: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

74ACT299

8 BIT PIPO SHIFT REGISTER WITH ASYNCHRONOUS CLEAR

- HIGH SPEED:
$\mathrm{f}_{\mathrm{MAX}}=240 \mathrm{MHz}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=8 \mu \mathrm{~A}(\mathrm{MAX}$.$) at \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- COMPATIBLE WITH TTL OUTPUTS $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}(\mathrm{MIN}),. \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ (MAX.)
- 50Ω TRANSMISSION LINE DRIVING CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE:
$\left|\mathrm{l}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{MIN})$
- BALANCED PROPAGATION DELAYS:
$\mathrm{t}_{\mathrm{PLH}} \cong \mathrm{t}_{\mathrm{PHL}}$
- OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=4.5 \mathrm{~V}$ to 5.5 V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 299
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The 74ACT299 is an advanced high-speed CMOS 8-BIT PIPO SHIFT REGISTER (3-STATE) fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology.
These devices have four modes (HOLD, SHIFT LEFT, SHIFT RIGHT and LOAD DATA). Each mode is chosen by two function select inputs (SO, S 1) as shown in the Truth Table. When one or

ORDER CODES

PACKAGE	TUBE	T \& R
DIP	74ACT299B	
SOP	74ACT299M	74ACT299MTR
TSSOP		74ACT299TTR

both enable inputs, ($\overline{\mathrm{G} 1}, \overline{\mathrm{G} 2}$) are high, the eight input/output terminals are in the high-impedance state; however sequential operation or clearing of the register is not affected. Clear function is asynchronousto clock.
The device is designed to interface directly High Speed CMOS systems with TTL, NMOS and CMOS output voltage levels.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1,19	S0, S1	Mode Select Inputs
2,3	$\overline{G 1}, \overline{\mathrm{G} 2}$	3-State Output Enable Inputs (Active LOW)
$7,13,6,14,5,15,4,16$	A/QA to H/QH	Parallel Data Inputs or 3-State Parallel Outputs (Bus Driver)
8,17	QA' $^{\prime}$ to QH'	Serial Outputs (Standard Output)
9	$\overline{\text { CLEAR }}$	Asyncrhronous Master Reset Input (Active LOW)
11	SR	Serial Data Shift Right Input
12	CLOCK	Clock Input (LOW to HIGH, Edge-triggered)
18	SL	Serial Data Shift Left Input
10	GND	Ground (OV)
20	V $_{\text {CC }}$	Positive Supply Voltage

TRUTH TABLE

MODE	INPUTS						INPUTS/OUTPUTS				OUTPUTS	
	$\overline{\text { CLEAR }}$	FUNCTION SELECTED		OUTPUT CONTROL		CLOCK	SERIAL		A/QA	H/QH	QA'	QH'
		S1	S0	$\overline{\text { G1 }}{ }^{\text {² }}$	$\overline{\text { G2 }}{ }^{\text { }}$		SL	SR				
Z	L	H	H	X	X	X	X	X	Z	Z	L	L
CLEAR	L	L	X	L	L	X	X	X	L	L	L	L
	L	X	L	L	L	X	X	X	L	L	L	L
HOLD	H	L	L	L	L	X	X	X	QA0	QH0	QA0	QH0
SHIFT	H	L	H	L	L	ऽ	X	H	H	QGn	H	QGn
RIGHT	H	L	H	L	L	」	X	L	L	QGn	L	QGn
SHIFT	H	H	L	L	L	ऽ	H	X	QBn	H	QBn	H
LEFT	H	H	L	L	L	\bigcirc	L	X	QBn	L	QBn	L
LOAD	H	H	H	X	X	ऽ	X	X	a	h	a	h

${ }^{*}$: When one or both controls are high, the eight input/output terminals are the high impedance state: howewer sequential operation or cleanig of the register is not affected.
Z : High Impedance
Qn0 : The level of An before the indicated steady state input conditions were established.
Qnn : The level of Qn before the most recent active transition indicated by OR
a, h : The level of the steadystate inputs A, H, respectively.
X : Don't Care

LOGIC DIAGRAM

TIMING CHART

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	± 20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 50	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	$\mathrm{DC} \mathrm{V}_{\mathrm{CC}}$ or Ground Current	± 400	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	4.5 to 5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{CC}	V
V_{O}	Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time $\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V (note 1)	8	$\mathrm{~ns} / \mathrm{V}$

[^0]
DC SPECIFICATIONS

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & V_{c c} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	4.5	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{~V} \text { or } \\ \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{gathered}$	2.0	1.5		2.0		2.0		V
		5.5		2.0	1.5		2.0		2.0		
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	4.5	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{~V} \text { or } \\ \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{gathered}$		1.5	0.8		0.8		0.8	
		5.5			1.5	0.8		0.8		0.8	V
V_{OH}	High Level Output Voltage	4.5	$\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A}$	4.4	4.49		4.4		4.4		
		5.5	$\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A}$	5.4	5.49		5.4		5.4		
		4.5	$\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$	3.86			3.76		3.7		V
		5.5	$\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$	4.86			4.76		4.7		
V_{OL}	Low Level Output Voltage	4.5	$\mathrm{l}_{\mathrm{O}}=50 \mu \mathrm{~A}$		0.001	0.1		0.1		0.1	
		5.5	$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A}$		0.001	0.1		0.1		0.1	
		4.5	$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$			0.36		0.44		0.5	
		5.5	$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$			0.36		0.44		0.5	
1	Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND			± 0.1		± 1		± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZ }}$	High Impedance Output Leakege Current	5.5	$\begin{gathered} V_{I}=V_{I H} \text { or } V_{I L} \\ V_{O}=V_{C C} \text { or } G N D \end{gathered}$			± 0.5		± 5		± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Max $\mathrm{ICC}^{\text {/Input }}$	5.5	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$		0.6			1.5		1.6	mA
$I_{\text {cc }}$	Quiescent Supply Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND			8		80		160	$\mu \mathrm{A}$
IOLD	Dynamic Output Current (note 1, 2)	5.5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ max					75		50	mA
$\mathrm{I}_{\text {OHD }}$			$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ min					-75		-50	mA

2) Incident wave switching is guaranteed on trasmission lines with impedances as low as 50Ω

74ACT299

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition		Value							Unit
		V_{cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time CLOCK to Q_{A}^{\prime} ' $^{\prime}{ }_{H}$	$5.0^{(*)}$			6.5	10.5	1.0	15.0	1.0	16.0	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Time CLOCK to Q_{A} $-Q_{H}$	$5.0^{(*)}$			6.5	11.4	1.0	15.0	1.0	16.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time $\overline{C L E A R}$ to $Q^{\prime} A^{\prime}$ Q'H	$5.0^{(*)}$			6.4	10.0	1.0	17.5	1.0	18.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time CLEAR to Q_{A} - Q_{H}	$5.0^{(*)}$			6.6	10.5	1.0	17.5	1.0	18.0	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \\ & \mathrm{t}_{\mathrm{PZH}} \end{aligned}$	Output Enable Time	$5.0^{(*)}$			6.4	11.4	1.0	13.5	1.0	14.5	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLZ}} \\ & \mathrm{t}_{\mathrm{PHZ}} \\ & \hline \end{aligned}$	Output Disable Time	$5.0^{(*)}$			6.2	9.6	1.0	13.5	1.0	14.5	ns
t_{W}	$\overline{\text { CLEAR Pulse }}$ Width, LOW	$5.0^{(*)}$				5.0		5.0		5.0	ns
${ }^{\text {W }}$ w	CLOCK pulse Width	$5.0^{(*)}$				5.0		5.0		5.0	ns
$\mathrm{t}_{\text {s }}$	Setup Time HIGH or LOW(S0 or S1 to CK)	$5.0^{(*)}$				6.0		6.5		6.5	ns
$t_{\text {h }}$	Hold Time HIGH or LOW (S0 or S1 to CK)	$5.0{ }^{(*)}$				0.0		0.0		0.0	ns
$\mathrm{t}_{\text {s }}$	Setup Time HIGH or LOW (SR or SL to CK)	$5.0^{(*)}$				3.5		3.5		3.5	ns
$t_{\text {h }}$	Hold Time HIGH or LOW (SR or SL to CK)	$5.0^{(*)}$				2.0		2.0		2.0	ns
$t_{\text {REM }}$	Recovery Time $\overline{\mathrm{CLR}}$ to CK	$5.0^{(*)}$				2.0		2.0		2.0	ns
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	$5.0{ }^{*}$)		80	240		80		80		MHz

(*) * Voltage range is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5.0			4	10		10		10	pF
$\mathrm{C}_{1 / \mathrm{O}}$	I/O Capacitance	5.0			13						pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	5.0	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$		160						pF

1) $\mathrm{C}_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $\mathrm{I}_{\mathrm{CC} \text { (opr) }}=\mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / \mathrm{n}$ (per circuit)

TEST CIRCUIT

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$	$2 \mathrm{~V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\text {PHZ }}$	Open

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)

74ACT299

WAVEFORM 1: PROPAGATION DELAYS ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2: PROPAGATION DELAYS ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 3: PROPAGATION DELAYS ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 4: PROPAGATION DELAYS ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

SC11561

Plastic DIP-20 (0.25) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
B	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
e		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

SO-20 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
C		0.50			0.020	
c1	45 (typ.)					
D	12.60		13.00	0.496		0.512
E	10.00		10.65	0.393		0.419
e		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
M			0.75			0.029
S	8 (max.)					

TSSOP20 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.1			0.433
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.85	0.9	0.95	0.335	0.354	0.374
b	0.19		0.30	0.0075		0.0118
c	0.09		0.2	0.0035		0.0079
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.25	6.4	6.5	0.246	0.252	0.256
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°	4°	8°	0°	4°	8°
L	0.50	0.60	0.70	0.020	0.024	0.028

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com

[^0]: 1) $\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
