

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

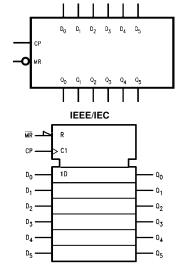
November 1988 Revised October 2000

74AC174 • 74ACT174 Hex D-Type Flip-Flop with Master Reset

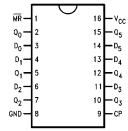
General Description

The AC/ACT174 is a high-speed hex D-type flip-flop. The device is used primarily as a 6-bit edge-triggered storage register. The information on the D inputs is transferred to storage during the LOW-to-HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops.

Features


- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- ACT174 has TTL-compatible inputs

Ordering Code:


Order Number	Package Number	Package Description
74AC174SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74AC174SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC174MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC174PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
74ACT174SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74ACT174SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT174MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT174PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

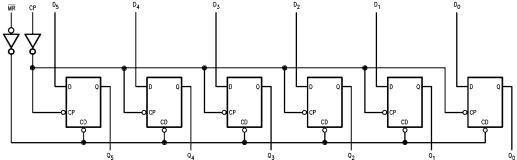
Connection Diagram

Pin Descriptions

Pin Names	Description
D ₀ –D ₅	Data Inputs
CP	Clock Pulse Input
MR	Master Reset Input
Q ₀ –Q ₅	Outputs

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Functional Description


The AC/ACT174 consists of six edge-triggered D-type flipflops with individual D inputs and Q outputs. The Clock (CP) and Master Reset (MR) are common to all flip-flops. Each D input's state is transferred to the corresponding flip-flop's output following the LOW-to-HIGH Clock (CP) transition. A LOW input to the Master Reset (MR) will force all outputs LOW independent of Clock or Data inputs. The AC/ ACT174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

Truth Table

	Inputs					
MR	СР	D	Q			
L	Х	Х	L			
Н	~	Н	Н			
Н	~	L	L			
Н	L	Х	Q			

- H = HIGH Voltage Level
- L = LOW Voltage Level
- = LOW-to-HIGH Transition X = Immaterial

Logic Diagram

 \ddot{Q}_5 \ddot{Q}_4 \ddot{Q}_3 \ddot{Q}_2 \ddot{Q}_1 Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

-0.5V to +7.0V Supply Voltage (V_{CC})

DC Input Diode Current (I_{IK})

 $V_1 = -0.5V$ -20 mA $V_I = V_{CC} + 0.5V$ +20 mA DC Input Voltage (V_I) -0.5V to $V_{CC} + 0.5V$

DC Output Diode Current (I_{OK})

 $V_O = -0.5V$ -20 mA $V = V_{CC} + 0.5V$ +20 mA

DC Output Voltage (V_O) -0.5V to V $_{CC}$ + 0.5V

DC Output Source

or Sink Current (I_O) $\pm 50 \text{ mA}$

DC V_{CC} or Ground Current

per Output Pin (I_{CC} or I_{GND}) ±50 mA -65°C to +150°C Storage Temperature (T_{STG})

Junction Temperature (T_J)

PDIP 140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

AC 2.0V to 6.0V ACT 4.5V to 5.5V 0V to V_{CC} Input Voltage (V_I) 0V to V_{CC} Output Voltage (V_O) -40°C to +85°C

Operating Temperature (T_A)

Minimum Input Edge Rate $(\Delta V/\Delta t)$

AC Devices

 $V_{\mbox{\scriptsize IN}}$ from 30% to 70% of $V_{\mbox{\scriptsize CC}}$

V_{CC} @ 3.3V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate $(\Delta V/\Delta t)$

ACT Devices

V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Syllibol	Parameter	(V)	Тур	Gu	aranteed Limits	Ullits	Conditions	
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$	
		5.5	2.75	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA (Note 2)}$	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \; \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		0.36	0.44		I _{OL} = 12 mA	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μА	$V_I = V_{CC}$	
(Note 4)	Leakage Current	0.0		±0.1	Ξ1. U	μА	or GND	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μА	$V_{IN} = V_{CC}$	
(Note 4)	Supply Current	3.3		4.0	40.0	μΛ	or GND	

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} .

Symbol	Parameter	V _{CC}	$T_A =$	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
		(V)	Тур	Gı	aranteed Limits	Ullits	Conditions	
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	1.5	2.0	2.0	V	or V _{CC} – 0.1V	
V _{IL}	Maximum LOW Level	4.5	1.5	0.8	0.8	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	1.5	0.8	0.8	V	or $V_{CC} - 0.1V$	
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OLIT} = -50 μA	
	Output Voltage	5.5	5.49	5.4	5.4	٧	10017 = -30 μΑ	
							$V_{IN} = V_{IL}$ or V_{IH}	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note s	
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	Ι _{ΟΙΙΤ} = 50 μΑ	
	Output Voltage	5.5	0.001	0.1	0.1	V	1 _{OUT} = 50 μA	
							$V_{IN} = V_{IL}$ or V_{IH}	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)	
I _{IN}	Maximum Input	E	5.5		±0.1	±1.0	μА	$V_I = V_{CC}$, GND
	Leakage Current	5.5		±0.1	.1 ±1.0		v _I = v _{CC} , GND	
I _{CCT}	Maximum	5.5	0.6		1.5	mA	$V_1 = V_{CC} - 2.1V$	
	I _{CC} /Input	5.5	0.0		1.5	111/4	v1 = vCC = 2.1v	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	^	$V_{IN} = V_{CC}$	
	Supply Current	5.5		4.0	40.0	μА	or GND	

Note 5: All outputs loaded; thresholds on input associated with output under test.

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for AC

Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF			T _A = -40°	Units		
		(Note 7)	Min	Тур	Max	Min	Max		
f _{MAX}	Maximum Clock	3.3	90	100		70		N41.1-	
	Frequency	5.0	100	125		100		MHz	
t _{PLH}	Propagation Delay	3.3	2.0	9.0	11.5	1.5	12.5	ns	
	CP to Q _n	5.0	1.5	6.0	8.5	1.0	9.5		
t _{PHL}	Propagation Delay	3.3	2.0	8.5	11.0	1.5	12.0	ns	
	CP to Q _n	5.0	1.5	6.0	8.0	1.0	9.0		
t _{PHL}	Propagation Delay	3.3	2.5	9.0	11.5	2.0	12.5		
	MR to Q _n	5.0	1.5	7.0	9.0	1.5	10.5	ns	

Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is 5.0V $\pm\,0.5V$

AC Operating Requirements for AC

Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF		$T_A = -40$ °C to +85°C $C_L = 50$ pF	Units
		(Note 8)	Тур	Guara	inteed Minimum	
t _S	Setup Time, HIGH or LOW	3.3	2.5	6.5	7.0	no
	D _n to CP	5.0	2.0	5.0	5.5	ns
t _H	Hold Time, HIGH or LOW	3.3	1.0	3.0	3.0	ns
	D _n to CP	5.0	0.5	3.0	3.0	115
t _W	MR Pulse Width, LOW	3.3	1.0	5.5	7.0	
		5.0	1.0	5.0	5.0	ns
t _W	CP Pulse Width	3.3	1.0	5.5	7.0	no
		5.0	1.0	5.0	5.0	ns
t _{REC}	Recovery Time	3.3	0	2.5	2.5	20
	MR to CP	5.0	0	2.0	2.0	ns

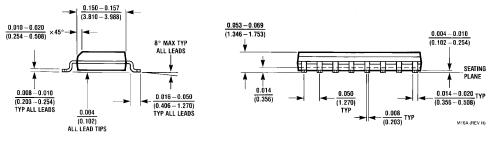
Note 8: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is $5.0V \pm 0.5V$

AC Electrical Characteristics for ACT

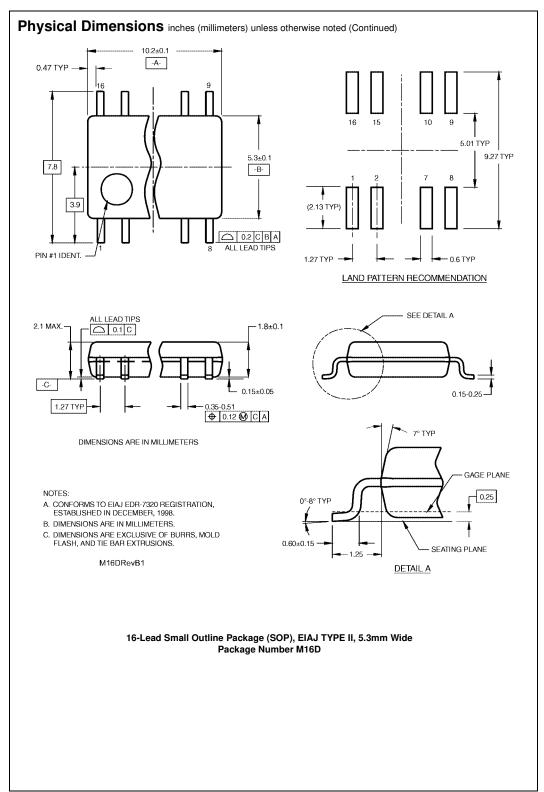
Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF			$T_A = -40$ °C to +85°C $C_L = 50$ pF		Units
		(Note 9)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	5.0	165	200		140		MHz
t _{PLH}	Propagation Delay CP to Q _n	5.0	1.5	7.0	10.5	1.5	11.5	ns
t _{PHL}	Propagation Delay CP to Q _n	5.0	1.5	7.0	10.5	1.5	11.5	ns
t _{PHL}	Propagation Delay MR to Q _n	5.0	1.5	6.5	9.5	1.5	11.0	ns

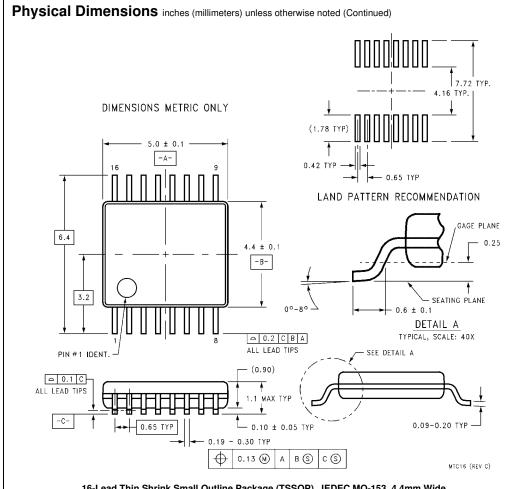
Note 9: Voltage Range 5.0 is 5.0V ± 0.5V

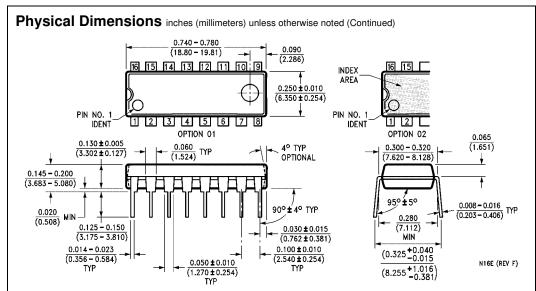
AC Operating Requirements for ACT


Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF		$T_A = -40$ °C to +85°C $C_L = 50$ pF	Units
		(Note 10)	Тур	Guara	Guaranteed Minimum	
t _S	Setup Time, HIGH or LOW D _n to CP	5.0	0.5	1.5	1.5	ns
t _H	Hold Time, HIGH or LOW D _n to CP	5.0	1.0	2.0	2.0	ns
t _W	MR Pulse Width, LOW	5.0	1.5	3.0	3.5	ns
t _W	CP Pulse Width, HIGH or LOW	5.0	1.5	3.0	3.5	ns
t _{rec}	Recovery Time MR to CP	5.0	-1.0	0.5	0.5	ns

Note 10: Voltage Range 5.0 is 5.0V ± 0.5V


Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	85.0	pF	$V_{CC} = 5.0V$



16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow Package Number M16A

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com