imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74ACT18825 18-Bit Buffer/Line Driver with 3-STATE Outputs

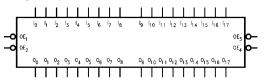
74ACT18825 18-Bit Buffer/Line Driver with 3-STATE Outputs

General Description

FAIRCHILD

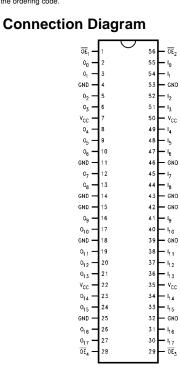
SEMICONDUCTOR

The ACT18825 contains eighteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is byte controlled. Each byte has separate 3-STATE control inputs which can be shorted together for full 18-bit operation.


Features

- Broadside pinout allows for easy board layout
- Separate control logic for each byte
- Extra data width for wider address/data paths or buses carrying parity
- Outputs source/sink 24 mA
- TTL-compatible inputs

Ordering Code:


Order Number	Package Number	Package Description					
74ACT18825SSC	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide					
74ACT18825MTD MTD56 56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide							
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.							

Logic Symbol

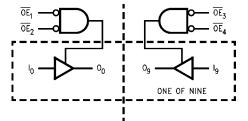
Pin Descriptions

Pin Names	Description
OEn	Output Enable Input (Active LOW)
I ₀ —I ₁₇	Inputs
O ₀ -O ₁₇	Outputs

FACT™, FACT Quiet Series™ and GTO™ are trademarks of Fairchild Semiconductor Corporation.

www.fairchildsemi.com

Functional Description


The ACT18825 contains eighteen non-inverting buffers with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independently of the other. The control pins may be shorted together to obtain full 8-bit operation. The 3-STATE outputs are controlled by an Output Enable (\overline{OE}_n) input for each byte. When \overline{OE}_n is LOW, the outputs are in 2-state mode. When $\overline{\text{OE}}_n$ is HIGH, the outputs are in the high impedance mode, but this does not interfere with entering new data into the inputs.

Truth Table

Inputs						Outputs		
Byte 1 (0:8) Byte 2 (8:17)				0 0	0 0			
OE ₁	\overline{OE}_2	\overline{OE}_3 \overline{OE}_4		10-18	1 9 ⁻¹ 17	00-08	0 ₉ –0 ₁₇	
L	L	L	L	Н	Н	Н	н	
Н	Х	L	L	Х	L	Z	L	
х	н	L	L	Х	н	Z	н	
L	L	н	Х	L	Х	L	Z	
L	L	Х	Н	н	Х	Н	Z	
н	н	н	н	х	Х	Z	Z	
L	L	L	L	L	L	L	L	

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = HIGH Impedance

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC}) DC Input Diode Current (I _{IK})	-0.5V to +7.0V
$V_1 = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Output Diode Current (I _{OK})	
$V_O = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V_{CC} + 0.5V
DC Output Source/Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
Per Output Pin	±50 mA
Storage Temperature	-65°C to +150°C

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta V \Delta t$)	125 mV/ns
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	

74ACT18825

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics

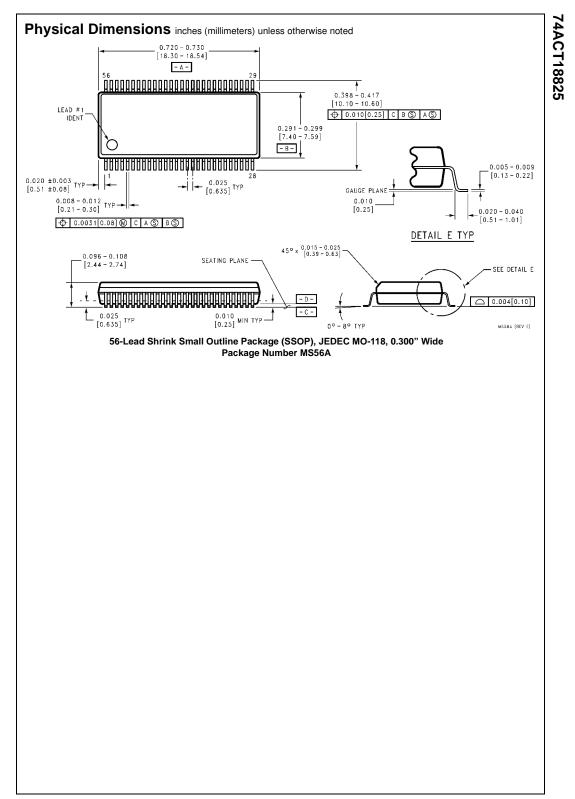
Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Symbol		(V)	Typ Ge		aranteed Limits	Units	Conditions
VIH	Minimum HIGH	4.5	1.5	2.0	2.0	v	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or V _{CC} –0.1V
VIL	Maximum LOW	4.5	1.5	0.8	0.8	v	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8	v	or V _{CC} –0.1V
V _{OH}	Minimum HIGH	4.5	4.49	4.4	4.4	v	L 50A
	Output Voltage	5.5	5.49	5.4	5.4	v	I _{OUT} = -50 μA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)
V _{OL}	Maximum LOW	ximum LOW 4.5 0.001 0.1 0.1	0.1	v	504		
	Output Voltage	5.5	0.001	0.1	0.1	v	$I_{OUT} = 50 \ \mu A$
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)
I _{OZ}	Maximum 3-STATE	5.5	5.5 ±0.5 ±5.0	±5.0	μA	$V_I = V_{IL}, V_{IH}$	
	Leakage Current	5.5		±0.5	±5.0	μΑ	$V_{O} = V_{CC}, GND$
I _{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	μA	$V_I = V_{CC}, GND$
ICCT	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$
I _{CC}	Maximum Quiescent Supply Current	5.5		8.0	80.0	μA	$V_{IN} = V_{CC}$ or GND
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 3)	0.5			-75	mA	V _{OHD} = 3.85V Min

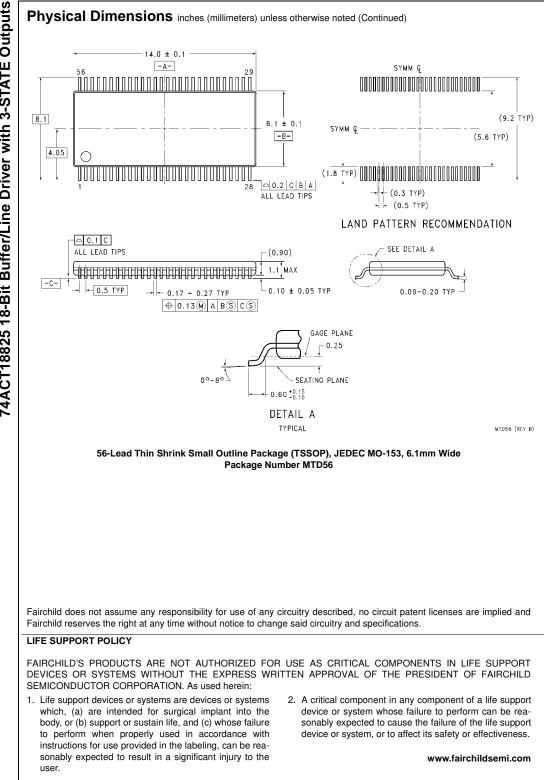
Note 2: All outputs loaded; thresholds associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

www.fairchildsemi.com

74ACT18825


AC Electrical Characteristics


Symbol	Parameter	V _{CC} (V) (Note 4)	T _A = +25°C C _I = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $C_1 = 50 \text{ pF}$		Units
			Min	Тур	Max	Min	Max	
t _{PHL}	Propagation Delay	5.0	2.0	5.3	8.4	2.0	9.0	
t _{PLH}	Data to Output	5.0	2.0	5.6	8.7	2.0	9.2	ns
t _{PZL}	Output Enable	5.0	2.0	6.3	9.6	2.0	10.3	
t _{PZH}	Time	5.0	2.0	6.5	9.7	2.0	10.4	ns
t _{PLZ}	Output Disable	5.0	1.5	4.5	7.3	1.5	7.6	
t _{PHZ}	Time	5.0	1.5	5.1	8.5	1.5	8.8	ns

Note 4: Voltage Range 5.0 is $5.0V \pm 0.5V$.

Capacitance

Symbol	Symbol Parameter		Units	Conditions
C _{IN}	Input Pin Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	95	pF	$V_{CC} = 5.0V$

74ACT18825 18-Bit Buffer/Line Driver with 3-STATE Outputs

www.fairchildsemi.com