imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74AC299 • 74ACT299 8-Input Universal Shift/Storage Register

FAIRCHILD

SEMICONDUCTOR TM

74AC299 • 74ACT299 8-Input Universal Shift/Storage Register with Common Parallel I/O Pins

General Description

The AC/ACT299 is an 8-bit universal shift/storage register with 3-STATE outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Additional outputs are provided for flip-flops Q_0 , Q_7 to allow easy serial cascading. A separate active LOW Master Reset is used to reset the register.

Features

- I $_{\rm CC}$ and $I_{\rm OZ}$ reduced by 50%
- Common parallel I/O for reduced pin count
- Additional serial inputs and outputs for expansion
- Four operating modes: shift left, shift right, load and store
- 3-STATE outputs for bus-oriented applications
- Outputs source/sink 24 mA
- ACT299 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description
74AC299SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74AC299SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC299MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC299PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT299SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74ACT299MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT299PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Names	Description
СР	Clock Pulse Input
DS ₀	Serial Data Input for Right Shift
DS ₇	Serial Data Input for Left Shift
S ₀ , S ₁	Mode Select Inputs
MR	Asynchronous Master Reset
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs
I/O ₀ —I/O ₇	Parallel Data Inputs or
	3-STATE Parallel Outputs
Q ₀ , Q ₇	Serial Outputs

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Truth Table

	Inp	uts		Response			
MR	S ₁	S ₀	СР				
L	Х	Х		Asynchronous Reset; $Q_0 - Q_7 = LOW$			
н	н	н	~	Parallel Load; I/O _n \rightarrow Q _n			
н	L	н	~	Shift Right; $DS_0 \rightarrow Q_0$, $Q_0 \rightarrow Q_1$, etc. Shift Left, $DS_7 \rightarrow Q_7$, $Q_7 \rightarrow Q_6$, etc.			
н	н	L	~	Shift Left, $DS_7 \rightarrow Q_7$, $Q_7 \rightarrow Q_6$, etc.			
н	L	L	Х	Hold			

H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial

r = LOW-to-HIGH Transition

Functional Description

The AC/ACT299 contains eight edge-triggered D-type flipflops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S₀ and S₁, as shown in the Truth Table. All flip-flop outputs are brought out through 3-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q₀ and Q₇ are also brought out on other pins for expansion in serial shifting of longer words.

A LOW signal on $\overline{\text{MR}}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.

A HIGH signal on either \overline{OE}_1 or \overline{OE}_2 disables the 3-STATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-STATE buffers are also disabled by HIGH signals on both S_0 and S_1 in preparation for a parallel load operation.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V	Conditions
DC Input Diode Current (I _{IK})		Supply Voltage (V _{CC})
$V_{I} = -0.5V$	–20 mA	(Unless Otherwise Spe
$V_I = V_{CC} + 0.5V$	+20 mA	AC
DC Input Voltage (VI)	–0.5V to V_{CC} +0.5V	ACT
DC Output Diode Current (I _{OK})		Input Voltage (V _I)
$V_{O} = -0.5V$	–20 mA	Output Voltage (V _O)
$V_O = V_{CC} + 0.5V$	+20 mA	Operating Temperature (
DC Output Voltage (V _O)	–0.5V to V_{CC} +0.5V	Minimum Input Edge Rat
DC Output Source or Sink Current $({\rm I}_{\rm O})$	\pm 50 mA	AC Devices
DC V_{CC} or Ground Current		V _{IN} from 30% to 70% o
Per Output Pin (I _{CC} or I _{GND})	± 50 mA	V _{CC} @ 3.3V, 4.5V, 5.5
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	Minimum Input Edge Rat
Junction Temperature (T _J)		ACT Devices
(PDIP)	140°C	V _{IN} from 0.8V to 2.0V
		V _{CC} @ 4.5V, 5.5V

$\begin{tabular}{|c|c|c|c|c|c|c|} \hline Supply Voltage (V_{CC}) & (Unless Otherwise Specified) & AC & 2.0V to 6.0V & ACT & 4.5V to 5.0V & Input Voltage (V_I) & 0V to V_{CC} &$

Recommended Operating

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Obviously the databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V _{cc}	T _A =	25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
Symbol	Parameter	(V)	Тур	Gu	aranteed Limits	Units	Conditions	
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	3.15	3.15	v	or V _{CC} – 0.1V	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	1.35	1.35	v	or $V_{CC} - 0.1V$	
		5.5	2.75	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		2.56	2.46	V	$I_{OH} = -12 \text{ mA}$	
		4.5		3.86	3.76		$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note 2	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		0.36	0.44		$I_{OH} = 12 \text{ mA}$	
		4.5		0.36	0.44	V	$I_{OH} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OH} = 24 mA (Note 2)	
I _{IN}	Maximum Input	5.5		± 0.1	± 1.0	μA	$V_I = V_{CC}, GND$	
(Note 4)	Leakage Current	5.5		÷ 0.1	± 1.0	μΛ		
I _{OLD}	Minimum Dynamic	5.5			86	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)				-75	mA	V _{OHD} = 3.85V Min	
I _{CC} (Note 4)	Maximum Quiescent Supply Current	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$ or GND	

DC Electrical Characteristics for AC (Continued)

Symbol	Parameter	v _{cc}	T _A =	25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
0,		(V)	Тур	Gu	aranteed Limits	••••••	Conditione
I _{OZT}	Maximum I/O Leakage Current						V_{I} (OE) = V_{IL} , V_{IH}
		5.5		± 0.3	± 3.0	μA	$V_I = V_{CC}, GND$
							$V_{O} = V_{CC}, GND$

Note 2: All outputs loaded; threshold on input associated with output under test.

Note 3: Maximum test duration 20 ms, one output loaded at a time. **Note 4:** I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC}.

DC Electrical Characteristics for ACT

Symbol	Parameter	V _{CC}	T _A =	25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
Symbol	i arameter	(V)	Тур	Gu	aranteed Limits	Onits	Conditions
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	v	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
VIL	Maximum LOW Level	3.0	1.5	0.8	0.8	v	$V_{OUT} = 0.1V$
	Input Voltage	4.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	v	L 50A
		5.5	5.49	5.4	5.4	v	$I_{OUT} = -50 \ \mu A$
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5	0.0001	3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 5)
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	v	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1	v	10UT - 30 μA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	± 1.0	μA	$V_I = V_{CC}, GND$
ICCT	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent Supply Current	5.5		4.0	40.0	μΑ	$V_{IN} = V_{CC}$ or GND
I _{OZT}	Maximum I/O						V_{I} (OE) = V_{IL} , V_{IH}
	Leakage Current	5.5		±0.3	±3.0	μA	$V_I = V_{CC}, \ GND$
							V _O = V _{CC} , GND

Note 5: All outputs loaded; thresholds on input associated with output under test.

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

		V _{CC}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)		$C_L = 50 \text{ pF}$		C _L =	50 pF	Units
		(Note 7)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Input	3.3	90	124		80		MHz
	Frequency	5.0	130	173		105		IVITIZ
t _{PLH}	Propagation Delay	3.3	8.5	14.0	20.5	7.0	22.0	20
	CP to Q0 or Q7 (Shift Left or Right)	5.0	5.5	9.5	14.0	4.5	15.0	ns
t _{PHL}	Propagation Delay	3.3	8.5	14.5	21.5	7.0	23.0	
	CP to Q0 or Q7 (Shift Left or Right)	5.0	5.5	10.0	14.5	5.0	16.0	ns
t _{PLH}	Propagation Delay	3.3	9.0	14.5	20.5	7.5	22.5	
	CP to I/On	5.0	6.0	10.0	14.5	5.0	16.0	ns
t _{PHL}	Propagation Delay	3.3	10.0	16.0	23.0	8.5	24.5	
	CP to I/On	5.0	6.5	11.0	16.0	6.0	17.5	ns
t _{PHL}	Propagation Delay	3.3	9.0	15.5	22.5	7.5	25.0	
	MR to Q ₀ or Q ₇	5.0	5.5	10.5	15.5	5.0	17.0	ns
t _{PHL}	Propagation Delay	3.3	9.0	15.0	21.5	7.5	24.0	
	MR to I/On	5.0	5.5	10.0	15.0	5.0	16.5	ns
t _{PZH}	Output Enable Time	3.3	7.0	12.0	18.0	6.0	19.5	
	OE to I/On	5.0	4.5	8.5	12.5	4.0	13.5	ns
t _{PZL}	Output Enable Time	3.3	7.0	12.5	18.0	6.0	20.5	
	OE to I/On	5.0	5.0	8.0	12.5	4.0	14.0	ns
t _{PHZ}	Output Disable Time	3.3	6.5	13.0	18.5	5.5	19.5	
	OE to I/On	5.0	3.5	9.5	14.0	3.0	15.0	ns
t _{PLZ}	Output Disable Time	3.3	5.5	11.5	17.0	4.5	19.0	
	OE to I/On	5.0	3.5	8.0	12.5	2.0	13.5	ns

Note 7: Voltage Range 3.3 is 3.3V \pm 0.3V. Voltage Range 5.0 is 5.0V \pm 0.5V.

AC Operating Requirements for AC

		V _{cc}		+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol	Parameter	(V)	$C_L = 50 \text{ pF}$		$C_L = 50 \text{ pF}$	Units
		(Note 8)	Тур	Gua	ranteed Minimum	
ts	Setup Time, HIGH or LOW	3.3	3.0	8.0	8.5	ns
	S ₀ or S ₁ to CP	5.0	2.0	5.0	5.5	115
t _H	Hold Time, HIGH or LOW	3.3	-3.0	0.5	0.5	ns
	S ₀ or S ₁ to CP	5.0	-1.5	1.0	1.0	115
ts	Setup Time, HIGH or LOW	3.3	2.0	5.5	6.0	
	I/O _n to CP	5.0	1.0	3.5	4.0	ns
tн	Hold Time, HIGH or LOW	3.3	-2.0	0	0	20
	I/O _n to CP	5.0	-1.0	1.0	1.0	ns
ts	Setup Time, HIGH or LOW	3.3	2.5	6.5	7.0	20
	DS ₀ or DS ₇ to CP	5.0	1.5	4.0	4.5	ns
t _H	Hold Time, HIGH or LOW	3.3	-2.0	0	0.5	
	DS ₀ or DS ₇ to CP	5.0	-1.0	1.0	1.0	ns
tw	CP Pulse Width, LOW	3.3	3.5	4.5	5.0	20
		5.0	2.0	3.5	3.5	ns
tw	MR Pulse Width, LOW	3.3	4.0	4.5	5.0	
		5.0	2.0	3.5	3.5	ns
REC	Recovery Time	3.3	0	1.5	1.5	
	MR to CP	5.0	0.5	1.5	1.5	ns

Voltage Range 5.0 is 5.0V \pm 0.5V

		V _{cc}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	·
Symbol	Parameter	(V)		$C_L = 50 \ pF$		C _L =	50 pF	Units
		(Note 9)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Input Frequency	5.0	120	170		110		MHz
t _{PLH}	Propagation Delay CP to Q ₀ or Q ₇ (Shift Left or Right)	5.0	4.0	8.5	12.5	3.0	14.0	ns
t _{PHL}	Propagation Delay CP to Q_0 or Q_7 (Shift Left or Right)	5.0	4.0	9.0	13.5	3.5	15.0	ns
t _{PLH}	Propagation Delay CP to I/O _n	5.0	4.5	8.5	12.5	4.5	13.5	ns
t _{PHL}	Propagation Delay CP to I/O _n	5.0	5.0	9.5	15.0	4.5	16.5	ns
t _{PHL}	Propagation Delay MR to Q ₀ or Q ₇	5.0	4.0	14.0	15.0	4.0	18.0	ns
t _{PHL}	Propagation Delay MR to I/O _n	5.0	4.0	13.0	14.5	3.5	17.5	ns
t _{PZH}	Output Enable Time OE to I/O _n	5.0	2.5	8.0	12.0	1.5	13.0	ns
t _{PZL}	Output Enable Time OE to I/O _n	5.0	2.0	8.0	12.0	1.5	13.5	ns
t _{PHZ}	Output Disable Time OE to I/On	5.0	2.0	8.5	12.5	2.0	13.5	ns
t _{PLZ}	Output Disable Time	5.0	2.5	8.0	11.5	2.0	12.5	ns

Note 9: Voltage Range 5.0 is $5.0V \pm 0.5V$

AC Operating Requirements for ACT

		v _{cc}		+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	
Symbol Parameter	Parameter	(V)	$C_L = 50 \text{ pF}$		C _L = 50 pF	Units
		(Note 10)	Тур	Guai	anteed Minimum	
ts	Setup Time, HIGH or LOW S_0 or S_1 to CP	5.0	2.0	5.0	5.5	ns
t _H	Hold Time, HIGH or LOW S_0 or S_1 to CP	5.0	-2.0	1.0	1.0	ns
t _S	Setup Time, HIGH or LOW I/O _n to CP	5.0	1.5	4.0	4.5	ns
t _H	Hold Time, HIGH or LOW I/O _n to CP	5.0	-1.0	1.0	1.0	ns
t _s	Setup Time, HIGH or LOW DS_0 or DS_7 to CP	5.0	1.5	4.5	5.0	ns
t _H	Hold Time, HIGH or LOW DS ₀ or DS ₇ to CP	5.0	-1.0	1.0	1.0	ns
tw	CP Pulse Width HIGH or LOW	5.0	2.0	4.0	4.5	ns
t _W	MR Pulse Width, LOW	5.0	2.0	3.5	3.5	ns
t _{REC}	Recovery Time, MR to CP	5.0	0	1.5	1.5	ns

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	170	pF	$V_{CC} = 5.5V$

74AC299 • 74ACT299

74AC299 • 74ACT299

74AC299 • 74ACT299

www.fairchildsemi.com