imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR

74AC251 • 74ACT251 8-Input Multiplexer with 3-STATE Output

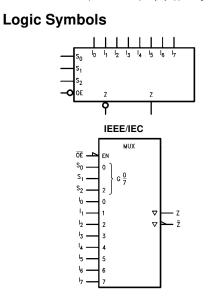
General Description

The AC/ACT251 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as universal function generator to generate any logic function of four variables. Both true and complementary outputs are provided.

Features

- I_{CC} reduced by 50%
- Multifunctional capability
- On-chip select logic decoding
- Inverting and noninverting 3-STATE outputs

November 1988


Revised November 1999

- Outputs source/sink 24 mA
- ACT251 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description
74AC251SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74AC251SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC251MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC251PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT251SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74ACT251MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT251PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Names	Description						
S ₀ -S ₂	Select Inputs						
OE	3-STATE Output Enable Input						
I ₀ —I ₇	Multiplexer Inputs						
Z	3-STATE Multiplexer Output						
Z	Complementary 3-STATE Multiplexer Output						

FACT[™] is a trademark of Fairchild Semiconductor Corporation.

Functional Description

This device is a logical implementation of a single-pole, 8-position switch with the switch position controlled by the state of three Select inputs, S_0 , S_1 , S_2 . Both true and complementary outputs are provided. The Output Enable input (\overline{OE}) is active LOW. When it is activated, the logic function provided at the output is:

74AC25

 $Z = \overline{OE} \bullet$

$$\begin{array}{l} \text{the output is:} \\ (I_0 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_1 \cdot S_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + \\ I_2 \cdot \overline{S}_0 \cdot S_1 \cdot \overline{S}_2 + I_3 \cdot S_0 \cdot S_1 \cdot \overline{S}_2 + \\ I_4 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot S_2 + I_5 \cdot S_0 \cdot \overline{S}_1 \cdot S_2 + \\ I_6 \cdot \overline{S}_0 \cdot S_1 \cdot S_2 + I_7 \cdot S_0 \cdot S_1 \cdot S_2) \end{array}$$

When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active-LOW portion of the enable voltages.

	Inp	Out	puts		
OE	S ₂	S ₁	S ₀	z	Z
Н	х	Х	Х	Z	Z
L	L	L	L	Īo	I ₀
L	L	L	Н	Ī1	I ₁
L	L	н	L	\overline{I}_2	I_2
L	L	н	Н	Ī3	l ₃
L	н	L	L	Ī4	I_4
L	н	L	н	\overline{I}_5	I_5
L	н	н	L	Ī ₆	I ₆
L	н	н	н	Ī ₇	I ₇

H = HIGH Voltage Level

L = LOW Voltage Level

Truth Table

X = Immaterial Z = High Impedance

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V	С
DC Input Diode Current (I _{IK})		5
$V_{I} = -0.5V$	–20 mA	
$V_{I} = V_{CC} + 0.5V$	+20 mA	
DC Input Voltage (VI)	-0.5V to V _{CC} + 0.5V	I
DC Output Diode Current (I _{OK})		(
$V_{O} = -0.5V$	–20 mA	(
$V_O = V_{CC} + 0.5V$	+20 mA	Ν
DC Output Voltage (V _O)	-0.5V to V _{CC} + 0.5V	
DC Output Source		
or Sink Current (I _O)	±50 mA	
DC V _{CC} or Ground Current		M
per Output Pin (I _{CC} or I _{GND})	±50 mA	
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	
Junction Temperature (T _J)		
PDIP	140°C	No
		to ou

Recommended Operating Conditions Supply Voltage (V_{CC}) AC 2.0V to 6.0V 4.5V to 5.5V ACT 0V to V_{CC} Input Voltage (VI) 0V to V_{CC} Output Voltage (V_O) -40°C to +85°C Operating Temperature (T_A) Minimum Input Edge Rate $(\Delta V/\Delta t)$ AC Devices V_{IN} from 30% to 70% of V_{CC} V_{CC} @ 3.3V, 4.5V, 5.5V 125 mV/ns Minimum Input Edge Rate ($\Delta V/\Delta t$) ACT Devices V_{IN} from 0.8V to 2.0V V_{CC} @ 4.5V, 5.5V 125 mV/ns

74AC251 • 74ACT251

Note 1: Absolute maximum ratings are those values beyond which damage o the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol Parameter V _{IH} Minimum HIGH Level Input Voltage V _{IL} Maximum LOW Level Input Voltage V _{OH} Minimum HIGH Level Output Voltage V _{OH} Minimum HIGH Level Output Voltage V _{OL} Maximum LOW Level Output Voltage I _{IN} (Note 4) Maximum Input Leakage C Ioz I _{OLD} Minimum Dynamic	motor	V _{CC}	TA = -	+25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
Input Voltage VIL Maximum LOW Level Input Voltage VOH Minimum HIGH Level Output Voltage VOL Maximum LOW Level Output Voltage INN (Note 4) Maximum Input Leakage C IOZ Maximum 3-STATE Current Minimum Dynamic	meter	(V)	Тур	Gι	aranteed Limits	Units	Conditions	
VIL Maximum LOW Level Input Voltage VOH Minimum HIGH Level Output Voltage VOL Maximum LOW Level Output Voltage INN (Note 4) Maximum Input Leakage C IOZ Maximum 3-STATE Current Minimum Dynamic	evel	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$	
Input Voltage V _{OH} Minimum HIGH Level Output Voltage V _{OL} Maximum LOW Level Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current Current		4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$	
Input Voltage V _{OH} Minimum HIGH Level Output Voltage V _{OL} Maximum LOW Level Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current Current		5.5	2.75	3.85	3.85			
V _{OH} Minimum HIGH Level Output Voltage V _{OL} Maximum LOW Level Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} I _{OZ} Maximum 3-STATE Current I _{OLD} Minimum Dynamic	evel	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$	
Output Voltage V _{OL} Maximum LOW Level Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current Current		4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$	
Output Voltage V _{OL} Maximum LOW Level Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current Current		5.5	2.75	1.65	1.65			
V _{OL} Maximum LOW Level Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current I _{OLD} Minimum Dynamic	evel	3.0	2.99	2.9	2.9			
Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current I _{OLD}		4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$	
Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current I _{OLD}		5.5	5.49	5.4	5.4			
Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current I _{OLD}							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current I _{OLD}		3.0		2.56	2.46		I _{OH} = -12 mA	
Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current I _{OLD}		4.5		3.86	3.76	V	I _{OH} = -24 mA	
Output Voltage I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current I _{OLD}		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)	
I _{IN} (Note 4) Maximum Input Leakage C I _{OZ} Maximum 3-STATE Current I _{OLD} Minimum Dynamic	evel	3.0	0.002	0.1	0.1			
I _{OZ} Maximum 3-STATE Current I _{OLD} Minimum Dynamic		4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$	
I _{OZ} Maximum 3-STATE Current I _{OLD} Minimum Dynamic		5.5	0.001	0.1	0.1			
I _{OZ} Maximum 3-STATE Current I _{OLD} Minimum Dynamic							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
I _{OZ} Maximum 3-STATE Current I _{OLD} Minimum Dynamic		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$	
I _{OZ} Maximum 3-STATE Current I _{OLD} Minimum Dynamic		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
I _{OZ} Maximum 3-STATE Current I _{OLD} Minimum Dynamic		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
Current I _{OLD} Minimum Dynamic	eakage Current	5.5		±0.1	±1.0	μA	$V_I = V_{CC}, GND$	
I _{OLD} Minimum Dynamic	E						V_{I} (OE) = V_{IL} , V_{IH}	
OEB ,		5.5		±0.25	±2.5	μA	$V_I = V_{CC}, V_{GND}$	
OEB ,							$V_O = V_{CC}, GND$	
	;	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD} Output Current (Note 3)	ote 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC} (Note 4) Maximum Quiescent Supp	ent Supply Curent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$ or GND	

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

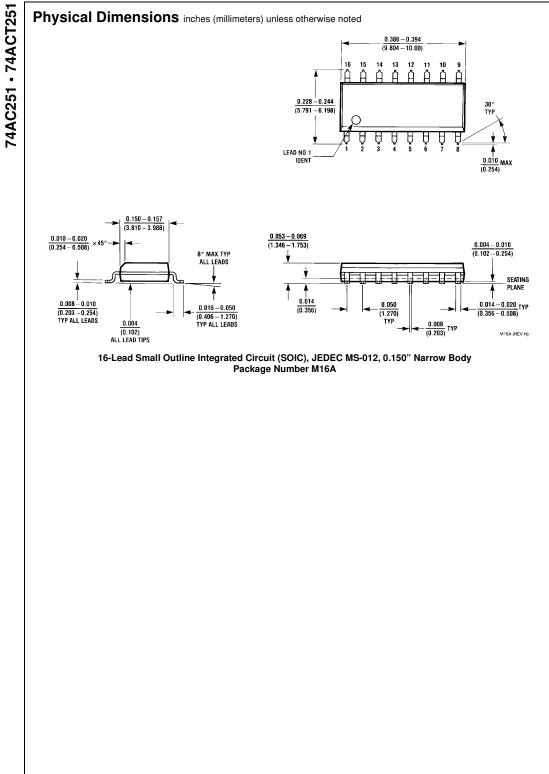
Symbol	Parameter	V _{cc}	T _A = +25°C		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
	Parameter	(V)	Тур	G	uaranteed Limits	Units	Conditions
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	v	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	v	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	L _ E0A
	Output Voltage	5.5	5.49	5.4	5.4	v	$I_{OUT} = -50 \ \mu A$
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 5
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	50 4
	Output Voltage	5.5	0.001	0.1	0.1	v	I _{OUT} = 50 μA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_{I} = V_{CC}, GND$
	Leakage Current	5.5		±0.1	1.0	μΑ	$v_1 = v_{CC}$, and
I _{OZ}	Maximum 3-STATE	5.5		±0.5	±5.0	μA	$V_I = V_{IL}, V_{IH}$
	Current	5.5		±0.5	±0.0	μА	$V_O = V_{CC}, GND$
I _{CCT}	Maximum	5.5	0.6		1.5	mA	$V_1 = V_{CC} - 2.1V$
	I _{CC} /Input	5.5	0.0		1.5	IIIA	v] - v _{CC} - 2.1 v
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$
	Supply Current	5.5		4.0	40.0	μΑ	or GND

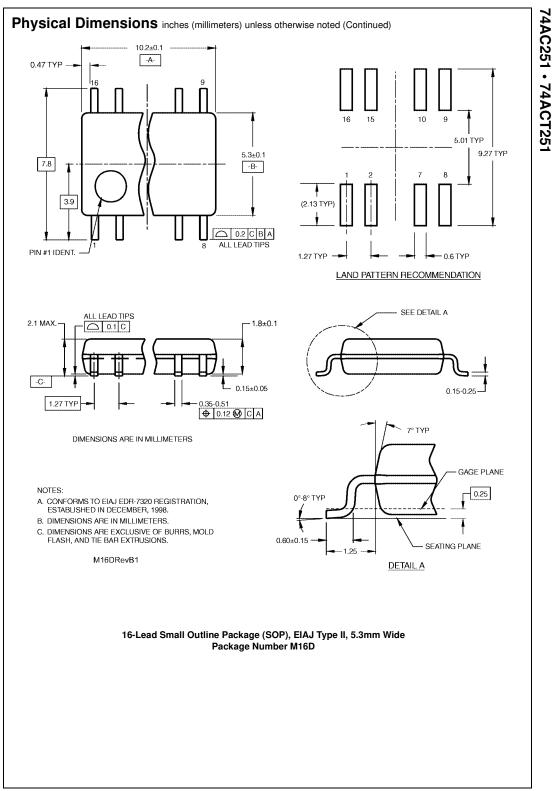
Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

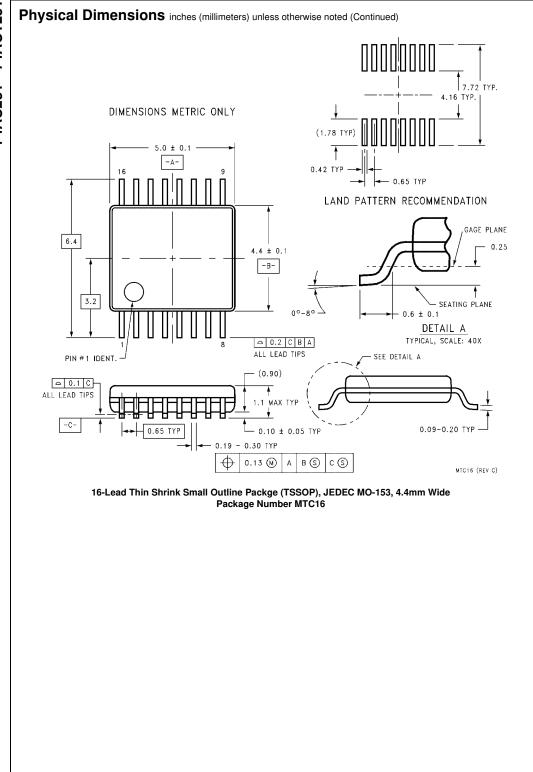
AC Electrical Characteristics for AC

		V _{cc}		$\textbf{T_A}=+25^{\circ}\textbf{C}$		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)	$C_L = 50 \text{ pF}$			$C_L = 50 \ pF$		Units
		(Note 7)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	1.5	11.5	17.5	1.5	19.0	20
	S_n to Z or \overline{Z}	5.0	1.5	8.5	12.5	1.5	13.5	ns
t _{PHL}	Propagation Delay	3.3	1.5	11.0	17.5	1.5	19.0	20
	S_n to Z or \overline{Z}	5.0	1.5	8.0	12.5	1.5	13.5	ns
t _{PLH}	Propagation Delay	3.3	1.5	10.0	14.0	1.5	15.5	ns
	I _n to Z or Z	5.0	1.5	7.0	10.0	1.5	11.0	115
t _{PHL}	Propagation Delay	3.3	1.5	9.0	14.0	1.5	15.5	20
	I_n to Z or \overline{Z}	5.0	1.5	6.5	10.0	1.5	11.0	ns
t _{PZH}	Output Enable Time	3.3	1.5	7.5	11.0	1.5	12.0	ns
	OE to Z or Z	5.0	1.5	5.5	8.0	1.5	9.0	115
t _{PZL}	Output Enable Time	3.3	1.5	7.5	11.0	1.5	12.0	ns
	OE to Z or Z	5.0	1.5	5.5	8.0	1.5	9.0	115
t _{PHZ}	Output Disable Time	3.3	1.5	8.5	11.5	1.5	13.0	
	\overline{OE} to Z or \overline{Z}	5.0	1.5	7.0	9.5	1.5	10.0	ns
t _{PLZ}	Output Disable Time	3.3	1.5	7.0	11.0	1.5	12.0	20
	\overline{OE} to Z or \overline{Z}	5.0	1.5	5.5	8.0	1.5	8.5	ns

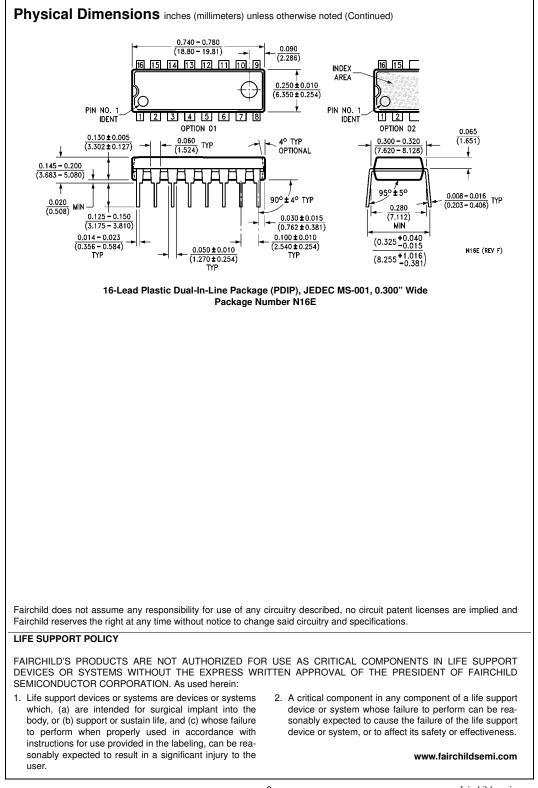
Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$. Voltage Range 5.0 is $5.0V \pm 0.5V$


		V _{CC}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)	C _L = 50 pF			$C_L = 50 \text{ pF}$		Units
		(Note 8)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay S_n to Z or \overline{Z}	5.0	2.5	7.0	15.5	2.0	17.0	ns
t _{PHL}	Propagation Delay S_n to Z or \overline{Z}	5.0	2.5	7.5	16.5	2.5	18.5	ns
t _{PLH}	Propagation Delay I_n to Z or \overline{Z}	5.0	2.5	5.5	12.0	2.0	13.0	ns
t _{PHL}	Propagation Delay I_n to Z or \overline{Z}	5.0	2.5	6.5	12.5	2.5	14.0	ns
t _{PZH}	Output Enable Time \overline{OE} to Z or \overline{Z}	5.0	1.5	5.0	8.5	1.5	9.0	ns
t _{PZL}	Output Enable Time \overline{OE} to Z or \overline{Z}	5.0	1.5	4.5	8.5	1.5	9.5	ns
t _{PHZ}	Output Disable Time \overline{OE} to Z or \overline{Z}	5.0	2.0	6.0	12.0	2.0	13.0	ns
PLZ	Output Disable Time \overline{OE} to Z or \overline{Z}	5.0	1.5	4.5	8.5	1.5	9.0	ns


Note 8: Voltage Range 5.0 is $5.0V \pm 0.5V$


Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	70.0	pF	$V_{CC} = 5.0V$


74AC251 • 74ACT251

74AC251 • 74ACT251

74AC251 • 74ACT251 8-Input Multiplexer with 3-STATE Output