16373

16-BIT D-TYPE LATCH WITH 3-STATE OUTPUTS (NON INVERTED)

- HIGH SPEED: t_{PD} = 5.3ns (TYP.) at V_{CC} = 5V
- LOW POWER DISSIPATION: $I_{CC} = 8\mu A(MAX.)$ at $T_A=25^{\circ}C$
- COMPATIBLE WITH TTL OUTPUTS
 V_{IH} = 2V (MIN.), V_{IL} = 0.8V (MAX.)
- 50Ω TRANSMISSION LINE DRIVING CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 24mA (MIN)
- OPERATING VOLTAGE RANGE:
 V_{CC} (OPR) = 4.5V to 5.5V
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION


The 74ACT16373 is an advanced high-speed CMOS 16-BIT D-TYPE LATCH (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS tecnology.

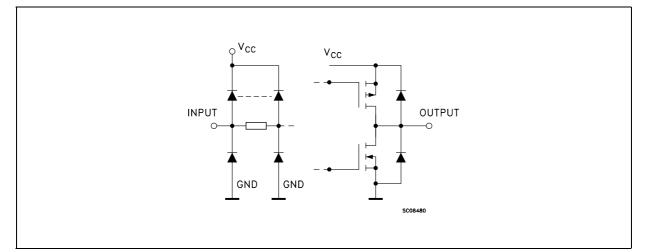
This 16 bit D-Type latch is controlled by two latch enable inputs (LE) and two output enable inputs (\overline{OE}) . The device can be used as two 8-bit latches or one 16-bit latch.

While the LE input is held at a high level, the Q outputs will follow the data inputs precisely. When the LE is taken low, the Q outputs will be latched precisely at the levels set up at the D inputs. While the (OE) input is low, the outputs will be in a normal logic state (high or low logic level) and while OE is in high level the outputs will be in a high impedance state.

This device is designed to interface directly High Speed CMOS systems with TTL and NMOS components.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

ORDER CODES


PACKAGE	TUBE	T & R			
TSSOP		74ACT16373TTR			

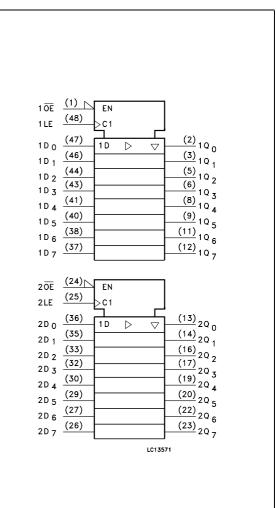
PIN CONNECTION

1] 48 1LE
1 Q ₀ 2 [] 47 1 D ₀
1 Q ₁ 3 [] 46 1 D ₁
GND ₄[] 45 GND
1 Q 2 5 [] 44 1 D 2
1 Q 3 6 [] 43 1 D 3
V _{сс} 7 [] 42 V _{CC}
1 Q ₄ в []41 1D4
1 Q 5 9 []₄0 1D ₅
GND 10] 39 GND
1 Q ₆ 11 [] 38 1 D ₆
1 Q ₇ 12 [] 37 1 D 7
2 Q ₀ 13 [] 36 2 D ₀
2Q1 14 [] 35 2 D ₁
GND 15 [] 34 GND
2Q3 16] 33 2 D 2
2 Q 3 17 [] 32 2 D 3
V _{CC} 18 [] 31 V _{CC}
2 Q 4 19 [] 30 2 D 4
2 Q 5 20 [] 29 2 D 5
GND 21 [] 28 GND
2 Q ₆ 22 [] 27 2 D ₆
2 Q ₇ 23 [] 26 2 D 7
20E 24 [] 25 2LE
	PC12000

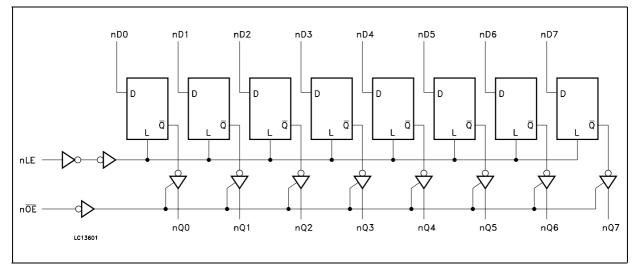
February 2003

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION


PIN No	SYMBOL	NAME AND FUNCTION
1	1 <mark>0E</mark>	3 State Output Enable Input (Active LOW)
2, 3, 5, 6, 8, 9, 11, 12	1Q0 to 1Q7	3-State Outputs
13, 14, 16, 17, 19, 20, 22, 23	2Q0 to 2Q7	3-State Outputs
24	2 <mark>0E</mark>	3 State Output Enable Input (Active LOW)
25	2LE	Latch Enable Input
36, 35, 33, 32, 30, 29, 27, 26	2D0 to 2D7	Data Inputs
47, 46, 44, 43, 41, 40, 38, 37	1D0 to 1D7	Data Inputs
48	1LE	Latch Enable Input
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive Supply Voltage

TRUTH TABLE


	INPUTS						
OE	LE	D	Q				
Н	Х	Х	Z				
L	L	Х	NO CHANGE *				
L	Н	L	L				
L	Н	Н	Н				

X : Don't Care
 Z : High Impedance
 * : Q outputs are latched at the time when the LE input is taken low
 logic level.

IEC LOGIC SYMBOLS

LOGIC DIAGRAM

This logic diagram has not to be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
VI	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
V _O	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Ι _Ο	DC Output Current	± 50	mA
$\rm I_{CC}$ or $\rm I_{GND}$	DC V _{CC} or Ground Current	± 400	mA
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	4.5 to 5.5	V
VI	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time V_{CC} = 4.5 to 5.5V (note 1)	8	ns/V

1) V_{IN} from 0.8V to 2.0V

DC SPECIFICATIONS

		Test Condition		Value							
Symbol	Parameter	V _{CC}		Т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(Ŭ)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
VIH	High Level Input	4.5	V _O = 0.1 V or	2.0	1.5		2.0		2.0		
	Voltage	5.5	V _{CC} -0.1V	2.0	1.5		2.0		2.0		V
V _{IL}	Low Level Input	4.5	V _O = 0.1 V or		1.5	0.8		0.8		0.8	
	Voltage	5.5	V _{CC} -0.1V		1.5	0.8		0.8		0.8	
V _{OH}	High Level Output	4.5	I _O =-50 μA	4.4	4.49		4.4		4.4		V
	Voltage	5.5	I _O =-50 μA	5.4	5.49		5.4		5.4		1
		4.5	I _O =-24 mA	3.86			3.76		3.7		
		5.5	I _O =-24 mA	4.86			4.76		4.7		l
V _{OL}	Low Level Output	4.5	I _O =50 μA		0.001	0.1		0.1		0.1	v
	Voltage	5.5	I _O =50 μA		0.001	0.1		0.1		0.1	v
		4.5	I _O =24 mA			0.36		0.44		0.5	l
		5.5	I _O =24 mA			0.36		0.44		0.5	l
I	Input Leakage Cur- rent	5.5	$V_{I} = V_{CC}$ or GND			± 0.1		± 1		± 1	μA
I _{OZ}	High Impedance Output Leakege Current	5.5	$V_{I} = V_{IH} \text{ or } V_{IL}$ $V_{O} = V_{CC} \text{ or } GND$			± 0.5		± 5		± 10	μA
I _{CCT}	Max I _{CC} /Input	5.5	$V_{I} = V_{CC} - 2.1V$		0.6			1.5		1.6	mA
I _{CC}	Quiescent Supply Current	5.5	$V_{I} = V_{CC}$ or GND			8		80		160	μA
I _{OLD}	Dynamic Output	5.5	$V_{OLD} = 1.65 \text{ V max}$					75		50	mA
I _{OHD}	Current (note 1, 2)	5.5	V _{OHD} = 3.85 V min					-75		-50	mA

57

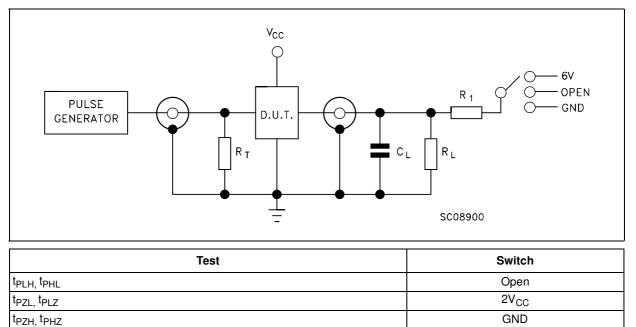
1) Maximum test duration 2ms, one output loaded at time 2) Incident wave switching is guaranteed on transmission lines with impedances as low as 50Ω

		٦	est Condition	Value							
Symbol	Parameter	v _{cc}		т	A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
t _{PLH}	Propagation Delay	5.0 ^(*)			4.2	6.5		12.8		13.7	ns
t _{PHL}	Time LE to Q	5.0()			5.0	7.7		12.2		13.0	ns
t _{PLH}	Propagation Delay	5.0 ^(*)			4.1	6.3		11.1		11.8	20
t _{PHL}	Time D to Q	5.0()			5.3	8.5		12.3		13.0	ns
t _{PZL}	Output Enable	5.0 ^(*)			5.7	6.5		14.2		15.1	20
t _{PZH}	Time	5.0(/			5.0	7.7		12.1		13.0	ns
t _{PLZ}	Output Disable	5.0 ^(*)			5.6	8.2		9.4		9.8	ns
t _{PHZ}	Time	5.0(/			5.0	7.0		10.7		11.0	115
t _{W(H)}	LE Minimum Pulse Width HIGH	5.0 ^(*)		2.2	1.7		2.6		2.6		ns
t _s	Setup Time D to LE, HIGH or LOW	5.0 ^(*)		1.2	<1.0		1.4		1.4		ns
t _h	Hold Time D to LE, HIGH or LOW	5.0 ^(*)		1.3	<1.0		1.6		1.6		ns

AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, RL = 500 Ω , Input tr = tf = 3ns)

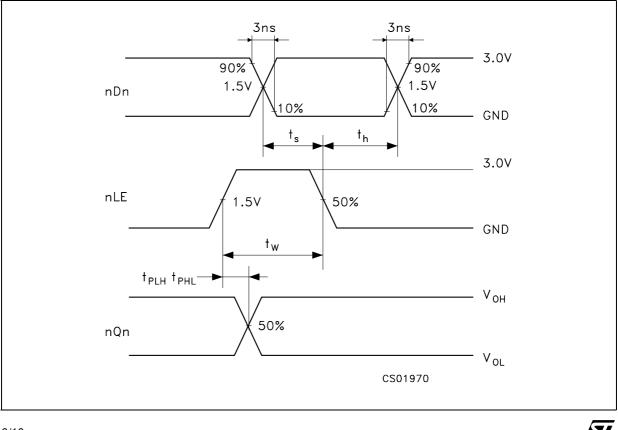
(*) Voltage range is $5.0V\pm0.5V$

CAPACITIVE CHARACTERISTICS

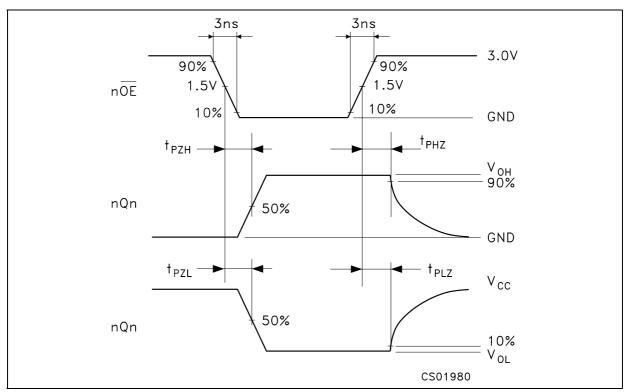

		Test Condition		Value							
Symbol	Parameter	Vcc	v _{cc}		A = 25°	С	-40 to	85°C	-55 to	125°C	Unit
		(V)		Min.	Тур.	Max.	Min.	Max.	Min.	Max.	
C _{IN}	Input Capacitance	5.0			3.5						pF
C _{OUT}	Output Capaci- tance	5.0			11						pF
C _{PD}	Power Dissipation Capacitance (note 1)	5.0	f _{IN} = 10MHz		31						pF

1) C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $C_{C(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/16$ (per circuit)

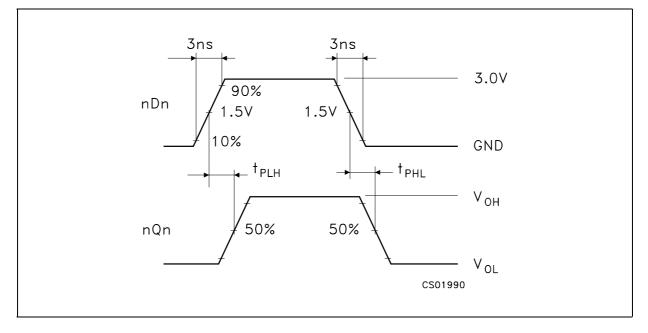
57


74ACT16373

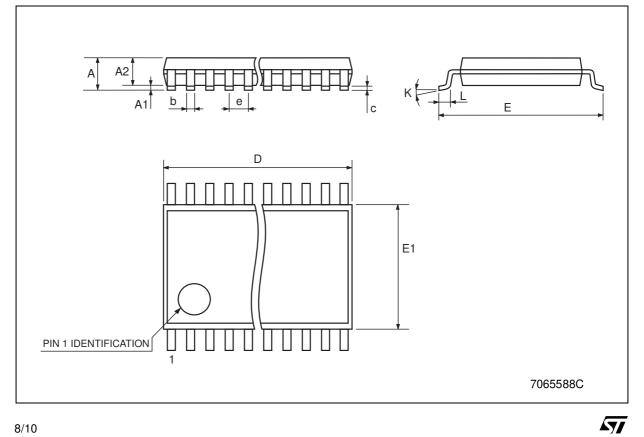
TEST CIRCUIT


 $\begin{array}{l} C_L = 50 pF \text{ or equivalent (includes jig and probe capacitance)} \\ R_L = R_1 = 500 \Omega \text{ or equivalent} \\ R_T = Z_{OUT} \text{ of pulse generator (typically 50 \Omega)} \end{array}$

WAVEFORM 1: PROPAGATION DELAYS, PULSE WIDTH, SETUP AND HOLD TIMES (f=1MHz; 50% duty cycle)

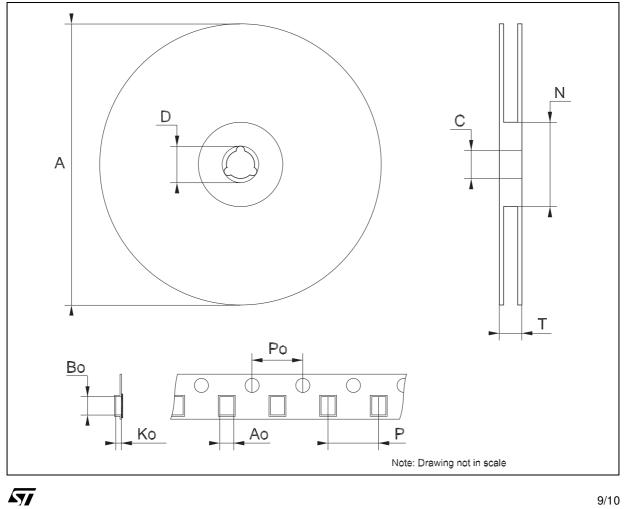

6/10

57


WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES (f=1MHz; 50% duty cycle)

WAVEFORM 3: PROPAGATION DELAYS TIME (f=1MHz; 50% duty cycle)

74ACT16373


	TSSOP48 MECHANICAL DATA									
DIM.		mm.		inch						
Diwi.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.				
А			1.2			0.047				
A1	0.05		0.15	0.002		0.006				
A2		0.9			0.035					
b	0.17		0.27	0.0067		0.011				
с	0.09		0.20	0.0035		0.0079				
D	12.4		12.6	0.488		0.496				
E		8.1 BSC			0.318 BSC					
E1	6.0		6.2	0.236		0.244				
е		0.5 BSC			0.0197 BSC					
К	0°		8°	0°		8°				
L	0.50		0.75	0.020		0.030				

8/10

DIM.		mm.			inch	
DIVI.	MIN.	ТҮР	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			30.4			1.197
Ao	8.7		8.9	0.343		0.350
Bo	13.1		13.3	0.516		0.524
Ko	1.5		1.7	0.059		0.067
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

