: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Truth Table

Inputs				Response
MR	S_{1}	S_{0}	CP	
L	X	X	X	Asynchronous Reset; $\mathrm{Q}_{0}-\mathrm{Q}_{7}=$ LOW
H	H	H	\sim	Parallel Load; $\mathrm{I} / \mathrm{O}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}}$
H	L	H	\sim	Shift Right; $\mathrm{DS}_{0} \rightarrow \mathrm{Q}_{0}, \mathrm{Q}_{0} \rightarrow \mathrm{Q}_{1}$, etc.
H	H	L	\sim	Shift Left, $\mathrm{DS}_{7} \rightarrow \mathrm{Q}_{7}, \mathrm{Q}_{7} \rightarrow \mathrm{Q}_{6}$, etc.
H	L	L	X	Hold

H = HIGH Voltage Level
= LOW Voltage Level
X = Immaterial
$\sim=$ LOW-to-HIGH Transition

Functional Description

The AC/ACT299 contains eight edge-triggered D-type flipflops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1}, as shown in the Truth Table. All flip-flop outputs are brought out through 3-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.
A LOW signal on $\overline{M R}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed
A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the 3-STATE buffers and puts the I/O pins in the high impedance state In this condition the shift, hold, load and reset operations can still occur. The 3-STATE buffers are also disabled by HIGH signals on both S_{0} and S_{1} in preparation for a parallel load operation.

Absolute Maximum Ratings(Note 1)
Supply Voltage (V_{CC})
DC Input Diode Current ($I_{\mid K}$)
$V_{1}=-0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage (V_{l})
DC Output Diode Current (IOK)
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Voltage (V_{O})
DC Output Source or Sink Current (IO)
DC V_{CC} or Ground Current
Per Output Pin (ICC or $I_{G N D}$)
Storage Temperature ($\mathrm{T}_{\mathrm{STG}}$)
Junction Temperature (T_{J})
(PDIP)
-0.5 V to +7.0 V
$-20 \mathrm{~mA}$
$+20 \mathrm{~mA}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$-20 \mathrm{~mA}$
$+20 \mathrm{~mA}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
$\pm 50 \mathrm{~mA}$
$\pm 50 \mathrm{~mA}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$140^{\circ} \mathrm{C}$

Recommended Operating

 ConditionsSupply Voltage (V_{CC})
(Unless Otherwise Specified)
AC
2.0 V to 6.0 V

ACT
Input Voltage (V_{l})
Output Voltage (V_{O})
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$
Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
AC Devices
$\mathrm{V}_{\text {IN }}$ from 30% to 70% of $\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\mathrm{CC}} @ 3.3 \mathrm{~V}, 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$125 \mathrm{mV} / \mathrm{ns}$
Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
ACT Devices
$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
$125 \mathrm{mV} / \mathrm{ns}$
Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Obviously the databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT ${ }^{\text {m }}$ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 2.25 \\ & 2.75 \end{aligned}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OH}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.99 \\ & 4.49 \\ & 5.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	lout $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.001 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
$\begin{aligned} & \hline \text { IN } \\ & \text { (Note 4) } \end{aligned}$	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
lold	Minimum Dynamic	5.5			86	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$	Output Current (Note 3)				-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
ICC (Note 4)	$\begin{aligned} & \hline \text { Maximum Quiescent } \\ & \text { Supply Current } \end{aligned}$	5.5		4.0	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND

DC Electrical Characteristics for AC (Continued)							
Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{l_{\text {OZT }}}$	Maximum I/O Leakage Current	5.5		± 0.3	± 3.0	$\mu \mathrm{A}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \hline \end{aligned}$
Note 2: All outputs loaded; threshold on input associated with output under test. Note 3: Maximum test duration 20 ms , one output loaded at a time. Note 4: I_{IN} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.							

DC Electrical Characteristics for ACT

Symbol	Parameter	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { OH }}$	Minimum HIGH Level	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{l}_{\text {OUt }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	0.0001	$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 5) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 5) \end{aligned}$
I_{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$, GND
$\mathrm{I}_{\text {CCT }}$	Maximum I ${ }_{\text {CC }}$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {cc }}-2.1 \mathrm{~V}$
IoLd	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
IOHD	Output Current (Note 6)	5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$\mathrm{I}_{\text {cc }}$	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
Iozt	Maximum I/O Leakage Current	5.5		± 0.3	± 3.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$

Note 5: All outputs loaded; thresholds on input associated with output under test.
Note 6: Maximum test duration 2.0 ms , one output loaded at a time.

Symbol	Parameter	V_{CC} (V) (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Min	Typ	Max	Min Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Input Frequency	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 90 \\ 130 \end{gathered}$	$\begin{aligned} & 124 \\ & 173 \end{aligned}$		$\begin{gathered} 80 \\ 105 \end{gathered}$	MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $C P$ to Q_{0} or Q_{7} (Shift Left or Right)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 14.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 20.5 \\ & 14.0 \end{aligned}$	7.0 22.0 4.5 15.0	ns
${ }_{\text {tPHL }}$	Propagation Delay $C P$ to Q_{0} or Q_{7} (Shift Left or Right)	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \hline 21.5 \\ & 14.5 \end{aligned}$	7.0 23.0 5.0 16.0	ns
$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \hline \overline{\mathrm{CP}} \text { to } \mathrm{I} / \mathrm{O}_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 20.5 \\ & 14.5 \end{aligned}$	7.5 22.5 5.0 16.0	ns
$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & \overline{\mathrm{CP}} \text { to } \mathrm{I} / \mathrm{O}_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 10.0 \\ 6.5 \end{gathered}$	$\begin{aligned} & 16.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 23.0 \\ & 16.0 \end{aligned}$	8.5 24.5 6.0 17.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to Q_{0} or Q_{7}	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 9.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 22.5 \\ & 15.5 \end{aligned}$	7.5 25.0 5.0 17.0	ns
${ }_{\text {tPHL }}$	Propagation Delay $\overline{M R}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 21.5 \\ & 15.0 \end{aligned}$	7.5 24.0 5.0 16.5	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 4.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 12.5 \end{aligned}$	6.0 19.5 4.0 13.5	ns
$\overline{t_{\text {PZL }}}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 18.0 \\ & 12.5 \end{aligned}$	6.0 20.5 4.0 14.0	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 18.5 \\ & 14.0 \end{aligned}$	5.5 19.5 3.0 15.0	ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.0 \end{gathered}$	$\begin{aligned} & 17.0 \\ & 12.5 \end{aligned}$	4.5 19.0 2.0 13.5	ns
Note 7: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$. Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.							
Symbol	Parameter	V_{cc} (V) (Note 8)		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
				Typ	Guaranteed Minimum		
t_{s}	Setup Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & \hline 3.3 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 5.5 \end{aligned}$	ns
t_{H}	Hold Time, HIGH or LOW S_{0} or S_{1} to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline-3.0 \\ & -1.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$	ns
t_{s}	Setup Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 4.0 \end{aligned}$	ns
t_{H}	Hold Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline-2.0 \\ & -1.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 1.0 \end{gathered}$	$\begin{gathered} \hline 0 \\ 1.0 \end{gathered}$	ns
t_{s}	Setup Time, HIGH or LOW DS_{0} or DS_{7} to CP	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 4.5 \end{aligned}$	ns
t_{H}	Hold Time, HIGH or LOW DS_{0} or DS_{7} to CP	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline-2.0 \\ & -1.0 \end{aligned}$	$\begin{gathered} \hline 0 \\ 1.0 \end{gathered}$	$\begin{aligned} & \hline 0.5 \\ & 1.0 \end{aligned}$	ns
t_{w}	CP Pulse Width, LOW	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & \hline 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 3.5 \end{aligned}$	ns
$t_{\text {w }}$	$\overline{\text { MR }}$ Pulse Width, LOW	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 4.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 3.5 \end{aligned}$	ns
$\mathrm{t}_{\text {REC }}$	Recovery Time $\overline{\mathrm{MR}}$ to CP			$\begin{gathered} \hline 0 \\ 0.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	ns
Note 8: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$							

AC Electrical Characteristics for ACT

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{Cc}} \\ (\mathrm{~V}) \\ \text { (Note 9) } \end{gathered}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Input Frequency	5.0	120	170		110		MHz
${ }_{\text {trLH }}$	Propagation Delay CP to Q_{0} or Q_{7} (Shift Left or Right)	5.0	4.0	8.5	12.5	3.0	14.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay CP to Q_{0} or Q_{7} (Shift Left or Right)	5.0	4.0	9.0	13.5	3.5	15.0	ns
tpLH	Propagation Delay CP to $1 / \mathrm{O}_{\mathrm{n}}$	5.0	4.5	8.5	12.5	4.5	13.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay CP to $1 / \mathrm{O}_{\mathrm{n}}$	5.0	5.0	9.5	15.0	4.5	16.5	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{MR}}$ to Q_{0} or Q_{7}	5.0	4.0	14.0	15.0	4.0	18.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{M R}$ to I / O_{n}	5.0	4.0	13.0	14.5	3.5	17.5	ns
${ }_{\text {tpzH }}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	2.5	8.0	12.0	1.5	13.0	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	2.0	8.0	12.0	1.5	13.5	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	2.0	8.5	12.5	2.0	13.5	ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time $\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	5.0	2.5	8.0	11.5	2.0	12.5	ns

AC Operating Requirements for ACT

Symbol	Parameter	V_{Cc} (V) (Note 10)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ		teed Minimum	
t_{S}	Setup Time, HIGH or LOW S_{0} or S_{1} to CP	5.0	2.0	5.0	5.5	ns
t_{H}	Hold Time, HIGH or LOW S_{0} or S_{1} to CP	5.0	-2.0	1.0	1.0	ns
t_{s}	Setup Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	5.0	1.5	4.0	4.5	ns
t_{H}	Hold Time, HIGH or LOW $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$ to CP	5.0	-1.0	1.0	1.0	ns
t_{s}	Setup Time, HIGH or LOW DS_{0} or DS_{7} to CP	5.0	1.5	4.5	5.0	ns
t_{H}	Hold Time, HIGH or LOW DS_{0} or DS_{7} to CP	5.0	-1.0	1.0	1.0	ns
t_{W}	CP Pulse Width HIGH or LOW	5.0	2.0	4.0	4.5	ns
t_{W}	$\overline{\mathrm{MR}}$ Pulse Width, LOW	5.0	2.0	3.5	3.5	ns
$t_{\text {REC }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP	5.0	0	1.5	1.5	ns

Note 10: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Capacitance

| Symbol | Parameter | Typ | Units | Conditions |
| :--- | :--- | :---: | :---: | :---: | :---: |
| C_{IN} | Input Capacitance | 4.5 | pF | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ |
| C_{PD} | Power Dissipation Capacitance | 170 | pF | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ |

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
